Ejemplo n.º 1
0
 def __init__(self,
              inplanes,
              planes,
              stride=1,
              downsample=None,
              using_moving_average=False,
              using_bn=True):
     super(Bottleneck, self).__init__()
     self.sn1 = sn.SwitchNorm2d(inplanes,
                                using_moving_average=using_moving_average,
                                using_bn=using_bn)
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.sn2 = sn.SwitchNorm2d(planes,
                                using_moving_average=using_moving_average,
                                using_bn=using_bn)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.sn3 = sn.SwitchNorm2d(planes,
                                using_moving_average=using_moving_average,
                                using_bn=using_bn)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Ejemplo n.º 2
0
 def __init__(self, inplanes, planes, stride=1, downsample=None, using_moving_average=True, using_bn=True,  last_gamma=True):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.sn1 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.sn2 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn, last_gamma=last_gamma)
     self.downsample = downsample
     self.stride = stride
Ejemplo n.º 3
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 using_moving_average=True,
                 using_bn=True):
        self.inplanes = 64
        self.using_moving_average = using_moving_average
        self.using_bn = using_bn
        super(ResNetV2SN, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.sn1 = sn.SwitchNorm2d(
            64,
            using_moving_average=self.using_moving_average,
            using_bn=self.using_bn)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.sn_out = sn.SwitchNorm2d(
            512 * block.expansion,
            using_moving_average=self.using_moving_average,
            using_bn=self.using_bn)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.drouput = nn.Dropout(p=0.5)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, sn.SwitchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Ejemplo n.º 4
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                sn.SwitchNorm2d(planes * block.expansion, using_moving_average=self.using_moving_average,
                                using_bn=self.using_bn),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, using_moving_average=self.using_moving_average,
                            using_bn=self.using_bn, last_gamma=self.last_gamma))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, using_moving_average=self.using_moving_average,
                                using_bn=self.using_bn, last_gamma=self.last_gamma))

        return nn.Sequential(*layers)
    def __init__(self,
                 layers=50,
                 bins=(1, 2, 3, 6),
                 dropout=0.1,
                 classes=2,
                 zoom_factor=8,
                 use_softmax=True,
                 use_aux=True,
                 pretrained=False,
                 syncbn=True):
        super(ResNet_Seg_SN, self).__init__()
        assert layers in [50, 101, 152]
        assert 2048 % len(bins) == 0
        assert classes > 1
        assert zoom_factor in [1, 2, 4, 8]
        self.zoom_factor = zoom_factor
        self.use_softmax = use_softmax
        self.use_aux = use_aux

        #        if syncbn:
        #            from lib.syncbn import SynchronizedBatchNorm2d as BatchNorm
        #        else:
        #            from torch.nn import BatchNorm2d as BatchNorm
        #        models.BatchNorm = BatchNorm

        if layers == 50:
            resnet_sn = models.resnetv1sn50()
        elif layers == 101:
            resnet_sn = models.resnetv1sn101()
        else:
            resnet_sn = models.resnetv1sn152()

        self.layer0 = nn.Sequential(resnet_sn.conv1, resnet_sn.sn1,
                                    resnet_sn.relu, resnet_sn.maxpool)
        self.layer1, self.layer2, self.layer3, self.layer4 = resnet_sn.layer1, resnet_sn.layer2, resnet_sn.layer3, resnet_sn.layer4

        for n, m in self.layer3.named_modules():
            if 'conv2' in n:
                m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)
        for n, m in self.layer4.named_modules():
            if 'conv2' in n:
                m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1)
            elif 'downsample.0' in n:
                m.stride = (1, 1)

        fea_dim = 2048
        self.cls = nn.Sequential(
            nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
            #SwitchNorm2d(512, using_bn=True),
            sn.SwitchNorm2d(512, using_bn=True),
            nn.ReLU(inplace=True),
            nn.Dropout2d(p=dropout),
            nn.Conv2d(512, classes, kernel_size=1))
        if use_aux:
            self.aux = nn.Sequential(
                nn.Conv2d(1024, 256, kernel_size=3, padding=1, bias=False),
                #SwitchNorm2d(256, using_bn=True),
                sn.SwitchNorm2d(256, using_bn=True),
                nn.ReLU(inplace=True),
                nn.Dropout2d(p=dropout),
                nn.Conv2d(256, classes, kernel_size=1))