Ejemplo n.º 1
0
    def test_legvander(self) :
        # check for 1d x
        x = np.arange(3)
        v = leg.legvander(x, 3)
        assert_(v.shape == (3, 4))
        for i in range(4) :
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], leg.legval(x, coef))

        # check for 2d x
        x = np.array([[1, 2], [3, 4], [5, 6]])
        v = leg.legvander(x, 3)
        assert_(v.shape == (3, 2, 4))
        for i in range(4) :
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], leg.legval(x, coef))
def test_legendre_val():
    """Test Legendre polynomial (derivative) equivalence
    """
    rng = np.random.RandomState(0)
    # check table equiv
    xs = np.linspace(-1., 1., 1000)
    n_terms = 100

    # True, numpy
    vals_np = legendre.legvander(xs, n_terms - 1)

    # Table approximation
    for fun, nc in zip([_get_legen_lut_fast, _get_legen_lut_accurate],
                       [100, 50]):
        lut, n_fact = _get_legen_table('eeg', n_coeff=nc, force_calc=True)
        vals_i = fun(xs, lut)
        # Need a "1:" here because we omit the first coefficient in our table!
        assert_allclose(vals_np[:, 1:vals_i.shape[1] + 1], vals_i,
                        rtol=1e-2, atol=5e-3)

        # Now let's look at our sums
        ctheta = rng.rand(20, 30) * 2.0 - 1.0
        beta = rng.rand(20, 30) * 0.8
        lut_fun = partial(fun, lut=lut)
        c1 = _comp_sum_eeg(beta.flatten(), ctheta.flatten(), lut_fun, n_fact)
        c1.shape = beta.shape

        # compare to numpy
        n = np.arange(1, n_terms, dtype=float)[:, np.newaxis, np.newaxis]
        coeffs = np.zeros((n_terms,) + beta.shape)
        coeffs[1:] = (np.cumprod([beta] * (n_terms - 1), axis=0) *
                      (2.0 * n + 1.0) * (2.0 * n + 1.0) / n)
        # can't use tensor=False here b/c it isn't in old numpy
        c2 = np.empty((20, 30))
        for ci1 in range(20):
            for ci2 in range(30):
                c2[ci1, ci2] = legendre.legval(ctheta[ci1, ci2],
                                               coeffs[:, ci1, ci2])
        assert_allclose(c1, c2, 1e-2, 1e-3)  # close enough...

    # compare fast and slow for MEG
    ctheta = rng.rand(20 * 30) * 2.0 - 1.0
    beta = rng.rand(20 * 30) * 0.8
    lut, n_fact = _get_legen_table('meg', n_coeff=10, force_calc=True)
    fun = partial(_get_legen_lut_fast, lut=lut)
    coeffs = _comp_sums_meg(beta, ctheta, fun, n_fact, False)
    lut, n_fact = _get_legen_table('meg', n_coeff=20, force_calc=True)
    fun = partial(_get_legen_lut_accurate, lut=lut)
    coeffs = _comp_sums_meg(beta, ctheta, fun, n_fact, False)
Ejemplo n.º 3
0
    def test_100(self):
        x, w = leg.leggauss(100)

        # test orthogonality. Note that the results need to be normalized,
        # otherwise the huge values that can arise from fast growing
        # functions like Laguerre can be very confusing.
        v = leg.legvander(x, 99)
        vv = np.dot(v.T * w, v)
        vd = 1/np.sqrt(vv.diagonal())
        vv = vd[:,None] * vv * vd
        assert_almost_equal(vv, np.eye(100))

        # check that the integral of 1 is correct
        tgt = 2.0
        assert_almost_equal(w.sum(), tgt)
Ejemplo n.º 4
0
def approx(X0, Y0, X1, approx_type: ApproxType, dim):
    """
    this method should perform approximation on [-1; 1] interval
    :param X0: X-values (1 x N0)
    :param Y0: Y-values (1 x N0)
    :param X1: approximation points (1 x N1)
    :param approx_type:
        0 - algebraic polynomes (1, x, x^2, ...)
        1 - legendre polynomes
        2 - harmonic
    :param dim: dimension
    :return Y1: approximated Y-values (1 x N1)
    :return a: vector (1 x dim) of approximation coefficients
    :return P: (for approx_type 0 and 1) coefficients of approximation polynome P (1 x dim)
    """
    if approx_type is ApproxType.algebraic:
        Q = np.vander(X0, dim, increasing=True)
        mat = Q.T @ Q
        b = Q.T @ Y0
        P = np.linalg.solve(mat, b)
        y = polyval(X1, P)
        return y, [], P
    if approx_type is ApproxType.legendre:
        Q = legvander(X0, dim - 1)
        mat = Q.T @ Q
        b = Q.T @ Y0
        P = np.linalg.solve(mat, b)
        y = legval(X1, P)

