def __init__(self, inplanes, planes, stride=1, downsample=None, using_moving_average=False, using_bn=True): super(Bottleneck, self).__init__() self.sn1 = sn.SwitchNorm2d(inplanes, using_moving_average=using_moving_average, using_bn=using_bn) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.sn2 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.sn3 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None, using_moving_average=True, using_bn=True, last_gamma=True): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.sn1 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.sn2 = sn.SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn, last_gamma=last_gamma) self.downsample = downsample self.stride = stride
def __init__(self, block, layers, num_classes=1000, using_moving_average=True, using_bn=True): self.inplanes = 64 self.using_moving_average = using_moving_average self.using_bn = using_bn super(ResNetV2SN, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.sn1 = sn.SwitchNorm2d( 64, using_moving_average=self.using_moving_average, using_bn=self.using_bn) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.sn_out = sn.SwitchNorm2d( 512 * block.expansion, using_moving_average=self.using_moving_average, using_bn=self.using_bn) self.avgpool = nn.AvgPool2d(7, stride=1) self.drouput = nn.Dropout(p=0.5) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, sn.SwitchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), sn.SwitchNorm2d(planes * block.expansion, using_moving_average=self.using_moving_average, using_bn=self.using_bn), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, using_moving_average=self.using_moving_average, using_bn=self.using_bn, last_gamma=self.last_gamma)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, using_moving_average=self.using_moving_average, using_bn=self.using_bn, last_gamma=self.last_gamma)) return nn.Sequential(*layers)
def __init__(self, layers=50, bins=(1, 2, 3, 6), dropout=0.1, classes=2, zoom_factor=8, use_softmax=True, use_aux=True, pretrained=False, syncbn=True): super(ResNet_Seg_SN, self).__init__() assert layers in [50, 101, 152] assert 2048 % len(bins) == 0 assert classes > 1 assert zoom_factor in [1, 2, 4, 8] self.zoom_factor = zoom_factor self.use_softmax = use_softmax self.use_aux = use_aux # if syncbn: # from lib.syncbn import SynchronizedBatchNorm2d as BatchNorm # else: # from torch.nn import BatchNorm2d as BatchNorm # models.BatchNorm = BatchNorm if layers == 50: resnet_sn = models.resnetv1sn50() elif layers == 101: resnet_sn = models.resnetv1sn101() else: resnet_sn = models.resnetv1sn152() self.layer0 = nn.Sequential(resnet_sn.conv1, resnet_sn.sn1, resnet_sn.relu, resnet_sn.maxpool) self.layer1, self.layer2, self.layer3, self.layer4 = resnet_sn.layer1, resnet_sn.layer2, resnet_sn.layer3, resnet_sn.layer4 for n, m in self.layer3.named_modules(): if 'conv2' in n: m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1) elif 'downsample.0' in n: m.stride = (1, 1) for n, m in self.layer4.named_modules(): if 'conv2' in n: m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1) elif 'downsample.0' in n: m.stride = (1, 1) fea_dim = 2048 self.cls = nn.Sequential( nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False), #SwitchNorm2d(512, using_bn=True), sn.SwitchNorm2d(512, using_bn=True), nn.ReLU(inplace=True), nn.Dropout2d(p=dropout), nn.Conv2d(512, classes, kernel_size=1)) if use_aux: self.aux = nn.Sequential( nn.Conv2d(1024, 256, kernel_size=3, padding=1, bias=False), #SwitchNorm2d(256, using_bn=True), sn.SwitchNorm2d(256, using_bn=True), nn.ReLU(inplace=True), nn.Dropout2d(p=dropout), nn.Conv2d(256, classes, kernel_size=1))