Ejemplo n.º 1
0
    def floor_div_replacement(floor_div: Node):
        graph = floor_div.graph
        name = floor_div.soft_get('name', floor_div.id)

        div = Div(graph, {'name': name + '/Div'}).create_node()
        floor = Floor(graph, {'name': name}).create_node()
        div.out_port(0).connect(floor.in_port(0))

        div.in_port(0).connect(floor_div.in_port(0).get_source())
        div.in_port(1).connect(floor_div.in_port(1).get_source())
        floor_div.out_port(0).get_connection().set_source(floor.out_port(0))

        graph.remove_node(floor_div.id)
        rename_node(floor, name)
Ejemplo n.º 2
0
    def replace_sub_graph(self, graph: Graph, match: dict):
        div_sqrt = match['op']
        div_sqrt_name = div_sqrt.soft_get('name', div_sqrt.id)
        shape_node = Shape(graph,
                           dict(name=div_sqrt_name + '/Shape')).create_node()
        data_out_port = div_sqrt.in_port(0).get_source()
        shape_node.in_port(0).connect(data_out_port)

        shape_values_node = node_to_get_shape_value_of_indices(
            shape_node=shape_node, indices=[-1])

        pow_node = AttributedPower(
            graph, dict(name=div_sqrt_name + '/Sqrt',
                        power=mo_array(0.5))).create_node()

        # Due to specification, Power must have inputs with the same data type.
        convert_pow_input = Cast(
            graph,
            dict(dst_type=np.float32,
                 name=shape_values_node.name +
                 '/ConvertToFP32')).create_node()
        div_node = Div(graph, dict(name="Div")).create_node()

        shape_values_node.out_port(0).connect(convert_pow_input.in_port(0))
        convert_pow_input.out_port(0).connect(pow_node.in_port(0))
        div_sqrt.in_port(0).get_connection().set_destination(
            div_node.in_port(0))
        div_node.in_port(1).connect(pow_node.out_port(0))
        div_sqrt.out_port(0).get_connection().set_source(div_node.out_port(0))

        rename_nodes([(div_sqrt, div_sqrt_name + '/ShouldBeDeleted'),
                      (div_node, div_sqrt_name)])
Ejemplo n.º 3
0
def replace_tf_resize(graph: Graph, resize: Node, interpolation_mode: str):
    resize_name = resize.soft_get('name', resize.id)
    log.debug(
        "Converting of {} to Interpolate-4 is triggered for node {}.".format(
            resize.op, resize_name))

    num_of_inputs = len([
        port for port in resize.in_ports().values() if not port.disconnected()
    ])
    assert num_of_inputs == 2, \
        "Number of inputs of {} (with name {}) should be equal to 2".format(resize.op, resize_name)

    attrs_msg = "If half_pixel_centers attribute of the node {} with op {} is True, " \
                "the attribute align_corners must be False"
    assert not resize.half_pixel_centers or (resize.half_pixel_centers and not resize.align_corners), \
        attrs_msg.format(resize_name, resize.op)

    shape = Shape(graph, {'name': resize_name + '/shapeof'}).create_node()

    ss = create_op_with_const_inputs(graph, StridedSlice, {
        1: int64_array([1]),
        2: int64_array([3]),
        3: int64_array([1])
    }, {
        'name': resize_name + '/StridedSlice',
        'begin_mask': int64_array([1]),
        'end_mask': int64_array([1]),
        'new_axis_mask': int64_array([0]),
        'shrink_axis_mask': int64_array([0]),
        'ellipsis_mask': int64_array([0])
    })

    div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()

    shape_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
    size_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()

    size_to_float.out_port(0).connect(div_node.in_port(0))
    shape_to_float.out_port(0).connect(div_node.in_port(1))
    ss.out_port(0).connect(shape_to_float.in_port(0))
    shape.out_port(0).connect(ss.in_port(0))

    align_corners = resize.align_corners
    half_pixel_centers = resize.half_pixel_centers

    nearest_mode = 'floor' if interpolation_mode == 'nearest' else 'round_prefer_floor'
    if align_corners:
        coordinate_transformation_mode = 'align_corners'
        if interpolation_mode == 'nearest':
            nearest_mode = 'round_prefer_ceil'
    elif half_pixel_centers:
        coordinate_transformation_mode = 'tf_half_pixel_for_nn' if interpolation_mode == 'nearest' else 'half_pixel'
    else:
        coordinate_transformation_mode = 'asymmetric'