        D = [[0 for i in range(dim)] for j in range(dim)]
        D[0][0] = 1
        D[0][1] = 0
        D[1][0] = 0
        D[1][1] = 1
        i = 2
        while i < (dim):
            D[i][0] = -(i - 1) / (i) * D[i - 2][0]
            j = 0
            while j <= i:
                D[i][j] = (2 * i -
                           1) / i * D[i - 1][j - 1] - (i - 1) / i * D[i - 2][j]
                j += 1
            i += 1
        D = np.array(D)
        G = P @ D

        return y, P, G
    raise Exception(f'approximation of type {approx_type} not supported yet')
def test_legendre_val():
    """Test Legendre polynomial (derivative) equivalence
    """
    # check table equiv
    xs = np.linspace(-1., 1., 1000)
    n_terms = 100

    # True, numpy
    vals_np = legendre.legvander(xs, n_terms - 1)

    # Table approximation
    for fun, nc in zip([_get_legen_lut_fast, _get_legen_lut_accurate],
                       [100, 50]):
        lut, n_fact = _get_legen_table('eeg', n_coeff=nc, force_calc=True)
        vals_i = fun(xs, lut)
        # Need a "1:" here because we omit the first coefficient in our table!
        assert_allclose(vals_np[:, 1:vals_i.shape[1] + 1], vals_i,
                        rtol=1e-2, atol=5e-3)

        # Now let's look at our sums
        ctheta = np.random.rand(20, 30) * 2.0 - 1.0
        beta = np.random.rand(20, 30) * 0.8
        lut_fun = partial(fun, lut=lut)
        c1 = _comp_sum_eeg(beta.flatten(), ctheta.flatten(), lut_fun, n_fact)
        c1.shape = beta.shape

        # compare to numpy
        n = np.arange(1, n_terms, dtype=float)[:, np.newaxis, np.newaxis]
        coeffs = np.zeros((n_terms,) + beta.shape)
        coeffs[1:] = (np.cumprod([beta] * (n_terms - 1), axis=0) *
                      (2.0 * n + 1.0) * (2.0 * n + 1.0) / n)
        # can't use tensor=False here b/c it isn't in old numpy
        c2 = np.empty((20, 30))
        for ci1 in range(20):
            for ci2 in range(30):
                c2[ci1, ci2] = legendre.legval(ctheta[ci1, ci2],
                                               coeffs[:, ci1, ci2])
        assert_allclose(c1, c2, 1e-2, 1e-3)  # close enough...

    # compare fast and slow for MEG
    ctheta = np.random.rand(20 * 30) * 2.0 - 1.0
    beta = np.random.rand(20 * 30) * 0.8
    lut, n_fact = _get_legen_table('meg', n_coeff=10, force_calc=True)
    fun = partial(_get_legen_lut_fast, lut=lut)
    coeffs = _comp_sums_meg(beta, ctheta, fun, n_fact, False)
    lut, n_fact = _get_legen_table('meg', n_coeff=20, force_calc=True)
    fun = partial(_get_legen_lut_accurate, lut=lut)
    coeffs = _comp_sums_meg(beta, ctheta, fun, n_fact, False)
Ejemplo n.º 6
0
def leginterpol(x_coords, y_coords):
    deg = len(x_coords)
    A = np.ndarray((deg, deg))
    A_ = np.ndarray((deg, deg))

    B = y_coords

    # print(A)
    for i in range(deg):
        A[i] = leg.legval(x_coords, np.ones((i + 1, 1)))
    A = A.T
    A_ = leg.legvander(x_coords, deg - 1)
    # print('A=', A)
    # print('A_=', A_)
    # A*coefs = B
    coefs = np.linalg.solve(A_, y_coords)
    return coefs
Ejemplo n.º 7
0
def fitlegendre(wavepts, fluxpts, sigpts, order):
    from numpy.linalg import svd
    vander = L.legvander(wavepts, order)
    design = np.zeros(vander.shape)
    for i in range(len(wavepts)):
        design[i] = vander[i] / sigpts[i]
    U, s, v = svd(design, full_matrices=False, compute_uv=True)
    V = v.transpose()
    solvec = np.zeros(order + 1)
    for i in range(order + 1):
        solvec += np.dot(U[:, i], fluxpts / sigpts) / s[i] * V[:, i]
    ### Build covariance matrix
    covmtx = np.zeros([order + 1, order + 1])
    for j in range(order + 1):
        for k in range(order + 1):
            covmtx[j, k] = sum(V[:, j] * V[:, k] / s)
    return solvec, covmtx
Ejemplo n.º 8
0
    def poles(self):
        orders = 4
        xi = self.xi
        r = self.r
        mu = self.mu
        
