Ejemplo n.º 1
0
    def test_calculation_addition_args(self):
        avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0]
        gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2019SERA",
                               avg_periods=avg_periods,
                               corr_func="akkar",
                               sigma_mu_epsilon=1.0)

        rctx = RuptureContext()
        rctx.mag = 6.
        rctx.hypo_depth = 15.
        dctx = DistancesContext()
        dctx.rjb = np.array([1., 10., 30., 70.])

        sctx = SitesContext()
        sctx.vs30 = 500.0 * np.ones(4)
        sctx.vs30measured = np.ones(4, dtype="bool")
        stdt = [const.StdDev.TOTAL]
        expected_mean = np.array(
            [-1.45586338, -1.94419233, -2.91884965, -3.91919928])
        expected_stddev = np.array(
            [0.58317566, 0.58317566, 0.58317566, 0.58317566])
        imtype = imt.AvgSA()
        mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype,
                                                  stdt)
        np.testing.assert_almost_equal(mean, expected_mean)
        np.testing.assert_almost_equal(stddev, expected_stddev)
Ejemplo n.º 2
0
    def test_calculation_addition_args(self):
        avg_periods = [0.05, 0.15, 1.0, 2.0, 4.0]
        gmm = GenericGmpeAvgSA(gmpe_name="KothaEtAl2020ESHM20",
                               avg_periods=avg_periods,
                               corr_func="akkar",
                               sigma_mu_epsilon=1.0)

        rctx = RuptureContext()
        rctx.mag = 6.
        rctx.hypo_depth = 15.
        dctx = DistancesContext()
        dctx.rjb = np.array([1., 10., 30., 70.])

        sctx = SitesContext()
        sctx.vs30 = 500.0 * np.ones(4)
        sctx.vs30measured = np.ones(4, dtype="bool")
        sctx.region = np.zeros(4, dtype=int)
        stdt = [const.StdDev.TOTAL]
        expected_mean = np.array(
            [-1.72305707, -2.2178751, -3.20100306, -4.19948242])
        expected_stddev = np.array(
            [0.5532021, 0.5532021, 0.5532021, 0.5532021])
        imtype = imt.AvgSA()
        mean, [stddev] = gmm.get_mean_and_stddevs(sctx, rctx, dctx, imtype,
                                                  stdt)
        np.testing.assert_almost_equal(mean, expected_mean)
        np.testing.assert_almost_equal(stddev, expected_stddev)
    def test_calculation_Baker_Jayaram(self):

        DATA_FILE = data / 'GENERIC_GMPE_AVGSA_MEAN_STD_TOTAL_BAKER_JAYARAM.csv'

        # Initialise meta-GMPE
        mgmpe = gsim.mgmpe.generic_gmpe_avgsa.GenericGmpeAvgSA(
            gmpe_name='BooreAtkinson2008',
            avg_periods=[0.05, 0.15, 1.0, 2.0, 4.0],
            corr_func='baker_jayaram')

        ctx = RuptureContext()
        ctx.sids = [0]
        P = imt.AvgSA
        S = [const.StdDev.TOTAL]

        with open(DATA_FILE, 'r') as f:

            # Skip header
            for i in [1, 2, 3]:
                f.readline()

            for line in f:
                arr = np.float_(line.strip().split(','))

                # Setting ground motion attributes
                ctx.mag = arr[0]
                ctx.rjb = np.array([arr[1]])
                ctx.rake = arr[2]
                ctx.hypo_depth = arr[3]
                ctx.vs30 = np.array([arr[4]])

                # Compute ground motion
                mean, stdv = mgmpe.get_mean_and_stddevs(ctx, ctx, ctx, P, S)
                np.testing.assert_almost_equal(mean, arr[6])
                np.testing.assert_almost_equal(stdv, arr[7])