Ejemplo n.º 1
0
 def _create_hashable_nb(
         self,
         nb: nbf.NotebookNode,
         compare_nb_meta=("kernelspec", ),
         compare_cell_meta=None,
 ):
     """Create a notebook containing only content desired for hashing."""
     nb = copy.deepcopy(nb)
     nb.metadata = nbf.from_dict({
         k: v
         for k, v in nb.metadata.items()
         if compare_nb_meta is None or (k in compare_nb_meta)
     })
     diff_cells = []
     for cell in nb.cells:
         if cell.cell_type != "code":
             continue
         diff_cell = nbf.from_dict({
             "cell_type": cell.cell_type,
             "source": cell.source,
             "metadata": {
                 k: v
                 for k, v in cell.metadata.items()
                 if compare_cell_meta is None or (k in compare_cell_meta)
             },
             "execution_count": None,
             "outputs": [],
         })
         diff_cells.append(diff_cell)
     nb.cells = diff_cells
     return nb
Ejemplo n.º 2
0
    def merge_match_into_notebook(
        self,
        nb: nbf.NotebookNode,
        nb_meta=("kernelspec", "language_info", "widgets"),
        cell_meta=None,
    ) -> Tuple[int, nbf.NotebookNode]:
        """Match to an executed notebook and return a merged version

        :param nb: The input notebook
        :param nb_meta: metadata keys to merge from the cached notebook (all if None)
        :param cell_meta: cell metadata keys to merge from cached notebook (all if None)
        :raises KeyError: if no match is found
        :return: pk, input notebook with cached code cells and metadata merged.
        """
        pk = self.match_cache_notebook(nb).pk
        cache_nb = self.get_cache_bundle(pk).nb
        nb = copy.deepcopy(nb)
        if nb_meta is None:
            nb.metadata = cache_nb.metadata
        else:
            for key in nb_meta:
                if key in cache_nb.metadata:
                    nb.metadata[key] = cache_nb.metadata[key]
        for idx in range(len(nb.cells)):
            if nb.cells[idx].cell_type == "code":
                cache_cell = cache_nb.cells.pop(0)
                if cell_meta is not None:
                    # update the input metadata with select cached notebook metadata
                    # then add the input metadata to the cached cell
                    nb.cells[idx].metadata.update(
                        {k: v for k, v in cache_cell.metadata.items() if k in cell_meta}
                    )
                    cache_cell.metadata = nb.cells[idx].metadata
                nb.cells[idx] = cache_cell
        return pk, nb