def floor_div_replacement(floor_div: Node): graph = floor_div.graph name = floor_div.soft_get('name', floor_div.id) div = Div(graph, {'name': name + '/Div'}).create_node() floor = Floor(graph, {'name': name}).create_node() div.out_port(0).connect(floor.in_port(0)) div.in_port(0).connect(floor_div.in_port(0).get_source()) div.in_port(1).connect(floor_div.in_port(1).get_source()) floor_div.out_port(0).get_connection().set_source(floor.out_port(0)) graph.remove_node(floor_div.id) rename_node(floor, name)
def replace_sub_graph(self, graph: Graph, match: dict): div_sqrt = match['op'] div_sqrt_name = div_sqrt.soft_get('name', div_sqrt.id) shape_node = Shape(graph, dict(name=div_sqrt_name + '/Shape')).create_node() data_out_port = div_sqrt.in_port(0).get_source() shape_node.in_port(0).connect(data_out_port) shape_values_node = node_to_get_shape_value_of_indices( shape_node=shape_node, indices=[-1]) pow_node = AttributedPower( graph, dict(name=div_sqrt_name + '/Sqrt', power=mo_array(0.5))).create_node() # Due to specification, Power must have inputs with the same data type. convert_pow_input = Cast( graph, dict(dst_type=np.float32, name=shape_values_node.name + '/ConvertToFP32')).create_node() div_node = Div(graph, dict(name="Div")).create_node() shape_values_node.out_port(0).connect(convert_pow_input.in_port(0)) convert_pow_input.out_port(0).connect(pow_node.in_port(0)) div_sqrt.in_port(0).get_connection().set_destination( div_node.in_port(0)) div_node.in_port(1).connect(pow_node.out_port(0)) div_sqrt.out_port(0).get_connection().set_source(div_node.out_port(0)) rename_nodes([(div_sqrt, div_sqrt_name + '/ShouldBeDeleted'), (div_node, div_sqrt_name)])
def replace_tf_resize(graph: Graph, resize: Node, interpolation_mode: str): resize_name = resize.soft_get('name', resize.id) log.debug( "Converting of {} to Interpolate-4 is triggered for node {}.".format( resize.op, resize_name)) num_of_inputs = len([ port for port in resize.in_ports().values() if not port.disconnected() ]) assert num_of_inputs == 2, \ "Number of inputs of {} (with name {}) should be equal to 2".format(resize.op, resize_name) attrs_msg = "If half_pixel_centers attribute of the node {} with op {} is True, " \ "the attribute align_corners must be False" assert not resize.half_pixel_centers or (resize.half_pixel_centers and not resize.align_corners), \ attrs_msg.format(resize_name, resize.op) shape = Shape(graph, {'name': resize_name + '/shapeof'}).create_node() ss = create_op_with_const_inputs(graph, StridedSlice, { 1: int64_array([1]), 2: int64_array([3]), 3: int64_array([1]) }, { 'name': resize_name + '/StridedSlice', 'begin_mask': int64_array([1]), 'end_mask': int64_array([1]), 'new_axis_mask': int64_array([0]), 'shrink_axis_mask': int64_array([0]), 'ellipsis_mask': int64_array([0]) }) div_node = Div(graph, {'name': resize_name + '/Div'}).create_node() shape_to_float = Cast(graph, dict(dst_type=np.float32)).create_node() size_to_float = Cast(graph, dict(dst_type=np.float32)).create_node() size_to_float.out_port(0).connect(div_node.in_port(0)) shape_to_float.out_port(0).connect(div_node.in_port(1)) ss.out_port(0).connect(shape_to_float.in_port(0)) shape.out_port(0).connect(ss.in_port(0)) align_corners = resize.align_corners half_pixel_centers = resize.half_pixel_centers nearest_mode = 'floor' if interpolation_mode == 'nearest' else 'round_prefer_floor' if align_corners: coordinate_transformation_mode = 'align_corners' if interpolation_mode == 'nearest': nearest_mode = 'round_prefer_ceil' elif half_pixel_centers: coordinate_transformation_mode = 'tf_half_pixel_for_nn' if interpolation_mode == 'nearest' else 'half_pixel' else: coordinate_transformation_mode = 'asymmetric' interpolate4 = create_op_with_const_inputs( graph, Interpolate, {3: int64_array([1, 2])}, { 'name': resize_name + '/interpolate_4', 'mode': interpolation_mode, 'antialias': False, 'coordinate_transformation_mode': coordinate_transformation_mode, 'pads_begin': int64_array([0]), 'pads_end': int64_array([0]), 'nearest_mode': nearest_mode, 'cube_coeff': -0.75, 'shape_calculation_mode': 'sizes', 'version': 'opset4', 'in_ports_count': 4, }) resize_input_connection = resize.in_port(0).get_connection() resize_input_connection.set_destination(interpolate4.in_port(0)) resize_input_connection.get_source().connect(shape.in_port(0)) div_node.out_port(0).connect(interpolate4.in_port(2)) sizes_connection = resize.in_port(1).get_connection() sizes_connection.set_destination(interpolate4.in_port(1)) sizes_connection.get_source().connect(size_to_float.in_port(0)) resize.out_port(0).get_connection().set_source(interpolate4.out_port(0)) rename_nodes([(resize, resize_name + '/delete'), (interpolate4, resize_name)])