        Nr, Nmu = self.xi.shape
        v = legvander(mu, orders)
        poles = numpy.empty((len(r), orders+1))
        sym = (mu >= 0).all()
        for i in range(orders + 1):
            norm = simps(v[:, i] ** 2, mu)            
            if sym and i % 2 == 1:
                poles[:, i] = 0
            else:
                poles[:, i] = simps(xi * v[:, i][None, :], mu) / norm

        return poles
Ejemplo n.º 9
0
    def pose_postprocess(self, pose_3d):
        #
        focus_time = None
        time_length = len(pose_3d)
        t_axis = np.linspace(0, time_length, time_length + 1)
        #
        nsamples = self.end - self.start
        # The independent variable sampled at regular intervals
        xs = np.linspace(-1, 1, nsamples)
        # The Legendre Vandermonde matrix
        V = leg.legvander(xs, self.approx_deg)
        # Generate some data to fit
        ys = xs * np.pi
        # Do the fit for all 17 poses
        resampledpose = {}
        for ii in range(self.num_joints):
            respsoexyz = []
            for ij in range(3):
                jnt_coord = [pose_3d[i][ij, ii] for i in range(time_length)]
                #
                coeffs = np.linalg.lstsq(V,
                                         jnt_coord[self.start:self.end],
                                         rcond=None)[0]
                # Evaluate the fit for plotting purposes
                g = leg.legval(xs, coeffs)
                focus_val, _time = signal.resample(g,
                                                   len(g) * self.resamp,
                                                   t_axis[self.start:self.end])
                focus_val = list(focus_val)
                if focus_time == None:
                    focus_time = list(_time)
                    for ti in range(self.start):
                        focus_time.insert(0, ti)
                # adding the inactive times
                for ti in range(self.start):
                    focus_val.insert(0, focus_val[0])

                respsoexyz.append(focus_val)

            #
            resampledpose.update({'joint_' + str(ii): np.array(respsoexyz)})

        return resampledpose, focus_time
Ejemplo n.º 10
0
    def detrend_poly(self, npol=20, istart=None, iend=None):
        flux = self.flux[istart:iend]
        covs = self.covariates[istart:iend, [2, 4, 5, 6]].copy()
        covs -= covs.mean(0)
        covs /= covs.std(0)
        x = (self.time - self.time[0]) / diff(self.time[[0, -1]]) * 2 - 1
        pol = legvander(x, npol)
        pol[:, 1:] /= pol[:, 1:].ptp(0)
        covs = concatenate([covs, pol], 1)

        c, _, _, _ = lstsq(covs, flux, rcond=None)
        cbl = c.copy()
        cbl[:4] = 0.
        css = c.copy()
        css[4:] = 0.
        fbl = dot(covs, cbl)
        fsys = dot(covs, css)
        fall = dot(covs, c)
        return self.time[istart:iend], flux - fall + 1, fsys, fbl
Ejemplo n.º 11
0
def culledLegForwardTransform(orders, locations, functionVals, threshold=None):
    # inspired by : A Simple Regularization of the Polynomial Interpolation For the Runge Phenomemenon
    if len(locations.shape)==1:
        vandermonde=leg.legvander(locations, orders[0])
    elif locations.shape[1]==2:
        vandermonde=leg.legvander2d(locations[:,0], locations[:,1], orders)
    elif locations.shape[1]==3:
        vandermonde=leg.legvander3d(locations[:,0],locations[:,1],locations[:,2], orders)
    elif locations.shape[1]==4:
        vandermonde=legvander4d(locations,orders)
    elif locations.shape[1]==5:
        vandermonde=legvander5d(locations,orders)
    else:
        raise NotImplementedError # there's a bad startup joke about this being good enough for the paper.

    # preconditioner = np.diag((0.94) ** (2* (np.arange(vandermonde.shape[0]))))
    # vandermonde=np.dot(preconditioner, vandermonde)

    U,S,Vh=np.linalg.svd(vandermonde)
    numTake=0
    filtS=S
    if threshold is None:
        Eps= np.finfo(functionVals.dtype).eps
        Neps = np.prod(cmn.numpyze(orders)) * Eps * S[0] #truncation due to ill-conditioning
        Nt = max(np.argmax(Vh, axis=0)) #"Automatic" determination of threshold due to Runge's phenomenon
        threshold=min(Neps, Nt)
    while numTake<=0:
        filter=S>threshold
        numTake=filter.sum()
        if numTake>0:
            filtU=U[:,:numTake]; filtS=S[:numTake]; filtVh=Vh[:numTake, :]
        else:
            if threshold>1e-13:
                threshold=threshold/2
                warnings.warn('cutting threshold for eigenvalues to '+str(threshold))
            else:
                warnings('seems all eigenvalues are zero (<1e-13), setting to zero and breaking')
                filtS=np.zeros_like(S)
    truncVander=np.dot(filtU,np.dot(np.diag(filtS),filtVh))

    ret, _, _, _=npl.lstsq(truncVander, functionVals, rcond=None)
    return np.reshape(ret, np.array(orders).flatten()+1)
Ejemplo n.º 12
0
    def __init__(self,n,k,a,m):
        self.k2 = 2*k

