Exemple #1
0
    def create_parameters(self):
        n_in, n_hidden = self.n_in, self.n_hidden
        activation = self.activation

        self.w1 = create_shared(random_init((n_in, )), name="w1")
        self.w2 = create_shared(random_init((n_hidden, )), name="w2")
        bias_val = random_init((1, ))[0]
        self.bias = theano.shared(np.cast[theano.config.floatX](bias_val))
        rlayer = RCNN((n_in + 1), n_hidden, activation=activation, order=2)
        self.rlayer = rlayer
        self.layers = [rlayer]
Exemple #2
0
    def ready(self):
        global total_generate_time
        #say("in generator ready: \n")
        #start_generate_time = time.time()
        embedding_layer = self.embedding_layer
        args = self.args
        padding_id = embedding_layer.vocab_map["<padding>"]

        dropout = self.dropout = theano.shared(
            np.float64(args.dropout).astype(theano.config.floatX))

        # len*batch
        x = self.x = T.imatrix()

        n_d = args.hidden_dimension
        n_e = embedding_layer.n_d
        activation = get_activation_by_name(args.activation)

        layers = self.layers = []
        layer_type = args.layer.lower()
        for i in xrange(2):
            if layer_type == "rcnn":
                l = RCNN(n_in=n_e,
                         n_out=n_d,
                         activation=activation,
                         order=args.order)
            elif layer_type == "lstm":
                l = LSTM(n_in=n_e, n_out=n_d, activation=activation)

            l = Layer(n_in=n_e, n_out=n_d, activation=sigmoid)

            layers.append(l)

        # len * batch
        #masks = T.cast(T.neq(x, padding_id), theano.config.floatX)
        masks = T.cast(T.neq(x, padding_id), theano.config.floatX).dimshuffle(
            (0, 1, "x"))

        # (len*batch)*n_e
        embs = embedding_layer.forward(x.ravel())
        # len*batch*n_e
        embs = embs.reshape((x.shape[0], x.shape[1], n_e))
        embs = apply_dropout(embs, dropout)
        self.word_embs = embs

        flipped_embs = embs[::-1]

        # len*bacth*n_d
        h1 = layers[0].forward(embs)
        h2 = layers[1].forward(flipped_embs)
        h_final = T.concatenate([h1, h2[::-1]], axis=2)
        h_final = apply_dropout(h_final, dropout)
        size = n_d * 2

        #size = n_e

        output_layer = self.output_layer = Layer(n_in=size,
                                                 n_out=1,
                                                 activation=sigmoid)

        # len*batch*1
        probs = output_layer.forward(h_final)
        #probs = output_layer.forward(embs)
        #probs1 = probs.reshape(x.shape)

        #probs_rev = output_layer.forward(flipped_embs)
        #probs1_rev = probs.reshape(x.shape)

        #probs = T.concatenate([probs1, probs1_rev[::-1]], axis=2)

        # len*batch
        probs2 = probs.reshape(x.shape)
        if self.args.seed is not None:
            self.MRG_rng = MRG_RandomStreams(self.args.seed)
        else:
            self.MRG_rng = MRG_RandomStreams()
        z_pred = self.z_pred = T.cast(
            self.MRG_rng.binomial(size=probs2.shape, p=probs2),
            theano.config.floatX)  #"int8")

        # we are computing approximated gradient by sampling z;
        # so should mark sampled z not part of the gradient propagation path
        #
        z_pred = self.z_pred = theano.gradient.disconnected_grad(z_pred)
        #self.sample_updates = sample_updates
        print "z_pred", z_pred.ndim

        z2 = z_pred.dimshuffle((0, 1, "x"))
        logpz = -T.nnet.binary_crossentropy(probs, z2) * masks
        logpz = self.logpz = logpz.reshape(x.shape)
        probs = self.probs = probs.reshape(x.shape)