    interpolate4 = create_op_with_const_inputs(
        graph, Interpolate, {3: int64_array([1, 2])}, {
            'name': resize_name + '/interpolate_4',
            'mode': interpolation_mode,
            'antialias': False,
            'coordinate_transformation_mode': coordinate_transformation_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'nearest_mode': nearest_mode,
            'cube_coeff': -0.75,
            'shape_calculation_mode': 'sizes',
            'version': 'opset4',
            'in_ports_count': 4,
        })

    resize_input_connection = resize.in_port(0).get_connection()
    resize_input_connection.set_destination(interpolate4.in_port(0))
    resize_input_connection.get_source().connect(shape.in_port(0))

    div_node.out_port(0).connect(interpolate4.in_port(2))

    sizes_connection = resize.in_port(1).get_connection()
    sizes_connection.set_destination(interpolate4.in_port(1))
    sizes_connection.get_source().connect(size_to_float.in_port(0))

    resize.out_port(0).get_connection().set_source(interpolate4.out_port(0))
    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate4, resize_name)])
    def find_and_replace_pattern(self, graph: Graph):
        for embedding_segments_mean in graph.get_op_nodes(
                op='EmbeddingSegmentsMean'):
            embedding_segments_mean_name = embedding_segments_mean.soft_get(
                'name', embedding_segments_mean.id)
            embedding_table_input = embedding_segments_mean.in_port(0)
            segment_ids_input = embedding_segments_mean.in_port(2)
            num_segments_input = embedding_segments_mean.in_port(3)

            # TODO: support EmbeddingSegmentsMean with specified weights vector.
            # now this case has not appeared in models so far so EmbeddingSegmentsOperation fusion
            # transformations do not handle it either
            if embedding_segments_mean.is_in_port_connected(5):
                return

            # 1. compute indices membership matrix, i.e. which indices belong to some object
            # the shape of this matrix is [num_segments, num_indices]
            non_norm_range_1_to_num_segments = create_op_with_const_inputs(
                graph, Range, {
                    0: int64_array(0),
                    2: int64_array(1)
                }, {
                    'name':
                    embedding_segments_mean_name + '/Range1ToNumSegments',
                    'output_type': np.int64
                })
            num_segments_input.get_connection().add_destination(
                non_norm_range_1_to_num_segments.in_port(1))

            range_1_to_num_segments = ConvertLike(graph, {
                'name':
                embedding_segments_mean_name + '/Range1ToNumSegmentsNorm'
            }).create_node()
            range_1_to_num_segments.in_port(0).connect(
                non_norm_range_1_to_num_segments.out_port(0))
            num_segments_input.get_connection().add_destination(
                range_1_to_num_segments.in_port(1))

            unsqueeze_range_1_to_num_segments = create_op_with_const_inputs(
                graph, Unsqueeze, {1: int64_array(1)}, {
                    'name':
                    embedding_segments_mean_name +
                    '/Range1ToNumSegmentsUnsqueeze'
                })
            unsqueeze_range_1_to_num_segments.in_port(0).connect(
                range_1_to_num_segments.out_port(0))
            unsqueeze_segment_ids = create_op_with_const_inputs(
                graph, Unsqueeze, {1: int64_array(0)}, {
                    'name':
                    embedding_segments_mean_name + '/SegmentIdsUnsqueeze'
                })
            segment_ids_input.get_connection().add_destination(
                unsqueeze_segment_ids.in_port(0))
            boolean_membership_matrix = Equal(graph, {
                'name':
                embedding_segments_mean_name + '/BooleanMembershipMatrix'
            }).create_node()
            boolean_membership_matrix.in_port(0).connect(
                unsqueeze_range_1_to_num_segments.out_port(0))
            boolean_membership_matrix.in_port(1).connect(
                unsqueeze_segment_ids.out_port(0))
            shape_of_membership_matrix = Shape(graph, {
                'name':
                embedding_segments_mean_name + '/ShapeOfMembershipMatrix'
            }).create_node([boolean_membership_matrix])
            one_scalar_constant = Const(
                graph, {
                    'name': embedding_segments_mean_name + '/OneScalar',
                    'value': int64_array([1])
                }).create_node()
            one_constant = Broadcast(graph, {
                'name':
                embedding_segments_mean_name + '/One'
            }).create_node([one_scalar_constant, shape_of_membership_matrix])
            zero_constant = Const(
                graph, {
                    'name': embedding_segments_mean_name + '/Zero',
                    'value': int64_array(0)
                }).create_node()
            membership_matrix = Select(
                graph, {
                    'name': embedding_segments_mean_name + '/MembershipMatrix',
                    'auto_broadcast': 'numpy'
                }).create_node(
                    [boolean_membership_matrix, one_constant, zero_constant])