        # Uniform grid points
        x = np.linspace(-1,1,n)

        # Legendre Polynomials on grid 
        self.V = legvander(x,m-1)

        # Do QR factorization of Vandermonde for least squares 
        self.Q,self.R = qr(self.V,mode='economic')

        I = np.eye(m)
        D = np.zeros((m,m))
        D[:-self.k2,:] = legder(I,self.k2)

        # Legendre modal approximation of differential operator
        self.A = I-a*D

        # Store LU factors for repeated solves   
        self.PLU = lu_factor(self.A[:-self.k2,self.k2:])
Ejemplo n.º 13
0
    def __init__(self, n, k, a, m):
        self.k2 = 2 * k

        # Uniform grid points
        x = np.linspace(-1, 1, n)

        # Legendre Polynomials on grid
        self.V = legvander(x, m - 1)

        # Do QR factorization of Vandermonde for least squares
        self.Q, self.R = qr(self.V, mode='economic')

        I = np.eye(m)
        D = np.zeros((m, m))
        D[:-self.k2, :] = legder(I, self.k2)

        # Legendre modal approximation of differential operator
        self.A = I - a * D

        # Store LU factors for repeated solves
        self.PLU = lu_factor(self.A[:-self.k2, self.k2:])
Ejemplo n.º 14
0
    def __init__(self,
                 name: str,
                 dfile: Path,
                 zero_epoch: float,
                 period: float,
                 nsamples: int = 10,
                 trdur: float = 0.125,
                 bldur: float = 0.3,
                 nlegendre: int = 2,
                 ctx=None,
                 queue=None):

        tb = Table.read(dfile)
        self.bjdrefi = tb.meta['BJDREFI']
        zero_epoch = zero_epoch - self.bjdrefi

        df = tb.to_pandas().dropna(subset=['TIME', 'SAP_FLUX', 'PDCSAP_FLUX'])
        self.lc = lc = KeplerLC(df.TIME.values, df.PDCSAP_FLUX.values,
                                zeros(df.shape[0]), zero_epoch, period, trdur,
                                bldur)

        self.nlegendre = nlegendre
        super().__init__(name,
                         zero_epoch,
                         period, ['TESS'],
                         times=lc.time_per_transit,
                         fluxes=lc.normalized_flux_per_transit,
                         pbids=lc.nt * [0],
                         nsamples=nsamples,
                         exptimes=[0.00139],
                         cl_ctx=ctx,
                         cl_queue=queue)

        self.mtimes = [t - t.mean() for t in self.times]
        self.windows = window = concatenate(self.mtimes).ptp()
        self.mtimes = [t / window for t in self.mtimes]
        self.legs = [legvander(t, self.nlegendre) for t in self.mtimes]
        self.ofluxa = self.ofluxa.astype('d')
        self.lnlikelihood = self.lnlikelihood_nb
Ejemplo n.º 15
0
 def getVandermondeLegendre(self):
     from numpy.polynomial.legendre import legvander
     return legvander(self.Nodes, self.Order)
Ejemplo n.º 16
0
Archivo: test2.py Proyecto: userjjb/DbX
import numpy as np
import scipy as sp

import matplotlib.pyplot as plt
import numpy.polynomial.legendre as leg

n = 16


def f(x, y):
    return np.sin(2 * np.pi * x) * np.sin(2 * np.pi * y)


def curve(a, b, c, x):
    return a + b * x + c * x**2


Qx, Qw = leg.leggauss(n)
nx, ny = np.meshgrid(Qx, Qx)

Le = leg.legvander(Qx, n - 1)
#La = sp.interpolate.lagrange(n)

Q, R = np.linalg.qr(Le)
Ejemplo n.º 17
0
 def vandermonde(self, x):
     return leg.legvander(x, 1)
Ejemplo n.º 18
0
def _get_legen(x, n_coeff=100):
    """Get Legendre polynomials expanded about x"""
    return legendre.legvander(x, n_coeff - 1)
Ejemplo n.º 19
0
def legvander(x, deg) :
    from numpy.polynomial.legendre import legvander
    return legvander(x, deg)
Ejemplo n.º 20
0
def _get_legen(x, n_coeff=100):
    """Get Legendre polynomials expanded about x"""
    return legendre.legvander(x, n_coeff - 1)
Ejemplo n.º 21
0
def ortholegvander(x, deg):
    """See numpy.polynomial.legendre.legvander(). Uses an orthonormal basis."""
    result = leg.legvander(x, deg)
    factors = np.array([np.sqrt((2 * n + 1) / 2) for n in range(0, 1 + deg)])
    return result * factors
Ejemplo n.º 22
0
    def __init__(self,
                 target: str,
                 photometry: list,
                 tid: int,
                 cids: list,
                 filters: tuple,
                 aperture_lims: tuple = (0, inf),
                 use_opencl: bool = False,
                 n_legendre: int = 0,
                 use_toi_info=True,
                 with_transit=True,
                 with_contamination=False,
                 radius_ratio: str = 'achromatic'):
        assert radius_ratio in ('chromatic', 'achromatic')

        self.use_opencl = use_opencl
        self.planet = None

        self.photometry_frozen = False
        self.with_transit = with_transit
        self.with_contamination = with_contamination
        self.chromatic_transit = radius_ratio == 'chromatic'
        self.radius_ratio = radius_ratio
        self.n_legendre = n_legendre

        self.toi = None
        if self.with_transit and 'toi' in target.lower() and use_toi_info:
            self.toi = get_toi(float(target.lower().strip('toi')))

