else: return X, y, timey if __name__ == "__main__": q_set = [0.025, 0.16, 0.5, 0.84, 0.975] for q in q_set: cross_training(qnn, pipeline_small_exclude, 1, q=q, layers=1, neurons=32, dropout=0.05, noise_in=0.0, noise_out=0., l1_hidden=0.0, l2_hidden=0, l1_out=0., l2_out=0., batch_size=100, lr=0.01, epochs=5000, n_segments=5, n_members_segment=3, patience=25, verbose=0, name="qnn_ex_pca_tanh", activation="tanh")
return X, y, timey, y_persistance else: return X, y, timey if __name__ == "__main__": q_set = [0.025, 0.16, 0.5, 0.84, 0.975] cross_training(mqnn, pipeline, 1, q=q_set, layers=1, neurons=96, dropout=0.1, noise_in=0.0, noise_out=0., l1_hidden=0.0, l2_hidden=0, l1_out=0., l2_out=0., batch_size=100, lr=0.01, epochs=5000, n_segments=5, n_members_segment=1, patience=25, verbose=0, name="mqnn", activation="tanh")
timey = oni.index[lead_time + time_lag + shift:] if return_persistance: y_persistance = yorg[time_lag:-lead_time - shift] return X, y, timey, y_persistance else: return X, y, timey if __name__ == "__main__": cross_training(ipnn, pipeline_small, 10, layers=1, neurons=32, dropout=0.2, noise_in=0.0, noise_out=0., l1_hidden=[0.002, 0.15, 'log'], l2_hidden=0., l1_out=0., l2_out=0., batch_size=100, lr=0.01, epochs=5000, n_segments=5, n_members_segment=1, patience=25, verbose=0, name="ipnn_new")
from ninolearn.learn.fit import cross_training from mlr import mlr, pipeline, pipeline_noise if __name__=="__main__": cross_training(mlr, pipeline_noise, 50, alpha=[0.,0.001], name='mlr_review_noise')
return X, y, timey, y_persistance else: return X, y, timey if __name__ == "__main__": cross_training(DEM, pipeline_small, 1, layers=1, neurons=32, dropout=0.05, noise_in=0.0, noise_sigma=0., noise_mu=0., l1_hidden=0.0, l2_hidden=0., l1_mu=0, l2_mu=0., l1_sigma=0, l2_sigma=0.0, lr=0.01, batch_size=100, epochs=5000, n_segments=5, n_members_segment=3, patience=25, verbose=0, pdf=None, name="mlp")
if return_persistance: y_persistance = yorg[time_lag:-lead_time - shift] return X, y, timey, y_persistance else: return X, y, timey if __name__ == "__main__": cross_training(DEM, pipeline_small, 200, layers=1, dropout=[0.1, 0.5], noise_in=[0.1, 0.5], noise_sigma=[0.1, 0.5], noise_mu=[0.1, 0.5], l1_hidden=[0.0, 0.02], l2_hidden=[0., 0.02], l1_mu=[0.0, 0.02], l2_mu=[0.0, 0.02], l1_sigma=[0.0, 0.02], l2_sigma=[0.0, 0.02], lr=[0.0001, 0.01], batch_size=100, epochs=500, n_segments=5, n_members_segment=1, patience=30, verbose=0, pdf="normal", name="dem_small")
from ninolearn.learn.fit import cross_training from mlr import mlr, pipeline if __name__ == "__main__": cross_training(mlr, pipeline, 50, alpha=[0., 0.001], name='mlr')
np.save(join(infodir,'Xorg'), Xorg) # arange the feature array X = Xorg[:-lead_time-shift,:] X = include_time_lag(X, n_lags=n_lags, step=step) # arange label yorg = oni.values y = yorg[lead_time + n_lags*step + shift:] # get the time axis of the label timey = oni.index[lead_time + n_lags*step + shift:] if return_persistance: y_persistance = yorg[n_lags*step: - lead_time - shift] return X, y, timey, y_persistance else: return X, y, timey if __name__=="__main__": cross_training(DEM, pipeline, 1, lead_times, layers=1, neurons = 32, dropout=0.05, noise_in=0.0, noise_sigma=0., noise_mu=0., l1_hidden=0.0, l2_hidden=0., l1_mu=0, l2_mu=0., l1_sigma=0, l2_sigma=0.0, lr=0.01, batch_size=100, epochs=5000, n_segments=5, n_members_segment=3, patience=25, activation='tanh', verbose=0, pdf="normal", name="gdnn_ex_pca") print("\n \nStep 2 finished, continue to step 3!")