        # batch
        z = z_pred
        self.zsum = T.sum(z, axis=0, dtype=theano.config.floatX)
        self.zdiff = T.sum(T.abs_(z[1:] - z[:-1]),
                           axis=0,
                           dtype=theano.config.floatX)

        params = self.params = []
        for l in layers + [output_layer]:
            for p in l.params:
                params.append(p)
        nparams = sum(len(x.get_value(borrow=True).ravel()) \
                                        for x in params)
        say("total # parameters: {}\n".format(nparams))

        l2_cost = None
        for p in params:
            if l2_cost is None:
                l2_cost = T.sum(p**2)
            else:
                l2_cost = l2_cost + T.sum(p**2)
        l2_cost = l2_cost * args.l2_reg
        self.l2_cost = l2_cost
Exemple #3
0
    def ready(self):
        encoder = self.encoder
        embedding_layer = self.embedding_layer
        args = self.args
        padding_id = embedding_layer.vocab_map["<padding>"]

        dropout = self.dropout = encoder.dropout

        # len*batch
        x = self.x = encoder.x
        z = self.z = encoder.z

        n_d = args.hidden_dimension
        n_e = embedding_layer.n_d
        activation = get_activation_by_name(args.activation)

        layers = self.layers = []
        layer_type = args.layer.lower()
        for i in range(2):
            if layer_type == "rcnn":
                l = RCNN(
                    n_in=n_e,  # if i == 0 else n_d,
                    n_out=n_d,
                    activation=activation,
                    order=args.order)
            elif layer_type == "lstm":
                l = LSTM(
                    n_in=n_e,  # if i == 0 else n_d,
                    n_out=n_d,
                    activation=activation)
            layers.append(l)

        # len * batch
        #masks = T.cast(T.neq(x, padding_id), theano.config.floatX)
        masks = T.cast(T.neq(x, padding_id), "int8").dimshuffle((0, 1, "x"))

        # (len*batch)*n_e
        embs = embedding_layer.forward(x.ravel())
        # len*batch*n_e
        embs = embs.reshape((x.shape[0], x.shape[1], n_e))
        embs = apply_dropout(embs, dropout)

        flipped_embs = embs[::-1]

        # len*bacth*n_d
        h1 = layers[0].forward_all(embs)
        h2 = layers[1].forward_all(flipped_embs)
        h_final = T.concatenate([h1, h2[::-1]], axis=2)
        h_final = apply_dropout(h_final, dropout)
        size = n_d * 2

        output_layer = self.output_layer = Layer(n_in=size,
                                                 n_out=1,
                                                 activation=sigmoid)

        # len*batch*1
        probs = output_layer.forward(h_final)

        # len*batch
        probs2 = probs.reshape(x.shape)
        self.MRG_rng = MRG_RandomStreams()
        z_pred = self.z_pred = T.cast(
            self.MRG_rng.binomial(size=probs2.shape, p=probs2), "int8")

        # we are computing approximated gradient by sampling z;
        # so should mark sampled z not part of the gradient propagation path
        #
        self.z_pred = theano.gradient.disconnected_grad(z_pred)

        z2 = z.dimshuffle((0, 1, "x"))
        logpz = -T.nnet.binary_crossentropy(probs, z2) * masks
        logpz = self.logpz = logpz.reshape(x.shape)
        probs = self.probs = probs.reshape(x.shape)

