def create_parameters(self): n_in, n_hidden = self.n_in, self.n_hidden activation = self.activation self.w1 = create_shared(random_init((n_in, )), name="w1") self.w2 = create_shared(random_init((n_hidden, )), name="w2") bias_val = random_init((1, ))[0] self.bias = theano.shared(np.cast[theano.config.floatX](bias_val)) rlayer = RCNN((n_in + 1), n_hidden, activation=activation, order=2) self.rlayer = rlayer self.layers = [rlayer]
def ready(self): global total_generate_time #say("in generator ready: \n") #start_generate_time = time.time() embedding_layer = self.embedding_layer args = self.args padding_id = embedding_layer.vocab_map["<padding>"] dropout = self.dropout = theano.shared( np.float64(args.dropout).astype(theano.config.floatX)) # len*batch x = self.x = T.imatrix() n_d = args.hidden_dimension n_e = embedding_layer.n_d activation = get_activation_by_name(args.activation) layers = self.layers = [] layer_type = args.layer.lower() for i in xrange(2): if layer_type == "rcnn": l = RCNN(n_in=n_e, n_out=n_d, activation=activation, order=args.order) elif layer_type == "lstm": l = LSTM(n_in=n_e, n_out=n_d, activation=activation) l = Layer(n_in=n_e, n_out=n_d, activation=sigmoid) layers.append(l) # len * batch #masks = T.cast(T.neq(x, padding_id), theano.config.floatX) masks = T.cast(T.neq(x, padding_id), theano.config.floatX).dimshuffle( (0, 1, "x")) # (len*batch)*n_e embs = embedding_layer.forward(x.ravel()) # len*batch*n_e embs = embs.reshape((x.shape[0], x.shape[1], n_e)) embs = apply_dropout(embs, dropout) self.word_embs = embs flipped_embs = embs[::-1] # len*bacth*n_d h1 = layers[0].forward(embs) h2 = layers[1].forward(flipped_embs) h_final = T.concatenate([h1, h2[::-1]], axis=2) h_final = apply_dropout(h_final, dropout) size = n_d * 2 #size = n_e output_layer = self.output_layer = Layer(n_in=size, n_out=1, activation=sigmoid) # len*batch*1 probs = output_layer.forward(h_final) #probs = output_layer.forward(embs) #probs1 = probs.reshape(x.shape) #probs_rev = output_layer.forward(flipped_embs) #probs1_rev = probs.reshape(x.shape) #probs = T.concatenate([probs1, probs1_rev[::-1]], axis=2) # len*batch probs2 = probs.reshape(x.shape) if self.args.seed is not None: self.MRG_rng = MRG_RandomStreams(self.args.seed) else: self.MRG_rng = MRG_RandomStreams() z_pred = self.z_pred = T.cast( self.MRG_rng.binomial(size=probs2.shape, p=probs2), theano.config.floatX) #"int8") # we are computing approximated gradient by sampling z; # so should mark sampled z not part of the gradient propagation path # z_pred = self.z_pred = theano.gradient.disconnected_grad(z_pred) #self.sample_updates = sample_updates print "z_pred", z_pred.ndim z2 = z_pred.dimshuffle((0, 1, "x")) logpz = -T.nnet.binary_crossentropy(probs, z2) * masks logpz = self.logpz = logpz.reshape(x.shape) probs = self.probs = probs.reshape(x.shape) # batch z = z_pred self.zsum = T.sum(z, axis=0, dtype=theano.config.floatX) self.zdiff = T.sum(T.abs_(z[1:] - z[:-1]), axis=0, dtype=theano.config.floatX) params = self.params = [] for l in layers + [output_layer]: for p in l.params: params.append(p) nparams = sum(len(x.get_value(borrow=True).ravel()) \ for x in params) say("total # parameters: {}\n".format(nparams)) l2_cost = None for p in params: if l2_cost is None: l2_cost = T.sum(p**2) else: l2_cost = l2_cost + T.sum(p**2) l2_cost = l2_cost * args.l2_reg self.l2_cost = l2_cost
