Ejemplo n.º 1
0
def main():
    logger = SummaryWriter('/home/xiu/databag/deblur/pretrain/finetune/')
    # ----------------------------------------
    # load kernels
    # ----------------------------------------
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    PSF_grid = np.load('./data/ZEMAX-AC254-075-A-new.npz')['PSF']
    PSF_grid = PSF_grid.astype(np.float32)
    kw, kh = PSF_grid.shape[:2]
    for w_ in range(kw):
        for h_ in range(kh):
            PSF_grid[w_, h_] = PSF_grid[w_, h_] / np.sum(PSF_grid[w_, h_],
                                                         axis=(0, 1))
    # ----------------------------------------
    # build
    # ----------------------------------------
    model = net(n_iter=8,
                h_nc=64,
                in_nc=4,
                out_nc=3,
                nc=[64, 128, 256, 512],
                nb=3,
                act_mode="R",
                downsample_mode='strideconv',
                upsample_mode="convtranspose")
    model.load_state_dict(
        torch.load('/home/xiu/databag/deblur/usrnet_ours_epoch10.pth'),
        strict=True)
    model.train()
    for _, v in model.named_parameters():
        v.requires_grad = True
    model = model.to(device)

    train_imgs = glob.glob('/home/xiu/databag/deblur/images/*/**.png',
                           recursive=True)
    train_imgs.sort()

    n_stage = 5
    n_batch = 3
    n_epoch = 200

    w_patch = 128
    n_patch = 2

    ab_buffer = np.ones(
        (n_batch, PSF_grid.shape[0] * PSF_grid.shape[1], 2 * n_stage + 1, 3),
        dtype=np.float32) * 0.1
    ab_param = torch.tensor(ab_buffer, device=device, requires_grad=True)

    params = []
    params += [{"params": [ab_param], "lr": 1e-4}]
    for key, value in model.named_parameters():
        params += [{"params": [value], "lr": 1e-4}]
    optimizer = torch.optim.Adam(params, lr=1e-4)

    img_index = np.arange(len(train_imgs))

    global_iter = 0

    expand = PSF_grid.shape[2] // 2

    for epoch in range(n_epoch):
        np.random.shuffle(img_index)
        for iteration in range(len(train_imgs) // n_batch):
            imgs = []
            for ii in range(n_batch):
                imgs.append(
                    cv2.imread(train_imgs[img_index[iteration * n_batch +
                                                    ii]]))
            global_iter += 1

            x = []
            y = []
            k = []
            vis_L = []
            vis_H = []
            vis_E = []
            for img in imgs:
                w, h = img.shape[:2]
                x_start = np.random.randint(
                    0, w - w_patch * n_patch - expand * 2 + 1)
                y_start = np.random.randint(
                    0, h - w_patch * n_patch - expand * 2 + 1)
                px = np.random.randint(0, PSF_grid.shape[0] - n_patch)
                py = np.random.randint(0, PSF_grid.shape[1] - n_patch)

                patch_H = img[x_start:x_start + w_patch * n_patch + expand * 2,
                              y_start:y_start + w_patch * n_patch + expand * 2]
                patch_L = util_deblur.blockConv2d(
                    patch_H, PSF_grid[px:px + n_patch, py:py + n_patch],
                    expand)

                vis_L.append(patch_L)
                vis_H.append(patch_H[expand:-expand, expand:-expand])

                patch_L_wrap = util_deblur.wrap_boundary_liu(
                    patch_L, (w_patch * n_patch + expand * 2,
                              w_patch * n_patch + expand * 2))
                patch_L_wrap = np.hstack(
                    (patch_L_wrap[:, -expand:, :],
                     patch_L_wrap[:, :w_patch * n_patch + expand, :]))
                patch_L_wrap = np.vstack(
                    (patch_L_wrap[-expand:, :, :],
                     patch_L_wrap[:w_patch * n_patch + expand, :, :]))
                x_L = util.uint2single(patch_L_wrap)

                x_blocky = []
                for h_ in range(n_patch):
                    for w_ in range(n_patch):
                        x_blocky.append(x_L[w_*w_patch:w_*w_patch+w_patch+expand*2,\
                         h_*w_patch:h_*w_patch+w_patch+expand*2:])
                x_blocky = [util.single2tensor4(el) for el in x_blocky]
                x_blocky = torch.cat(x_blocky, dim=0)

                k_all = []
                for w_ in range(n_patch):
                    for h_ in range(n_patch):
                        k_all.append(
                            util.single2tensor4(PSF_grid[h_ + px, w_ + py]))