        # batch
        zsum = T.sum(z, axis=0, dtype=theano.config.floatX)
        zdiff_pre = (z[1:] - z[:-1]) * 1.0
        zdiff = T.sum(abs(zdiff_pre), axis=0, dtype=theano.config.floatX)

        loss_mat = encoder.loss_mat
        if args.aspect < 0:
            loss_vec = T.mean(loss_mat, axis=1)
        else:
            assert args.aspect < self.nclasses
            loss_vec = loss_mat[:, args.aspect]
        self.loss_vec = loss_vec

        coherent_factor = args.sparsity * args.coherent
        loss = self.loss = T.mean(loss_vec)
        sparsity_cost = self.sparsity_cost = T.mean(zsum) * args.sparsity + \
                                             T.mean(zdiff) * coherent_factor
        cost_vec = loss_vec + zsum * args.sparsity + zdiff * coherent_factor
        cost_logpz = T.mean(cost_vec * T.sum(logpz, axis=0))
        self.obj = T.mean(cost_vec)

        params = self.params = []
        for l in layers + [output_layer]:
            for p in l.params:
                params.append(p)
        nparams = sum(len(x.get_value(borrow=True).ravel()) \
                                        for x in params)
        say("total # parameters: {}\n".format(nparams))

        l2_cost = None
        for p in params:
            if l2_cost is None:
                l2_cost = T.sum(p**2)
            else:
                l2_cost = l2_cost + T.sum(p**2)
        l2_cost = l2_cost * args.l2_reg

        cost = self.cost = cost_logpz * 10 + l2_cost
        print("cost.dtype", cost.dtype)

        self.cost_e = loss * 10 + encoder.l2_cost
Exemple #4
0
    def ready(self):
        args = self.args
        embedding_layer = self.embedding_layer
        self.n_hidden = args.hidden_dim
        self.n_in = embedding_layer.n_d
        dropout = self.dropout = theano.shared(
            np.float64(args.dropout_rate).astype(theano.config.floatX))

        # x is length * batch_size
        # y is batch_size
        self.x = T.imatrix('x')
        self.y = T.ivector('y')

        x = self.x
        y = self.y
        n_hidden = self.n_hidden
        n_in = self.n_in

        # fetch word embeddings
        # (len * batch_size) * n_in
        slices = embedding_layer.forward(x.ravel())
        self.slices = slices

        # 3-d tensor, len * batch_size * n_in
        slices = slices.reshape((x.shape[0], x.shape[1], n_in))

        # stacking the feature extraction layers
        pooling = args.pooling
        depth = args.depth
        layers = self.layers = []
        prev_output = slices
        prev_output = apply_dropout(prev_output, dropout, v2=True)
        size = 0
        softmax_inputs = []
        activation = get_activation_by_name(args.act)
        for i in range(depth):
            if args.layer.lower() == "lstm":
                layer = LSTM(n_in=n_hidden if i > 0 else n_in, n_out=n_hidden)
            elif args.layer.lower() == "strcnn":
                layer = StrCNN(n_in=n_hidden if i > 0 else n_in,
                               n_out=n_hidden,
                               activation=activation,
                               decay=args.decay,
                               order=args.order)
            elif args.layer.lower() == "rcnn":
                layer = RCNN(n_in=n_hidden if i > 0 else n_in,
                             n_out=n_hidden,
                             activation=activation,
                             order=args.order,
                             mode=args.mode)
            else:
                raise Exception("unknown layer type: {}".format(args.layer))

            layers.append(layer)
            prev_output = layer.forward_all(prev_output)
            if pooling:
                softmax_inputs.append(T.sum(prev_output,
                                            axis=0))  # summing over columns
            else:
                softmax_inputs.append(prev_output[-1])
            prev_output = apply_dropout(prev_output, dropout)
            size += n_hidden

        # final feature representation is the concatenation of all extraction layers
        if pooling:
            softmax_input = T.concatenate(softmax_inputs, axis=1) / x.shape[0]
        else:
            softmax_input = T.concatenate(softmax_inputs, axis=1)
        softmax_input = apply_dropout(softmax_input, dropout, v2=True)

        # feed the feature repr. to the softmax output layer
        layers.append(
            Layer(n_in=size,
                  n_out=self.nclasses,
                  activation=softmax,
                  has_bias=False))

        for l, i in zip(layers, range(len(layers))):
            say("layer {}: n_in={}\tn_out={}\n".format(i, l.n_in, l.n_out))