            # 2. compute a number of indices belong to each object from the batch
            # it computes the normalization coefficients
            num_indices_per_object = create_op_with_const_inputs(
                graph, ReduceSum, {1: int64_array(1)}, {
                    'name':
                    embedding_segments_mean_name + '/NumIndicesPerObject'
                })
            num_indices_per_object.in_port(0).connect(
                membership_matrix.out_port(0))

            # 3. replace zero coefficient (zero number of indices belong to an object) with one
            # because for such object the single default embedding vector is used
            where_zero_number = Equal(graph, {
                'name':
                embedding_segments_mean_name + '/WhereZeroIndicesNumber'
            }).create_node([num_indices_per_object, zero_constant])
            normalized_num_indices_per_object = Select(
                graph, {
                    'name':
                    embedding_segments_mean_name + '/NormNumIndicesPerObject',
                    'auto_broadcast': 'numpy'
                }).create_node([
                    where_zero_number, one_scalar_constant,
                    num_indices_per_object
                ])

            # 4. cast normalized_num_indices_per_object to the same type as embedding vector table
            norm_coefficients = ConvertLike(
                graph, {
                    'name': embedding_segments_mean_name + '/NormCoefficients'
                }).create_node()
            norm_coefficients.in_port(0).connect(
                normalized_num_indices_per_object.out_port(0))
            embedding_table_input.get_connection().add_destination(
                norm_coefficients.in_port(1))

            # 5. replace EmbeddingSegmentMean with EmbeddingSegmentSum
            embedding_segments_sum = EmbeddingSegmentsSum(
                graph, {
                    'name':
                    embedding_segments_mean_name + '/EmbeddingSegmentsSum'
                }).create_node()
            for in_port in embedding_segments_mean.in_ports():
                if embedding_segments_mean.is_in_port_connected(in_port):
                    embedding_segments_mean.in_port(
                        in_port).get_connection().set_destination(
                            embedding_segments_sum.in_port(in_port))

            # 6. normalize EmbeddingSegmentSum results by computed coefficients
            result_node = Div(graph, {
                'name': embedding_segments_mean_name + '/Div'
            }).create_node([embedding_segments_sum, norm_coefficients])
            embedding_segments_mean.out_port(0).get_connection().set_source(
                result_node.out_port(0))

            rename_nodes([(embedding_segments_mean,
                           embedding_segments_mean_name + '/AbandonedName'),
                          (result_node, embedding_segments_mean_name)])
            graph.remove_nodes_from([embedding_segments_mean.id])
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-11 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    input_shape = resize.in_port(0).data.get_shape()
    input_rank = len(input_shape)
    resize_name = resize.soft_get('name', resize.id)
    if input_rank not in {4, 5}:
        log.warning(
            'The input shape is not 4D or 5D for op with name {}'.format(
                resize_name))
        return

    assert (resize.is_in_port_connected(0) and (resize.is_in_port_connected(2) or resize.is_in_port_connected(3))), \
        "Scales or sizes inputs must be connected to Node {} with op {}.".format(resize.soft_get("name", resize.id),
                                                                                 resize.op)

    assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \
        'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op,
                                                                                 resize.soft_get("name", resize.id))

    layout = graph.graph['layout']

    if input_rank == 4:
        begin_dim = get_height_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1
    else:
        begin_dim = get_depth_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1

    sizes_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_sizes',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_scales',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    axes_node = Const(
        graph, {
            'name': resize_name + '/axis',
            'value': int64_array(np.arange(begin_dim, end_dim))
        }).create_node()

    shape_calculation_mode = 'sizes' if resize.is_in_port_connected(
        3) else 'scales'