                k_all = torch.cat(k_all, dim=0)

                x_gt = util.uint2single(patch_H[expand:-expand,
                                                expand:-expand])
                x_gt = util.single2tensor4(x_gt)
                y.append(x_blocky)
                x.append(x_gt)
                k.append(k_all)

            ab = F.softplus(ab_param)
            loss = 0
            for i in range(n_batch):
                yy = y[i].to(device)
                kk = k[i].to(device)
                xx = x[i].to(device)
                xE = model.forward_patchdeconv(yy, kk, ab[i],
                                               [n_patch, n_patch], w_patch)
                loss += F.l1_loss(xE[-2], xx)
                vis_E.append(util.tensor2uint(xE[-2]))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if global_iter % 10 == 0:
                print('iter {}: loss{}.'.format(global_iter, loss.item()))
                logger.add_scalar('finetune-loss', loss.item(), global_iter)
                for i in range(n_batch):
                    show1 = np.hstack((vis_H[i], vis_L[i], vis_E[i]))
                    logger.add_image('show-{}'.format(i),
                                     util.uint2tensor3(show1[:, :, ::-1]))
                    logger.flush()
Ejemplo n.º 2
0
def main():
    logger = SummaryWriter('/home/xiu/databag/deblur/pretrain/full/')
    # ----------------------------------------
    # load kernels
    # ----------------------------------------
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    all_PSFs = load_kernels('./data')
    # ----------------------------------------
    # build
    # ----------------------------------------
    model = net(n_iter=8,
                h_nc=64,
                in_nc=4,
                out_nc=3,
                nc=[64, 128, 256, 512],
                nb=3,
                act_mode="R",
                downsample_mode='strideconv',
                upsample_mode="convtranspose")
    model.train()
    for _, v in model.named_parameters():
        v.requires_grad = True
    model = model.to(device)

    train_imgs = glob.glob('/home/xiu/databag/deblur/images/*/**.png',
                           recursive=True)
    train_imgs.sort()

    n_stage = 5
    n_batch = 3
    n_epoch = 200

    w_patch = 128
    n_patch = 2

    ab_buffer = np.ones((n_batch, n_patch * n_patch, 2 * n_stage + 1, 3),
                        dtype=np.float32) * 0.1
    ab_param = torch.tensor(ab_buffer, device=device, requires_grad=True)

    params = []
    params += [{"params": [ab_param], "lr": 1e-4}]
    for key, value in model.named_parameters():
        params += [{"params": [value], "lr": 1e-4}]
    optimizer = torch.optim.Adam(params, lr=1e-4)

    img_index = np.arange(len(train_imgs))

    global_iter = 0

    PSFs = []
    for i in range(n_batch):
        if i % 2 == 0:
            PSFs.append(get_kernels(all_PSFs, n_patch))
        else:
            PSFs.append(rand_kernels(n_patch))
    expands = []
    for i in range(n_batch):
        expands.append(PSFs[i].shape[2] // 2)

    for epoch in range(n_epoch):
        np.random.shuffle(img_index)
        for iteration in range(len(train_imgs) // n_batch):
            imgs = []
            for ii in range(n_batch):
                imgs.append(
                    cv2.imread(train_imgs[img_index[iteration * n_batch +
                                                    ii]]))

            global_iter += 1
            if global_iter % 100 == 0:
                PSFs = []
                for i in range(n_batch):
                    if i % 2 == 0:
                        PSFs.append(get_kernels(all_PSFs, n_patch))
                    else:
                        PSFs.append(rand_kernels(n_patch))
                expands = []
                for i in range(n_batch):
                    expands.append(PSFs[i].shape[2] // 2)

            x = []
            y = []
            k = []
            vis_L = []
            vis_H = []
            vis_E = []
            for img, expand, PSF in zip(imgs, expands, PSFs):
                w, h = img.shape[:2]
                x_start = np.random.randint(
                    0, w - w_patch * n_patch - expand * 2 + 1)
                y_start = np.random.randint(
                    0, h - w_patch * n_patch - expand * 2 + 1)
                patch_H = img[x_start:x_start + w_patch * n_patch + expand * 2,
                              y_start:y_start + w_patch * n_patch + expand * 2]
                patch_L = util_deblur.blockConv2d(patch_H, PSF, expand)

                vis_L.append(patch_L)
                vis_H.append(patch_H[expand:-expand, expand:-expand])