        # Set photometry
        # --------------
        self.phs = photometry
        self.nph = len(photometry)

        # Set the aperture ranges
        # -----------------------
        self.min_apt = amin = min(max(aperture_lims[0], 0),
                                  photometry[0].flux.aperture.size)
        self.max_apt = amax = max(
            min(aperture_lims[1], photometry[0].flux.aperture.size), 0)
        self.napt = amax - amin

        # Target and comparison star IDs
        # ------------------------------
        self.tid = atleast_1d(tid)
        if self.tid.size == 1:
            self.tid = tile(self.tid, self.nph)

        self.cids = atleast_2d(cids)
        if self.cids.shape[0] == 1:
            self.cids = tile(self.cids, (self.nph, 1))

        assert self.tid.size == self.nph
        assert self.cids.shape[0] == self.nph

        self.covnames = 'intercept sky airmass xshift yshift entropy'.split()

        times = [array(ph.bjd) for ph in photometry]
        fluxes = [
            array(ph.flux[:, tid, 1]) for tid, ph in zip(self.tid, photometry)
        ]
        fluxes = [f / nanmedian(f) for f in fluxes]
        self.apertures = ones(len(times)).astype('int')

        self.t0 = floor(times[0].min())
        times = [t - self.t0 for t in times]

        self._tmin = times[0].min()
        self._tmax = times[0].max()

        covariates = []
        for ph in photometry:
            covs = concatenate(
                [ones([ph._fmask.sum(), 1]),
                 array(ph.aux)[:, [1, 3, 4, 5]]], 1)
            covariates.append(covs)

        self.airmasses = [array(ph.aux[:, 2]) for ph in photometry]

        wns = [ones(ph.nframes) for ph in photometry]

        if use_opencl:
            import pyopencl as cl
            ctx = cl.create_some_context()
            queue = cl.CommandQueue(ctx)
            tm = QuadraticModelCL(klims=(0.005, 0.25),
                                  nk=512,
                                  nz=512,
                                  cl_ctx=ctx,
                                  cl_queue=queue)
        else:
            tm = QuadraticModel(interpolate=True,
                                klims=(0.005, 0.25),
                                nk=512,
                                nz=512)

        super().__init__(target,
                         filters,
                         times,
                         fluxes,
                         wns,
                         arange(len(photometry)),
                         covariates,
                         arange(len(photometry)),
                         tm=tm)

        self.legendre = [
            legvander((t - t.min()) / (0.5 * t.ptp()) - 1,
                      self.n_legendre)[:, 1:] for t in self.times
        ]

        # Create the target and reference star flux arrays
        # ------------------------------------------------
        self.ofluxes = [
            array(ph.flux[:, self.tid[i], amin:amax + 1] /
                  ph.flux[:, self.tid[i], amin:amax + 1].median('mjd'))
            for i, ph in enumerate(photometry)
        ]

        self.refs = []
        for ip, ph in enumerate(photometry):
            self.refs.append([
                pad(array(ph.flux[:, cid, amin:amax + 1]), ((0, 0), (1, 0)),
                    mode='constant') for cid in self.cids[ip]
            ])

        self.set_orbit_priors()
x = Symbol("x")
u = (1.0 - x**2)**2 * cos(
    np.pi * 4 * x) * (x - 0.25)**3 + b * (1 + x) / 2. + a * (1 - x) / 2.
kx = np.sqrt(5)
f = -u.diff(x, 2) + kx**2 * u
fl = lambdify(x, f, "numpy")
ul = lambdify(x, u, "numpy")

n = 32
domain = sys.argv[-1] if len(sys.argv) == 2 else "C1"

# Chebyshev-Gauss nodes and weights
points, w = leg.leggauss(n + 1)

# Chebyshev Vandermonde matrix
V = leg.legvander(points, n)

scl = 1.0
# First derivative matrix zero padded to (n+1)x(n+1)
D1 = np.zeros((n + 1, n + 1))
D1[:-1, :] = leg.legder(np.eye(n + 1), 1, scl=scl)

Vx = np.dot(V, D1)