def ready(self): encoder = self.encoder embedding_layer = self.embedding_layer args = self.args padding_id = embedding_layer.vocab_map["<padding>"] dropout = self.dropout = encoder.dropout # len*batch x = self.x = encoder.x z = self.z = encoder.z n_d = args.hidden_dimension n_e = embedding_layer.n_d activation = get_activation_by_name(args.activation) layers = self.layers = [] layer_type = args.layer.lower() for i in range(2): if layer_type == "rcnn": l = RCNN( n_in=n_e, # if i == 0 else n_d, n_out=n_d, activation=activation, order=args.order) elif layer_type == "lstm": l = LSTM( n_in=n_e, # if i == 0 else n_d, n_out=n_d, activation=activation) layers.append(l) # len * batch #masks = T.cast(T.neq(x, padding_id), theano.config.floatX) masks = T.cast(T.neq(x, padding_id), "int8").dimshuffle((0, 1, "x")) # (len*batch)*n_e embs = embedding_layer.forward(x.ravel()) # len*batch*n_e embs = embs.reshape((x.shape[0], x.shape[1], n_e)) embs = apply_dropout(embs, dropout) flipped_embs = embs[::-1] # len*bacth*n_d h1 = layers[0].forward_all(embs) h2 = layers[1].forward_all(flipped_embs) h_final = T.concatenate([h1, h2[::-1]], axis=2) h_final = apply_dropout(h_final, dropout) size = n_d * 2 output_layer = self.output_layer = Layer(n_in=size, n_out=1, activation=sigmoid) # len*batch*1 probs = output_layer.forward(h_final) # len*batch probs2 = probs.reshape(x.shape) self.MRG_rng = MRG_RandomStreams() z_pred = self.z_pred = T.cast( self.MRG_rng.binomial(size=probs2.shape, p=probs2), "int8") # we are computing approximated gradient by sampling z; # so should mark sampled z not part of the gradient propagation path # self.z_pred = theano.gradient.disconnected_grad(z_pred) z2 = z.dimshuffle((0, 1, "x")) logpz = -T.nnet.binary_crossentropy(probs, z2) * masks logpz = self.logpz = logpz.reshape(x.shape) probs = self.probs = probs.reshape(x.shape) # batch zsum = T.sum(z, axis=0, dtype=theano.config.floatX) zdiff_pre = (z[1:] - z[:-1]) * 1.0 zdiff = T.sum(abs(zdiff_pre), axis=0, dtype=theano.config.floatX) loss_mat = encoder.loss_mat if args.aspect < 0: loss_vec = T.mean(loss_mat, axis=1) else: assert args.aspect < self.nclasses loss_vec = loss_mat[:, args.aspect] self.loss_vec = loss_vec coherent_factor = args.sparsity * args.coherent loss = self.loss = T.mean(loss_vec) sparsity_cost = self.sparsity_cost = T.mean(zsum) * args.sparsity + \ T.mean(zdiff) * coherent_factor cost_vec = loss_vec + zsum * args.sparsity + zdiff * coherent_factor cost_logpz = T.mean(cost_vec * T.sum(logpz, axis=0)) self.obj = T.mean(cost_vec) params = self.params = [] for l in layers + [output_layer]: for p in l.params: params.append(p) nparams = sum(len(x.get_value(borrow=True).ravel()) \ for x in params) say("total # parameters: {}\n".format(nparams)) l2_cost = None for p in params: if l2_cost is None: l2_cost = T.sum(p**2) else: l2_cost = l2_cost + T.sum(p**2) l2_cost = l2_cost * args.l2_reg cost = self.cost = cost_logpz * 10 + l2_cost print("cost.dtype", cost.dtype) self.cost_e = loss * 10 + encoder.l2_cost
def ready(self): args = self.args embedding_layer = self.embedding_layer self.n_hidden = args.hidden_dim self.n_in = embedding_layer.n_d dropout = self.dropout = theano.shared( np.float64(args.dropout_rate).astype(theano.config.floatX)) # x is length * batch_size # y is batch_size self.x = T.imatrix('x') self.y = T.ivector('y') x = self.x y = self.y n_hidden = self.n_hidden n_in = self.n_in # fetch word embeddings # (len * batch_size) * n_in slices = embedding_layer.forward(x.ravel()) self.slices = slices # 3-d tensor, len * batch_size * n_in slices = slices.reshape((x.shape[0], x.shape[1], n_in)) # stacking the feature extraction layers pooling = args.pooling depth = args.depth layers = self.layers = [] prev_output = slices prev_output = apply_dropout(prev_output, dropout, v2=True) size = 0 softmax_inputs = [] activation = get_activation_by_name(args.act) for i in range(depth): if args.layer.lower() == "lstm": layer = LSTM(n_in=n_hidden if i > 0 else n_in, n_out=n_hidden) elif args.layer.lower() == "strcnn": layer = StrCNN(n_in=n_hidden if i > 0 else n_in, n_out=n_hidden, activation=activation, decay=args.decay, order=args.order) elif args.layer.lower() == "rcnn": layer = RCNN(n_in=n_hidden if i > 0 else