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': convert_mode(resize.mode),
            'coordinate_transformation_mode':
            resize.coordinate_transformation_mode,
            'cube_coeff': resize.cube_coeff,
            'nearest_mode': resize.nearest_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': shape_calculation_mode,
            'in_ports_count': 4
        }).create_node()

    axes_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    dst_dtype = np.float32  # even if data_type=FP16 use float32 for shape values

    if not resize.is_in_port_connected(3):
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node()
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))
        cast_add_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()
        floor_node = Floor(graph, {
            'name': resize_name + '/Floor'
        }).create_node()
        mul_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0))
        cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_scales = resize.in_port(2).get_connection()
        connection_of_scales.set_destination(scales_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_scales.get_source().connect(mul_node.in_port(1))
    else:
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        cast_sizes_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()
        cast_sizes_to_float.out_port(0).connect(div_node.in_port(0))
        cast_shape_to_float.out_port(0).connect(div_node.in_port(1))
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        div_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(scales_ss.in_port(0))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_sizes = resize.in_port(3).get_connection()
        connection_of_sizes.set_destination(sizes_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_sizes.get_source().connect(
            cast_sizes_to_float.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
Ejemplo n.º 6
0
    def dequantize_data(fake_quantize: Node, dst_type: type,
                        quantized_type: type) -> Node:
        graph = fake_quantize.graph
        quantized_data = fake_quantize.in_port(0).get_source().node
        name = fake_quantize.soft_get('name', fake_quantize.id)

        assert quantized_data.soft_get('type') == 'Convert' and quantized_data.dst_type == quantized_type, \
            'Weights aren`t compressed as expected for node {}'.format(fake_quantize.soft_get('name', fake_quantize.id))

        dequantizing_cast = Cast(
            graph,
            dict(name=quantized_data.name +
                 "/to_{}".format(np_data_type_to_destination_type(dst_type)),
                 dst_type=dst_type,
                 stop_value_propagation=True)).create_node()
        fake_quantize.in_port(0).get_connection().set_destination(
            dequantizing_cast.in_port(0))

        # limits of dequantize
        in_low = fake_quantize.in_port(1).get_source()
        in_high = fake_quantize.in_port(2).get_source()
        out_low = fake_quantize.in_port(3).get_source()
        out_high = fake_quantize.in_port(4).get_source()

        # scale calculation
        output_range = Sub(graph, {
            'name': name + '/output_range'
        }).create_node()
        output_range.in_port(0).connect(out_high)
        output_range.in_port(1).connect(out_low)

        input_range = Sub(graph, {'name': name + '/input_range'}).create_node()
        input_range.in_port(0).connect(in_high)
        input_range.in_port(1).connect(in_low)

        scale = Div(graph, {'name': name + '/scale'}).create_node()
        scale.in_port(0).connect(output_range.out_port(0))
        scale.in_port(1).connect(input_range.out_port(0))

        # shift calculation
        descaled_output_low = Div(graph, {
            'name': name + '/descaled_output_low'
        }).create_node()
        descaled_output_low.in_port(0).connect(out_low)
        descaled_output_low.in_port(1).connect(scale.out_port(0))

        shift = Sub(graph, {'name': name + '/shift'}).create_node()
        shift.in_port(0).connect(in_low)
        shift.in_port(1).connect(descaled_output_low.out_port(0))

        zero = Const(graph, {
            'name': name + '/zero',
            'value': mo_array(0, dtype=dst_type)
        }).create_node()
        scale_eq_zero = Equal(graph, {
            'name': name + '/scale_eq_zero'
        }).create_node()
        scale_eq_zero.in_port(0).connect(scale.out_port(0))
        scale_eq_zero.in_port(1).connect(zero.out_port(0))

        zero_point = Select(graph, {
            'name': name + '/zero_point'
        }).create_node()
        zero_point.in_port(0).connect(scale_eq_zero.out_port(0))
        zero_point.in_port(1).connect(zero.out_port(0))
        zero_point.in_port(2).connect(shift.out_port(0))

        # DeQuantize(x) == Mul(Sub(x, zero_point), scale)
        sub_zp = Sub(graph, {'name': name + '/minus_zp'}).create_node()
        sub_zp.in_port(0).connect(dequantizing_cast.out_port(0))
        sub_zp.in_port(1).connect(zero_point.out_port(0))

        mul_scale = Mul(graph, {
            'name': name + '/mulpiply_by_scale'
        }).create_node()
        mul_scale.in_port(0).connect(sub_zp.out_port(0))
        mul_scale.in_port(1).connect(scale.out_port(0))

        fake_quantize.out_port(0).get_connection().set_source(
            mul_scale.out_port(0))

        graph.remove_nodes_from([fake_quantize.id, fake_quantize.out_node(0)])