        # unnormalized score of y given x
        self.p_y_given_x = layers[-1].forward(softmax_input)
        self.pred = T.argmax(self.p_y_given_x, axis=1)
        self.nll_loss = T.mean(
            T.nnet.categorical_crossentropy(self.p_y_given_x, y))

        # adding regularizations
        self.l2_sqr = None
        self.params = []
        for layer in layers:
            self.params += layer.params
        for p in self.params:
            if self.l2_sqr is None:
                self.l2_sqr = args.l2_reg * T.sum(p**2)
            else:
                self.l2_sqr += args.l2_reg * T.sum(p**2)

        nparams = sum(len(x.get_value(borrow=True).ravel()) \
                        for x in self.params)
        say("total # parameters: {}\n".format(nparams))
Exemple #5
0
    def ready(self):
        embedding_layer = self.embedding_layer
        args = self.args
        padding_id = embedding_layer.vocab_map["<padding>"]

        dropout = self.dropout = theano.shared(
            np.float64(args.dropout).astype(theano.config.floatX))

        # len*batch
        x = self.x = T.imatrix()

        n_d = args.hidden_dimension
        n_e = embedding_layer.n_d
        activation = get_activation_by_name(args.activation)

        layers = self.layers = []
        layer_type = args.layer.lower()
        for i in xrange(2):
            if layer_type == "rcnn":
                l = RCNN(n_in=n_e,
                         n_out=n_d,
                         activation=activation,
                         order=args.order)
            elif layer_type == "lstm":
                l = LSTM(n_in=n_e, n_out=n_d, activation=activation)
            layers.append(l)

        # len * batch
        masks = T.cast(T.neq(x, padding_id), theano.config.floatX)

        # (len*batch)*n_e
        embs = embedding_layer.forward(x.ravel())
        # len*batch*n_e
        embs = embs.reshape((x.shape[0], x.shape[1], n_e))
        embs = apply_dropout(embs, dropout)
        self.word_embs = embs

        flipped_embs = embs[::-1]

        # len*bacth*n_d
        h1 = layers[0].forward_all(embs)
        h2 = layers[1].forward_all(flipped_embs)
        h_final = T.concatenate([h1, h2[::-1]], axis=2)
        h_final = apply_dropout(h_final, dropout)
        size = n_d * 2

        output_layer = self.output_layer = ZLayer(
            n_in=size, n_hidden=args.hidden_dimension2, activation=activation)

        # sample z given text (i.e. x)
        z_pred, sample_updates = output_layer.sample_all(h_final)

        # we are computing approximated gradient by sampling z;
        # so should mark sampled z not part of the gradient propagation path
        #
        z_pred = self.z_pred = theano.gradient.disconnected_grad(z_pred)
        self.sample_updates = sample_updates
        print "z_pred", z_pred.ndim

        probs = output_layer.forward_all(h_final, z_pred)
        print "probs", probs.ndim

        logpz = -T.nnet.binary_crossentropy(probs, z_pred) * masks
        logpz = self.logpz = logpz.reshape(x.shape)
        probs = self.probs = probs.reshape(x.shape)

        # batch
        z = z_pred
        self.zsum = T.sum(z, axis=0, dtype=theano.config.floatX)
        self.zdiff = T.sum(T.abs_(z[1:] - z[:-1]),
                           axis=0,
                           dtype=theano.config.floatX)

        params = self.params = []
        for l in layers + [output_layer]:
            for p in l.params:
                params.append(p)
        nparams = sum(len(x.get_value(borrow=True).ravel()) \
                                        for x in params)
        say("total # parameters: {}\n".format(nparams))

        l2_cost = None
        for p in params:
            if l2_cost is None:
                l2_cost = T.sum(p**2)
            else:
                l2_cost = l2_cost + T.sum(p**2)
        l2_cost = l2_cost * args.l2_reg
        self.l2_cost = l2_cost