n_in, n_out=n_hidden, activation=activation, order=args.order, mode=args.mode) else: raise Exception("unknown layer type: {}".format(args.layer)) layers.append(layer) prev_output = layer.forward_all(prev_output) if pooling: softmax_inputs.append(T.sum(prev_output, axis=0)) # summing over columns else: softmax_inputs.append(prev_output[-1]) prev_output = apply_dropout(prev_output, dropout) size += n_hidden # final feature representation is the concatenation of all extraction layers if pooling: softmax_input = T.concatenate(softmax_inputs, axis=1) / x.shape[0] else: softmax_input = T.concatenate(softmax_inputs, axis=1) softmax_input = apply_dropout(softmax_input, dropout, v2=True) # feed the feature repr. to the softmax output layer layers.append( Layer(n_in=size, n_out=self.nclasses, activation=softmax, has_bias=False)) for l, i in zip(layers, range(len(layers))): say("layer {}: n_in={}\tn_out={}\n".format(i, l.n_in, l.n_out)) # unnormalized score of y given x self.p_y_given_x = layers[-1].forward(softmax_input) self.pred = T.argmax(self.p_y_given_x, axis=1) self.nll_loss = T.mean( T.nnet.categorical_crossentropy(self.p_y_given_x, y)) # adding regularizations self.l2_sqr = None self.params = [] for layer in layers: self.params += layer.params for p in self.params: if self.l2_sqr is None: self.l2_sqr = args.l2_reg * T.sum(p**2) else: self.l2_sqr += args.l2_reg * T.sum(p**2) nparams = sum(len(x.get_value(borrow=True).ravel()) \ for x in self.params) say("total # parameters: {}\n".format(nparams))
def ready(self): embedding_layer = self.embedding_layer args = self.args padding_id = embedding_layer.vocab_map["<padding>"] dropout = self.dropout = theano.shared( np.float64(args.dropout).astype(theano.config.floatX)) # len*batch x = self.x = T.imatrix() n_d = args.hidden_dimension n_e = embedding_layer.n_d activation = get_activation_by_name(args.activation) layers = self.layers = [] layer_type = args.layer.lower() for i in xrange(2): if layer_type == "rcnn": l = RCNN(n_in=n_e, n_out=n_d, activation=activation, order=args.order) elif layer_type == "lstm": l = LSTM(n_in=n_e, n_out=n_d, activation=activation) layers.append(l) # len * batch masks = T.cast(T.neq(x, padding_id), theano.config.floatX) # (len*batch)*n_e embs = embedding_layer.forward(x.ravel()) # len*batch*n_e embs = embs.reshape((x.shape[0], x.shape[1], n_e)) embs = apply_dropout(embs, dropout) self.word_embs = embs flipped_embs = embs[::-1] # len*bacth*n_d h1 = layers[0].forward_all(embs) h2 = layers[1].forward_all(flipped_embs) h_final = T.concatenate([h1, h2[::-1]], axis=2) h_final = apply_dropout(h_final, dropout) size = n_d * 2 output_layer = self.output_layer = ZLayer( n_in=size, n_hidden=args.hidden_dimension2, activation=activation) # sample z given text (i.e. x) z_pred, sample_updates = output_layer.sample_all(h_final) # we are computing approximated gradient by sampling z; # so should mark sampled z not part of the gradient propagation path # z_pred = self.z_pred = theano.gradient.disconnected_grad(z_pred) self.sample_updates = sample_updates print "z_pred", z_pred.ndim probs = output_layer.forward_all(h_final, z_pred) print "probs", probs.ndim logpz = -T.nnet.binary_crossentropy(probs, z_pred) * masks logpz = self.logpz = logpz.reshape(x.shape) probs = self.probs = probs.reshape(x.shape) # batch z = z_pred self.zsum = T.sum(z, axis=0, dtype=theano.config.floatX) self.zdiff = T.sum(T.abs_(z[1:] - z[:-1]), axis=0, dtype=theano.config.floatX) params = self.params = [] for l in layers + [output_layer]: for p in l.params: params.append(p) nparams = sum(len(x.get_value(borrow=True).ravel()) \ for x in params) say("total # parameters: {}\n".format(nparams)) l2_cost = None for p in params: if l2_cost is None: l2_cost = T.sum(p**2) else: l2_cost = l2_cost + T.sum(p**2) l2_cost = l2_cost * args.l2_reg self.l2_cost = l2_cost