# Matrix of trial functions
P = np.zeros((n + 1, n + 1))

P[:, 0] = (V[:, 0] - V[:, 1]) / 2
P[:, 1:-1] = V[:, :-2] - V[:, 2:]
P[:, -1] = (V[:, 0] + V[:, 1]) / 2
Ejemplo n.º 24
0
def generate_Vandermonde_matrixu(x_coords):
    """ Returns the pseudo-Vandermonde matrix of degree len(x_coords) and sample points x_coords"""
    return legndr.legvander(x_coords, len(x_coords) - 1)
Ejemplo n.º 25
0
def named_target_matrix(name, size):
    """
    Parameter:
        name: name of the target matrix
    Return:
        target_matrix: (n, n) numpy array for real matrices or (n, n, 2) for complex matrices.
    """
    if name == 'dft':
        return LA.dft(size, scale='sqrtn')[:, :, None].view('float64')
    elif name == 'idft':
        return np.ascontiguousarray(LA.dft(size, scale='sqrtn').conj().T)[:, :, None].view('float64')
    elif name == 'dft2':
        size_sr = int(math.sqrt(size))
        matrix = np.fft.fft2(np.eye(size_sr**2).reshape(-1, size_sr, size_sr), norm='ortho').reshape(-1, size_sr**2)
        # matrix1d = LA.dft(size_sr, scale='sqrtn')
        # assert np.allclose(np.kron(m1d, m1d), matrix)
        # return matrix[:, :, None].view('float64')
        from butterfly.utils import bitreversal_permutation
        br_perm = bitreversal_permutation(size_sr)
        br_perm2 = np.arange(size_sr**2).reshape(size_sr, size_sr)[br_perm][:, br_perm].reshape(-1)
        matrix = np.ascontiguousarray(matrix[:, br_perm2])
        return matrix[:, :, None].view('float64')
    elif name == 'dct':
        # Need to transpose as dct acts on rows of matrix np.eye, not columns
        # return dct(np.eye(size), norm='ortho').T
        return dct(np.eye(size)).T / math.sqrt(size)
    elif name == 'dst':
        return dst(np.eye(size)).T / math.sqrt(size)
    elif name == 'hadamard':
        return LA.hadamard(size) / math.sqrt(size)
    elif name == 'hadamard2':
        size_sr = int(math.sqrt(size))
        matrix1d = LA.hadamard(size_sr) / math.sqrt(size_sr)
        return np.kron(matrix1d, matrix1d)
    elif name == 'b2':
        size_sr = int(math.sqrt(size))
        from butterfly import Block2x2DiagProduct
        b = Block2x2DiagProduct(size_sr)
        matrix1d = b(torch.eye(size_sr)).t().detach().numpy()
        return np.kron(matrix1d, matrix1d)
    elif name == 'convolution':
        np.random.seed(0)
        x = np.random.randn(size)
        return LA.circulant(x) / math.sqrt(size)
    elif name == 'hartley':
        return hartley_matrix(size) / math.sqrt(size)
    elif name == 'haar':
        return haar_matrix(size, normalized=True) / math.sqrt(size)
    elif name == 'legendre':
        grid = np.linspace(-1, 1, size + 2)[1:-1]
        return legendre.legvander(grid, size - 1).T / math.sqrt(size)
    elif name == 'hilbert':
        H = hilbert_matrix(size)
        return H / np.linalg.norm(H, 2)
    elif name == 'randn':
        np.random.seed(0)
        return np.random.randn(size, size) / math.sqrt(size)
    elif name == 'permutation':
        np.random.seed(0)
        perm = np.random.permutation(size)
        P = np.eye(size)[perm]
        return P
    elif name.startswith('rank-unnorm'):
        r = int(name[11:])
        np.random.seed(0)
        G = np.random.randn(size, r)
        H = np.random.randn(size, r)
        M = G @ H.T
        # M /= math.sqrt(size*r)
        return M
    elif name.startswith('rank'):
        r = int(name[4:])
        np.random.seed(0)
        G = np.random.randn(size, r)
        H = np.random.randn(size, r)
        M = G @ H.T
        M /= math.sqrt(size*r)
        return M
    elif name.startswith('sparse'):
        s = int(name[6:])
        # 2rn parameters
        np.random.seed(0)
        mask = sparse.random(size, size, density=s/size, data_rvs=np.ones)
        M = np.random.randn(size, size) * (mask.toarray())
        M /= math.sqrt(s)
        return M
    elif name.startswith('toeplitz'):
        r = int(name[8:])
        G = np.random.randn(size, r) / math.sqrt(size*r)
        H = np.random.randn(size, r) / math.sqrt(size*r)
        M = toeplitz_like(G, H)
        return M
    elif name == 'fastfood':
        n = size
        S = np.random.randn(n)
        G = np.random.randn(n)
        B = np.random.randn(n)
        # P = np.arange(n)
        P = np.random.permutation(n)
        H = hadamard(n)
        # SHGPHB
        # print(H)
        # print((H*B)[P,:])
        # print((H @ (G[:,np.newaxis] * (H * B)[P,:])))
        F = S[:,np.newaxis] * (H @ (G[:,np.newaxis] * (H * B)[P,:])) / n
        return F
        # x = np.random.randn(batch_size,n)
        # HB = hadamard_transform(B)
        # PHBx = HBx[:, P]
        # HGPHBx = hadamard_transform(G*PHBx)
        # return S*HGPHBx
    elif name == 'butterfly':
        # n (log n+1) params in the hierarchy
        b = Butterfly(in_size=size, out_size=size, bias=False, tied_weight=False, param='odo', nblocks=0)
        M = b(torch.eye(size))
        return M.cpu().detach().numpy()