                patch_L_wrap = util_deblur.wrap_boundary_liu(
                    patch_L, (w_patch * n_patch + expand * 2,
                              w_patch * n_patch + expand * 2))
                patch_L_wrap = np.hstack(
                    (patch_L_wrap[:, -expand:, :],
                     patch_L_wrap[:, :w_patch * n_patch + expand, :]))
                patch_L_wrap = np.vstack(
                    (patch_L_wrap[-expand:, :, :],
                     patch_L_wrap[:w_patch * n_patch + expand, :, :]))
                x_L = util.uint2single(patch_L_wrap)

                x_blocky = []
                for h_ in range(n_patch):
                    for w_ in range(n_patch):
                        x_blocky.append(x_L[w_*w_patch:w_*w_patch+w_patch+expand*2,\
                         h_*w_patch:h_*w_patch+w_patch+expand*2:])
                x_blocky = [util.single2tensor4(el) for el in x_blocky]
                x_blocky = torch.cat(x_blocky, dim=0)

                k_all = []
                for w_ in range(n_patch):
                    for h_ in range(n_patch):
                        k_all.append(util.single2tensor4(PSF[h_, w_]))

                k_all = torch.cat(k_all, dim=0)

                x_gt = util.uint2single(patch_H[expand:-expand,
                                                expand:-expand])
                x_gt = util.single2tensor4(x_gt)
                y.append(x_blocky)
                x.append(x_gt)
                k.append(k_all)

            ab = F.softplus(ab_param)
            loss = 0
            for i in range(n_batch):
                yy = y[i].to(device)
                kk = k[i].to(device)
                xx = x[i].to(device)
                xE = model.forward_patchdeconv(yy, kk, ab[i],
                                               [n_patch, n_patch], w_patch)
                loss += F.l1_loss(xE[-2], xx)
                vis_E.append(util.tensor2uint(xE[-2]))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if global_iter % 10 == 0:
                print('iter {}: loss{}.'.format(global_iter, loss.item()))
                logger.add_scalar('train-loss', loss.item(), global_iter)
                for i in range(n_batch):
                    show1 = np.hstack((vis_H[i], vis_L[i], vis_E[i]))
                    logger.add_image('show-{}'.format(i),
                                     util.uint2tensor3(show1[:, :, ::-1]))
                    logger.flush()
        ab_numpy = ab.detach().cpu().numpy()[:, :, 0, 0]
        ab_numpy = ab_numpy.flatten()
        torch.save(model.state_dict(), 'usrnet_ours_epoch{}.pth'.format(epoch))
        np.savetxt('ab_ours.txt', ab_numpy)
Ejemplo n.º 3
0
def main():
    # ----------------------------------------
    # load kernels
    # ----------------------------------------
    #PSF_grid = np.load('./data/Schuler_PSF01.npz')['PSF']
    #PSF_grid = np.load('./data/Schuler_PSF_bench.npz')['PSF']
    PSF_grid = np.load('./data/Heidel_PSF_plano.npz')['PSF']
    #PSF_grid = np.load('./data/ZEMAX-LA1608.npz')['PSF']
    #PSF_grid = np.load('./data/Schuler_PSF03.npz')['PSF']
    #PSF_grid = np.load('./data/PSF.npz')['PSF']
    PSF_grid = PSF_grid.astype(np.float32)
    gx, gy = PSF_grid.shape[:2]
    for xx in range(gx):
        for yy in range(gy):
            PSF_grid[xx, yy] = PSF_grid[xx, yy] / np.sum(PSF_grid[xx, yy],
                                                         axis=(0, 1))

    # ----------------------------------------
    # load model
    # ----------------------------------------
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = net(n_iter=8,
                h_nc=64,
                in_nc=4,
                out_nc=3,
                nc=[64, 128, 256, 512],
                nb=3,
                act_mode="R",
                downsample_mode='strideconv',
                upsample_mode="convtranspose")
    #model.train()
    #model.load_state_dict(torch.load('./data/usrgan.pth'), strict=True)
    #model.load_state_dict(torch.load('./data/usrnet.pth'), strict=True)
    model.load_state_dict(
        torch.load('/home/xiu/databag/deblur/usrnet_ours_epoch10.pth'),
        strict=True)
    for _, v in model.named_parameters():
        v.requires_grad = True
    model = model.to(device)

    imgs = glob.glob('/home/xiu/databag/deblur/images/*/**.png',
                     recursive=True)
    imgs.sort()

