def test_calculation_Baker_Jayaram(self):

        DATA_FILE = data / 'GENERIC_GMPE_AVGSA_MEAN_STD_TOTAL_BAKER_JAYARAM.csv'

        # Initialise meta-GMPE
        mgmpe = gsim.mgmpe.generic_gmpe_avgsa.GenericGmpeAvgSA(
            gmpe_name='BooreAtkinson2008',
            avg_periods=[0.05, 0.15, 1.0, 2.0, 4.0],
            corr_func='baker_jayaram')

        ctx = RuptureContext()
        ctx.sids = [0]
        P = imt.AvgSA
        S = [const.StdDev.TOTAL]

        with open(DATA_FILE, 'r') as f:

            # Skip header
            for i in [1, 2, 3]:
                f.readline()

            for line in f:
                arr = np.float_(line.strip().split(','))

                # Setting ground motion attributes
                ctx.mag = arr[0]
                ctx.rjb = np.array([arr[1]])
                ctx.rake = arr[2]
                ctx.hypo_depth = arr[3]
                ctx.vs30 = np.array([arr[4]])

                # Compute ground motion
                mean, stdv = mgmpe.get_mean_and_stddevs(ctx, ctx, ctx, P, S)
                np.testing.assert_almost_equal(mean, arr[6])
                np.testing.assert_almost_equal(stdv, arr[7])
Ejemplo n.º 2
0
def _prepare_ctxs(rupdata, cmaker, sitecol):
    ctxs = []
    for u in range(len(rupdata['mag'])):
        ctx = RuptureContext()
        for par in rupdata:
            if not par.endswith('_'):
                setattr(ctx, par, rupdata[par][u])
            else:  # site-dependent parameter
                setattr(ctx, par[:-1], rupdata[par][u])
        for par in cmaker.REQUIRES_SITES_PARAMETERS:
            setattr(ctx, par, sitecol[par])
        ctx.sids = sitecol.sids
        ctxs.append(ctx)
    return ctxs
Ejemplo n.º 3
0
 def test_make_pmap(self):
     trunclevel = 3
     imtls = DictArray({'PGA': [0.01]})
     gsims = [valid.gsim('AkkarBommer2010')]
     ctxs = []
     for occ_rate in (.001, .002):
         ctx = RuptureContext()
         ctx.mag = 5.5
         ctx.rake = 90
         ctx.occurrence_rate = occ_rate
         ctx.sids = numpy.array([0.])
         ctx.vs30 = numpy.array([760.])
         ctx.rrup = numpy.array([100.])
         ctx.rjb = numpy.array([99.])
         ctxs.append(ctx)
     pmap = make_pmap(ctxs, gsims, imtls, trunclevel, 50.)
     numpy.testing.assert_almost_equal(pmap[0].array, 0.066381)
Ejemplo n.º 4
0
 def test_get_pmap(self):
     truncation_level = 3
     imtls = DictArray({'PGA': [0.01]})
     gsims = [valid.gsim('AkkarBommer2010')]
     ctxs = []
     for occ_rate in (.001, .002):
         ctx = RuptureContext()
         ctx.mag = 5.5
         ctx.rake = 90
         ctx.occurrence_rate = occ_rate
         ctx.sids = numpy.array([0.])
         ctx.vs30 = numpy.array([760.])
         ctx.rrup = numpy.array([100.])
         ctx.rjb = numpy.array([99.])
         ctxs.append(ctx)
     cmaker = ContextMaker(
         'TRT', gsims, dict(imtls=imtls, truncation_level=truncation_level))
     cmaker.tom = PoissonTOM(time_span=50)
     pmap = cmaker.get_pmap(ctxs)
     numpy.testing.assert_almost_equal(pmap[0].array, 0.066381)
Ejemplo n.º 5
0
 def _get_stds(self, within_absolute=None, between_absolute=None):
     if within_absolute is not None:
         gmm = SplitSigmaGMPE(gmpe_name='Campbell2003',
                              within_absolute=within_absolute)
     elif between_absolute is not None:
         gmm = SplitSigmaGMPE(gmpe_name='Campbell2003',
                              between_absolute=between_absolute)
     else:
         raise ValueError('Unknown option')
     # Set parameters
     ctx = RuptureContext()
     ctx.mag = 6.0
     ctx.sids = [0, 1, 2, 3]
     ctx.vs30 = [760.] * 4
     ctx.rrup = np.array([1., 10., 30., 70.])
     ctx.occurrence_rate = .0001
     imt = PGA()
     stds_types = [const.StdDev.TOTAL, const.StdDev.INTER_EVENT,
                   const.StdDev.INTRA_EVENT]
     # Compute results
     mean, stds = gmm.get_mean_and_stddevs(ctx, ctx, ctx, imt, stds_types)
     return stds, stds_types