    else:
        assert False, 'Target matrix name not recognized or implemented'
# Some exact solution
x = Symbol("x")
u = (1.0-x**2)**2*cos(np.pi*4*x)*(x-0.25)**3 + b*(1 + x)/2. + a*(1 - x)/2.
kx = np.sqrt(5)
f = -u.diff(x, 2) + kx**2*u
fl = lambdify(x, f, "numpy")
ul = lambdify(x, u, "numpy")

n = 32
domain = sys.argv[-1] if len(sys.argv) == 2 else "C1"

# Chebyshev-Gauss nodes and weights
points, w = leg.leggauss(n+1)

# Chebyshev Vandermonde matrix
V = leg.legvander(points, n)

scl=1.0
# First derivative matrix zero padded to (n+1)x(n+1)
D1 = np.zeros((n+1,n+1))
D1[:-1,:] = leg.legder(np.eye(n+1), 1, scl=scl)

Vx  = np.dot(V, D1)

# Matrix of trial functions
P = np.zeros((n+1,n+1))

P[:,0] = (V[:,0] - V[:,1])/2
P[:,1:-1] = V[:,:-2] - V[:,2:]
P[:,-1] = (V[:,0] + V[:,1])/2
 def setX(self, x):
     self.x = numpy.copy(x)
     self.x = xshift(self.x)
     self.vander = legendre.legvander(self.x, self.order)
Ejemplo n.º 28
0
print "[INFO] Yp_test.shape (E-DMD) " + repr(Yp_test.shape);
print "[INFO] Yf_test.shape (E-DMD) " + repr(Yf_test.shape);


Yp_final_train = Yp_train; # straight up quadratics training data 0,...,n-1 
Yf_final_train = Yf_train; # straight up quadratics training data 1 ,... n  1 step forward propagation of Yp_train
Yp_final_test = Yp_test; #straight up quadratics test data -
Yf_final_test = Yf_test; # straight up quadratics test data - 1-step forward propagation of Yp_test  

# # # - - - - - -  Legendre polynomial dictionary generation  - - - - -  # # # 

if use_legendre:
    
    #print Yp.shape
    deg_polynomial = poly_deg
    Yp_leg = legvander(Yp,deg_polynomial)
    n_points,n_channels,n_deg_polyp1=  Yp_leg.shape
    Yp_leg = np.reshape(Yp_leg,(n_deg_polyp1,n_points,n_channels));
    #print Yp_leg.shape