    patch_size = 3 * 128
    num_patch = 3
    expand = PSF_grid.shape[2] // 2

    #positional alpha-beta parameters for HQS
    stage = 5
    ab_buffer = np.ones((gx, gy, 2 * stage + 1, 3), dtype=np.float32) * 0.1
    ab_buffer[:, :, 0, :] = 0.01
    ab = torch.tensor(ab_buffer, device=device, requires_grad=True)

    params = []
    params += [{"params": [ab], "lr": 1e-3}]
    for key, value in model.named_parameters():
        params += [{"params": [value], "lr": 1e-4}]

    optimizer = torch.optim.Adam(params, lr=1e-4)

    running = True

    while running:
        #alpha.beta
        img_idx = np.random.randint(len(imgs))
        img = imgs[img_idx]
        img_H = cv2.imread(img)
        w, h = img_H.shape[:2]

        px_start = np.random.randint(0, gx - num_patch + 1)
        py_start = np.random.randint(0, gy - num_patch + 1)

        x_start = np.random.randint(0, w - patch_size - expand * 2 + 1)
        y_start = np.random.randint(0, h - patch_size - expand * 2 + 1)
        PSF_patch = PSF_grid[px_start:px_start + num_patch,
                             py_start:py_start + num_patch]

        patch_H = img_H[x_start:x_start + patch_size + expand * 2,
                        y_start:y_start + patch_size + expand * 2]
        patch_L = util_deblur.blockConv2d(patch_H, PSF_patch, expand)

        block_size = patch_size // num_patch

        block_expand = max(patch_size // 16, expand)
        if block_expand > 0:
            patch_L_wrap = util_deblur.wrap_boundary_liu(
                patch_L,
                (patch_size + block_expand * 2, patch_size + block_expand * 2))
            #centralize
            patch_L_wrap = np.hstack(
                (patch_L_wrap[:, -block_expand:, :],
                 patch_L_wrap[:, :patch_size + block_expand, :]))
            patch_L_wrap = np.vstack(
                (patch_L_wrap[-block_expand:, :, :],
                 patch_L_wrap[:patch_size + block_expand, :, :]))
        else:
            patch_L_wrap = patch_L
        if block_expand > 0:
            x = util.uint2single(patch_L_wrap)
        else:
            x = util.uint2single(patch_L)
        x_blocky = []
        for h_ in range(num_patch):
            for w_ in range(num_patch):
                x_blocky.append(x[w_*block_size:w_*block_size+block_size+block_expand*2,\
                 h_*block_size:h_*block_size+block_size+block_expand*2:])
        x_blocky = [util.single2tensor4(el) for el in x_blocky]
        x_blocky = torch.cat(x_blocky, dim=0)

        k_all = []
        for w_ in range(num_patch):
            for h_ in range(num_patch):
                k_all.append(util.single2tensor4(PSF_patch[h_, w_]))
        k = torch.cat(k_all, dim=0)
        x_gt = util.uint2single(patch_H[expand:-expand, expand:-expand])
        x_gt = util.single2tensor4(x_gt)

        [x_blocky, x_gt, k] = [el.to(device) for el in [x_blocky, x_gt, k]]

        #cd = F.softplus(ab[px_start:px_start+num_patch,py_start:py_start+num_patch].reshape(num_patch**2,2*stage+1,1,1))
        #for n_iter in range(optim_iter):
        cd = F.softplus(ab[px_start:px_start + num_patch,
                           py_start:py_start + num_patch])
        cd = cd.view(num_patch**2, 2 * stage + 1, 3)
        x_E = model.forward_patchdeconv(x_blocky,
                                        k,
                                        cd, [num_patch, num_patch],
                                        patch_sz=patch_size // num_patch)
        loss = 0
        #for xx in x_E[::2]:
        loss = F.l1_loss(x_E[-2], x_gt)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print('loss {}'.format(loss.item()))

        x_E = x_E[:-1]

        patch_L = patch_L_wrap.astype(np.uint8)
        patch_E = util.tensor2uint(x_E[-1])
        patch_E_all = [util.tensor2uint(pp) for pp in x_E]
        patch_E_z = np.hstack((patch_E_all[::2]))
        patch_E_x = np.hstack((patch_E_all[1::2]))

        patch_E_show = np.vstack((patch_E_z, patch_E_x))
        if block_expand > 0:
            show = np.hstack((patch_H[expand:-expand, expand:-expand],
                              patch_L[block_expand:-block_expand,
                                      block_expand:-block_expand], patch_E))
        else:
            show = np.hstack((patch_H[expand:-expand,
                                      expand:-expand], patch_L, patch_E))

