Ejemplo n.º 1
0
    else:
        return X, y, timey


if __name__ == "__main__":
    q_set = [0.025, 0.16, 0.5, 0.84, 0.975]

    for q in q_set:
        cross_training(qnn,
                       pipeline_small_exclude,
                       1,
                       q=q,
                       layers=1,
                       neurons=32,
                       dropout=0.05,
                       noise_in=0.0,
                       noise_out=0.,
                       l1_hidden=0.0,
                       l2_hidden=0,
                       l1_out=0.,
                       l2_out=0.,
                       batch_size=100,
                       lr=0.01,
                       epochs=5000,
                       n_segments=5,
                       n_members_segment=3,
                       patience=25,
                       verbose=0,
                       name="qnn_ex_pca_tanh",
                       activation="tanh")
Ejemplo n.º 2
0
        return X, y, timey, y_persistance

    else:
        return X, y, timey


if __name__ == "__main__":
    q_set = [0.025, 0.16, 0.5, 0.84, 0.975]

    cross_training(mqnn,
                   pipeline,
                   1,
                   q=q_set,
                   layers=1,
                   neurons=96,
                   dropout=0.1,
                   noise_in=0.0,
                   noise_out=0.,
                   l1_hidden=0.0,
                   l2_hidden=0,
                   l1_out=0.,
                   l2_out=0.,
                   batch_size=100,
                   lr=0.01,
                   epochs=5000,
                   n_segments=5,
                   n_members_segment=1,
                   patience=25,
                   verbose=0,
                   name="mqnn",
                   activation="tanh")
Ejemplo n.º 3
0
    timey = oni.index[lead_time + time_lag + shift:]

    if return_persistance:
        y_persistance = yorg[time_lag:-lead_time - shift]
        return X, y, timey, y_persistance
    else:
        return X, y, timey


if __name__ == "__main__":

    cross_training(ipnn,
                   pipeline_small,
                   10,
                   layers=1,
                   neurons=32,
                   dropout=0.2,
                   noise_in=0.0,
                   noise_out=0.,
                   l1_hidden=[0.002, 0.15, 'log'],
                   l2_hidden=0.,
                   l1_out=0.,
                   l2_out=0.,
                   batch_size=100,
                   lr=0.01,
                   epochs=5000,
                   n_segments=5,
                   n_members_segment=1,
                   patience=25,
                   verbose=0,
                   name="ipnn_new")
Ejemplo n.º 4
0
from ninolearn.learn.fit import cross_training
from mlr import mlr, pipeline, pipeline_noise

if __name__=="__main__":
    cross_training(mlr, pipeline_noise, 50, alpha=[0.,0.001],  name='mlr_review_noise')



Ejemplo n.º 5
0
        return X, y, timey, y_persistance

    else:
        return X, y, timey


if __name__ == "__main__":
    cross_training(DEM,
                   pipeline_small,
                   1,
                   layers=1,
                   neurons=32,
                   dropout=0.05,
                   noise_in=0.0,
                   noise_sigma=0.,
                   noise_mu=0.,
                   l1_hidden=0.0,
                   l2_hidden=0.,
                   l1_mu=0,
                   l2_mu=0.,
                   l1_sigma=0,
                   l2_sigma=0.0,
                   lr=0.01,
                   batch_size=100,
                   epochs=5000,
                   n_segments=5,
                   n_members_segment=3,
                   patience=25,
                   verbose=0,
                   pdf=None,
                   name="mlp")
Ejemplo n.º 6
0
    if return_persistance:
        y_persistance = yorg[time_lag:-lead_time - shift]
        return X, y, timey, y_persistance
    else:
        return X, y, timey


if __name__ == "__main__":
    cross_training(DEM,
                   pipeline_small,
                   200,
                   layers=1,
                   dropout=[0.1, 0.5],
                   noise_in=[0.1, 0.5],
                   noise_sigma=[0.1, 0.5],
                   noise_mu=[0.1, 0.5],
                   l1_hidden=[0.0, 0.02],
                   l2_hidden=[0., 0.02],
                   l1_mu=[0.0, 0.02],
                   l2_mu=[0.0, 0.02],
                   l1_sigma=[0.0, 0.02],
                   l2_sigma=[0.0, 0.02],
                   lr=[0.0001, 0.01],
                   batch_size=100,
                   epochs=500,
                   n_segments=5,
                   n_members_segment=1,
                   patience=30,
                   verbose=0,
                   pdf="normal",
                   name="dem_small")
Ejemplo n.º 7
0
from ninolearn.learn.fit import cross_training
from mlr import mlr, pipeline

if __name__ == "__main__":
    cross_training(mlr, pipeline, 50, alpha=[0., 0.001], name='mlr')
Ejemplo n.º 8
0
    np.save(join(infodir,'Xorg'), Xorg) 

    # arange the feature array
    X = Xorg[:-lead_time-shift,:]
    X = include_time_lag(X, n_lags=n_lags, step=step)

    # arange label
    yorg = oni.values
    y = yorg[lead_time + n_lags*step + shift:]

    # get the time axis of the label
    timey = oni.index[lead_time + n_lags*step + shift:]

    if return_persistance:
        y_persistance = yorg[n_lags*step: - lead_time - shift]
        return X, y, timey, y_persistance

    else:
        return X, y, timey

if __name__=="__main__":
    cross_training(DEM, pipeline, 1, lead_times,
                   layers=1, neurons = 32, dropout=0.05, noise_in=0.0, noise_sigma=0.,
                   noise_mu=0., l1_hidden=0.0, l2_hidden=0.,
                   l1_mu=0, l2_mu=0., l1_sigma=0,
                   l2_sigma=0.0, lr=0.01, batch_size=100,
                   epochs=5000, n_segments=5, n_members_segment=3, patience=25,
                   activation='tanh',
                   verbose=0, pdf="normal", name="gdnn_ex_pca")
    
print("\n \nStep 2 finished, continue to step 3!")