    Yf_leg = legvander(Yf,deg_polynomial)
    n_points,n_channels,n_deg_polyp1=  Yf_leg.shape
    Yf_leg = np.reshape(Yf_leg,(n_deg_polyp1,n_points,n_channels));
    #print Yf_leg.shape
    Yp_leg_stack = np.concatenate((Yp_leg[:,:,0],Yp_leg[:,:,1])) ;
    Yf_leg_stack = np.concatenate((Yf_leg[:,:,0],Yf_leg[:,:,1])) ;
    for i in range(2,n_channels):
        if i%1000==0:
                #print i
                #print Yp_leg_stack.shape
            print Yf_leg_stack.shape
Ejemplo n.º 29
0
def named_target_matrix(name, size):
    """
    Parameter:
        name: name of the target matrix
    Return:
        target_matrix: (n, n) numpy array for real matrices or (n, n, 2) for complex matrices.
    """
    if name == 'dft':
        return LA.dft(size, scale='sqrtn')[:, :, None].view('float64')
    elif name == 'idft':
        return np.ascontiguousarray(LA.dft(
            size, scale='sqrtn').conj().T)[:, :, None].view('float64')
    elif name == 'dft2':
        size_sr = int(math.sqrt(size))
        matrix = np.fft.fft2(np.eye(size_sr**2).reshape(-1, size_sr, size_sr),
                             norm='ortho').reshape(-1, size_sr**2)
        # matrix1d = LA.dft(size_sr, scale='sqrtn')
        # assert np.allclose(np.kron(m1d, m1d), matrix)
        # return matrix[:, :, None].view('float64')
        from butterfly.utils import bitreversal_permutation
        br_perm = bitreversal_permutation(size_sr)
        br_perm2 = np.arange(size_sr**2).reshape(
            size_sr, size_sr)[br_perm][:, br_perm].reshape(-1)
        matrix = np.ascontiguousarray(matrix[:, br_perm2])
        return matrix[:, :, None].view('float64')
    elif name == 'dct':
        # Need to transpose as dct acts on rows of matrix np.eye, not columns
        # return dct(np.eye(size), norm='ortho').T
        return dct(np.eye(size)).T / math.sqrt(size)
    elif name == 'dst':
        return dst(np.eye(size)).T / math.sqrt(size)
    elif name == 'hadamard':
        return LA.hadamard(size) / math.sqrt(size)
    elif name == 'hadamard2':
        size_sr = int(math.sqrt(size))
        matrix1d = LA.hadamard(size_sr) / math.sqrt(size_sr)
        return np.kron(matrix1d, matrix1d)
    elif name == 'b2':
        size_sr = int(math.sqrt(size))
        import torch
        from butterfly import Block2x2DiagProduct
        b = Block2x2DiagProduct(size_sr)
        matrix1d = b(torch.eye(size_sr)).t().detach().numpy()
        return np.kron(matrix1d, matrix1d)
    elif name == 'convolution':
        np.random.seed(0)
        x = np.random.randn(size)
        return LA.circulant(x) / math.sqrt(size)
    elif name == 'hartley':
        return hartley_matrix(size) / math.sqrt(size)
    elif name == 'haar':
        return haar_matrix(size, normalized=True) / math.sqrt(size)
    elif name == 'legendre':
        grid = np.linspace(-1, 1, size + 2)[1:-1]
        return legendre.legvander(grid, size - 1).T / math.sqrt(size)
    elif name == 'hilbert':
        H = hilbert_matrix(size)
        return H / np.linalg.norm(H, 2)
    elif name == 'randn':
        np.random.seed(0)
        return np.random.randn(size, size) / math.sqrt(size)
    else:
        assert False, 'Target matrix name not recognized or implemented'
Ejemplo n.º 30
0
    def _get_exp_coeffs(self, y: np.ndarray, x: np.ndarray,
                        initial_guess: Optional[np.ndarray] = None
                        ) -> Tuple[np.ndarray, np.ndarray]:
        r"""Calculate the exponential coefficients

        As a first step to fitting, calculate the exponential "rate" factors
        :math:`\lambda_k`.

        Parameters
        ----------
        y
            Function values corresponding to `x`.
        x
            Independent variable values

        Returns
        -------
        exp_coeff
            List of exponential coefficients
        ode_coeff
            Optimal coefficients of the ODE involved in calculating the
            exponential coefficients.

        Other parameters
        ----------------
        initial_guess
            An initial guess for determining the parameters of the ODE (if you
            don't know what this is about, don't bother). The array is 1D and
            has `n_exp` + 1 entries. If `None`, use ``numpy.ones(n_exp + 1)``.
        """
        if initial_guess is None:
            initial_guess = np.ones(self.n_exp + 1)

        s = _ODESolver(self.n_exp, self.poly_order)

        # Map x to [-1, 1]
        x_min = np.min(x)
        x_range = np.ptp(x)
        x_mapped = 2 * (x - x_min) / x_range - 1

        # Weights (trapezoidal)
        d_x = np.diff(x)
        w = np.zeros(len(x))
        w[0] = d_x[0]
        w[1:-1] = d_x[1:] + d_x[:-1]
        w[-1] = d_x[-1]
        w /= x_range

        leg = legvander(x_mapped, self.n_exp - 1)

        def residual(coeffs):
            s.coefficients = coeffs
            # The following is the residual condition
            # \hat{y}_k = (k + 1 / 2) \sum_{i=1}^n w_i z_i P(t_i)
            rc = leg.T @ (w * y)
            rc *= np.arange(0.5, self.n_exp)
            # Solve the ODE in Legendre space
            # \sum_{k=0}^p a_k D^k \hat{y} = e_1
            rhs = np.zeros(self.poly_order)
            rhs[0] = 1
            sol_hat = s.solve(rc, rhs)
            # transform to real space
            sol = legval(x_mapped, sol_hat)
            return y - sol

        def jacobian(coeffs):
            s.coefficients = coeffs
            jac = np.zeros((len(x), self.n_exp + 1))

            tan = s.tangent()
            for i in range(self.n_exp + 1):
                jac[:, i] = -legval(x_mapped, tan[:, i])

            return jac

        ode_coeff = leastsq(residual, initial_guess, Dfun=jacobian)[0]
        exp_coeff = np.roots(ode_coeff[::-1]) * 2 / x_range

        return exp_coeff, ode_coeff
Ejemplo n.º 31
0
def legvander(x, deg):
    from numpy.polynomial.legendre import legvander
    return legvander(x, deg)
Ejemplo n.º 32
0
 def frompoles(self, poles):
     v = legvander(self.mu, poles.shape[1] - 1)
     self.xi[...] = numpy.einsum('jl,il->ij', v, poles)
     if hasattr(self, 'poles'):
         del self.poles