        #get kernel
        #cv2.imshow('stage',patch_E_show)
        #rgb = np.hstack((patch_E[:,:,0],patch_E[:,:,1],patch_E[:,:,2]))
        cv2.imshow('HL', show)
        #cv2.imshow('RGB',rgb)
        key = cv2.waitKey(1)

        if key == ord('q'):
            running = False
            break

    ab_numpy = ab.detach().cpu().numpy().flatten()  #.reshape(-1,2*stage+1)
    torch.save(model.state_dict(), 'usrnet_plano_ours.pth')
    np.savetxt('ab_plano_ours.txt', ab_numpy)
Ejemplo n.º 4
0
def main():
	# ----------------------------------------
	# load kernels
	# ----------------------------------------
	#PSF_grid = np.load('./data/Schuler_PSF01.npz')['PSF']
	PSF_grid = np.load('./data/Schuler_PSF_facade.npz')['PSF']
	#PSF_grid = np.load('./data/Schuler_PSF03.npz')['PSF']
	#PSF_grid = np.load('./data/PSF.npz')['PSF']
	#print(PSF_grid.shape)
	
	PSF_grid = PSF_grid.astype(np.float32)

	gx,gy = PSF_grid.shape[:2]
	for xx in range(gx):
		for yy in range(gy):
			PSF_grid[xx,yy] = PSF_grid[xx,yy]/np.sum(PSF_grid[xx,yy],axis=(0,1))

	# ----------------------------------------
	# load model
	# ----------------------------------------
	device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
	model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512],
					nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose")
	model.load_state_dict(torch.load('usrnet_facade_gan.pth'), strict=True)
	model.eval()
	#model.train()
	for _, v in model.named_parameters():
		v.requires_grad = False
	#	v.requires_grad = False
	model = model.to(device)

	#imgs = glob.glob('/home/xiu/databag/deblur/synthetic/synthetic_dataset/ground_truth/*.png')
	#imgs = glob.glob('/home/xiu/databag/coco/val2014/*.jpg')
	#imgs.sort()


	#img_L = cv2.imread('/home/xiu/workspace/dwgan/MPI_data/facade/blurry.jpg')
	img_H = cv2.imread('./suo/5.jpg')
	img_H = cv2.resize(img_H,dsize=None,fx=0.5,fy=0.5)
	w_crop = img_H.shape[0] - 8*128
	h_crop = img_H.shape[1] - 12*128
	to_w = w_crop//2
	to_h = h_crop//2
	img_H = img_H[to_w:-(w_crop-to_w),to_h:-(h_crop-to_h),:]

	#img_H = img_H[:8*128,:12*128]

	img_L = util_deblur.blockConv2d(img_H,PSF_grid)
	img_E = np.zeros_like(img_L)

	img_E_deconv = []
	img_E_denoise = []
	for i in range(5):
		img_E_deconv.append(np.zeros_like(img_L))
		img_E_denoise.append(np.zeros_like(img_L))





	weight_E = np.zeros_like(img_L)

	patch_size = 2*128
	num_patch = 2
	p_size = patch_size//num_patch
	expand = PSF_grid.shape[2]//2

	#positional alpha-beta parameters for HQS
	#ab_numpy = np.ones((num_patch*num_patch,17,1,1),dtype=np.float32)*0.1
	#ab_numpy[:,0,:,:] = 0.01
	ab_numpy = np.loadtxt('ab_facade_gan.txt').astype(np.float32)
	ab_numpy = ab_numpy[...,None,None]
	ab = torch.tensor(ab_numpy,device=device,requires_grad=False)

	#save img_L

	


	#while running:
	for px_start in range(0,8-2+1,2):
		for py_start in range(0,12-2+1,2):

			#px_start = np.random.randint(0,PSF_grid.shape[0]+1-num_patch)
			#py_start = np.random.randint(0,PSF_grid.shape[1]+1-num_patch)

			PSF_patch = PSF_grid[px_start:px_start+num_patch,py_start:py_start+num_patch]

			# x = util.uint2single(patch_L)
			block_size = patch_size//num_patch
			patch_L = img_L[px_start*p_size:(px_start+num_patch)*p_size,py_start*p_size:py_start*p_size+num_patch*p_size,:]
			#patch_H = img_H[px_start*p_size:(px_start+num_patch)*p_size,py_start*p_size:py_start*p_size+num_patch*p_size,:]
			#block_expand = expand*2
			block_expand = expand
			#block_expand = 1
			if block_expand > 0:
				patch_L_wrap = util_deblur.wrap_boundary_liu(patch_L,(patch_size+block_expand*2,patch_size+block_expand*2))
				#centralize
				patch_L_wrap = np.hstack((patch_L_wrap[:,-block_expand:,:],patch_L_wrap[:,:patch_size+block_expand,:]))
				patch_L_wrap = np.vstack((patch_L_wrap[-block_expand:,:,:],patch_L_wrap[:patch_size+block_expand,:,:]))
			else:
				patch_L_wrap = patch_L
			if block_expand>0:
				x = util.uint2single(patch_L_wrap)
			else:
				x = util.uint2single(patch_L)
			x_blocky = []
			for h_ in range(num_patch):
				for w_ in range(num_patch):
					x_blocky.append(x[w_*block_size:w_*block_size+block_size+block_expand*2,\
						h_*block_size:h_*block_size+block_size+block_expand*2:])	
			x_blocky = [util.single2tensor4(el) for el in x_blocky]
			x_blocky = torch.cat(x_blocky,dim=0)

			# x = util.single2tensor4(x)

			# x_blocky = torch.cat(torch.chunk(x,num_patch,dim=2),dim=0)
			# x_blocky = torch.cat(torch.chunk(x_blocky,num_patch,dim=3),dim=0)

			k_all = []
			for w_ in range(num_patch):
				for h_ in range(num_patch):
					k_all.append(util.single2tensor4(PSF_patch[h_,w_]))
			k = torch.cat(k_all,dim=0)

			[x_blocky,k] = [el.to(device) for el in [x_blocky,k]]

			cd = F.softplus(ab)
			beta = cd[:,9:,0,0].detach().cpu().numpy()


			x_E = model.forward_patchdeconv(x_blocky,k,cd,[num_patch,num_patch],patch_sz=patch_size//num_patch)
			x_E = x_E[:-1]

			patch_L = patch_L_wrap.astype(np.uint8)

			patch_E = util.tensor2uint(x_E[-1])
			patch_E_all = [util.tensor2uint(pp) for pp in x_E]

			#patch_E_z = np.hstack((patch_E_all[::2]))
			#patch_E_x = np.hstack((patch_E_all[1::2]))

			#patch_E_show = np.vstack((patch_E_z,patch_E_x))
			#if block_expand>0:
			#	show = np.hstack((patch_L[block_expand:-block_expand,block_expand:-block_expand],patch_E))
			#else:
			#	show = np.hstack((patch_L,patch_E))

	
			#get kernel
			for i in range(5):
				img_E_deconv[i][px_start*p_size:(px_start+num_patch)*p_size,py_start*p_size:py_start*p_size+num_patch*p_size,:] += patch_E_all[2*i]
				img_E_denoise[i][px_start*p_size:(px_start+num_patch)*p_size,py_start*p_size:py_start*p_size+num_patch*p_size,:] += patch_E_all[2*i+1]
			weight_E[px_start*p_size:(px_start+num_patch)*p_size,py_start*p_size:py_start*p_size+num_patch*p_size,:] += 1.0

			#cv2.imshow('stage',patch_E_show)
			#cv2.imshow('HL',show)
			#cv2.imshow('RGB',rgb)
			#key = cv2.waitKey(-1)
			#if key==ord('n'):
			#	break


	img_E = img_E/weight_E
	img_E_deconv = [pp/weight_E for pp in img_E_deconv]
	img_E_denoise = [pp/weight_E for pp in img_E_denoise]

	# img_L = img_L.astype(np.uint8)
	# img_E = img_E.astype(np.uint8)
	# img_E_deconv = img_E_deconv.astype(np.uint8)
	# img_E_denoise = img_E_denoise.astype(np.uint8)
	# cv2.imshow('imE',img_E)
	# cv2.imshow('imE_deconv',img_E_deconv)
	# cv2.imshow('imE_denoise',img_E_denoise)
	# cv2.imshow('imL',img_L)
	for i in range(5):
		zk = img_E_deconv[i]
		xk = img_E_denoise[i]
		zk = zk.astype(np.uint8)
		xk = xk.astype(np.uint8)

		cv2.imwrite('/home/xiu/workspace/dwgan/suo/z5-{}.png'.format(i),zk)
		cv2.imwrite('/home/xiu/workspace/dwgan/suo/x5-{}.png'.format(i),xk)
		print(i)