def find_and_replace_pattern(self, graph: Graph): for embedding_segments_mean in graph.get_op_nodes( op='EmbeddingSegmentsMean'): embedding_segments_mean_name = embedding_segments_mean.soft_get( 'name', embedding_segments_mean.id) embedding_table_input = embedding_segments_mean.in_port(0) segment_ids_input = embedding_segments_mean.in_port(2) num_segments_input = embedding_segments_mean.in_port(3) # TODO: support EmbeddingSegmentsMean with specified weights vector. # now this case has not appeared in models so far so EmbeddingSegmentsOperation fusion # transformations do not handle it either if embedding_segments_mean.is_in_port_connected(5): return # 1. compute indices membership matrix, i.e. which indices belong to some object # the shape of this matrix is [num_segments, num_indices] non_norm_range_1_to_num_segments = create_op_with_const_inputs( graph, Range, { 0: int64_array(0), 2: int64_array(1) }, { 'name': embedding_segments_mean_name + '/Range1ToNumSegments', 'output_type': np.int64 }) num_segments_input.get_connection().add_destination( non_norm_range_1_to_num_segments.in_port(1)) range_1_to_num_segments = ConvertLike(graph, { 'name': embedding_segments_mean_name + '/Range1ToNumSegmentsNorm' }).create_node() range_1_to_num_segments.in_port(0).connect( non_norm_range_1_to_num_segments.out_port(0)) num_segments_input.get_connection().add_destination( range_1_to_num_segments.in_port(1)) unsqueeze_range_1_to_num_segments = create_op_with_const_inputs( graph, Unsqueeze, {1: int64_array(1)}, { 'name': embedding_segments_mean_name + '/Range1ToNumSegmentsUnsqueeze' }) unsqueeze_range_1_to_num_segments.in_port(0).connect( range_1_to_num_segments.out_port(0)) unsqueeze_segment_ids = create_op_with_const_inputs( graph, Unsqueeze, {1: int64_array(0)}, { 'name': embedding_segments_mean_name + '/SegmentIdsUnsqueeze' }) segment_ids_input.get_connection().add_destination( unsqueeze_segment_ids.in_port(0)) boolean_membership_matrix = Equal(graph, { 'name': embedding_segments_mean_name + '/BooleanMembershipMatrix' }).create_node() boolean_membership_matrix.in_port(0).connect( unsqueeze_range_1_to_num_segments.out_port(0)) boolean_membership_matrix.in_port(1).connect( unsqueeze_segment_ids.out_port(0)) shape_of_membership_matrix = Shape(graph, { 'name': embedding_segments_mean_name + '/ShapeOfMembershipMatrix' }).create_node([boolean_membership_matrix]) one_scalar_constant = Const( graph, { 'name': embedding_segments_mean_name + '/OneScalar', 'value': int64_array([1]) }).create_node() one_constant = Broadcast(graph, { 'name': embedding_segments_mean_name + '/One' }).create_node([one_scalar_constant, shape_of_membership_matrix]) zero_constant = Const( graph, { 'name': embedding_segments_mean_name + '/Zero', 'value': int64_array(0) }).create_node() membership_matrix = Select( graph, { 'name': embedding_segments_mean_name + '/MembershipMatrix', 'auto_broadcast': 'numpy' }).create_node( [boolean_membership_matrix, one_constant, zero_constant]) # 2. compute a number of indices belong to each object from the batch # it computes the normalization coefficients num_indices_per_object = create_op_with_const_inputs( graph, ReduceSum, {1: int64_array(1)}, { 'name': embedding_segments_mean_name + '/NumIndicesPerObject' }) num_indices_per_object.in_port(0).connect( membership_matrix.out_port(0)) # 3. replace zero coefficient (zero number of indices belong to an object) with one # because for such object the single default embedding vector is used where_zero_number = Equal(graph, { 'name': embedding_segments_mean_name + '/WhereZeroIndicesNumber' }).create_node([num_indices_per_object, zero_constant]) normalized_num_indices_per_object = Select( graph, { 'name': embedding_segments_mean_name + '/NormNumIndicesPerObject', 'auto_broadcast': 'numpy' }).create_node([ where_zero_number, one_scalar_constant, num_indices_per_object ]) # 4. cast normalized_num_indices_per_object to the same type as embedding vector table norm_coefficients = ConvertLike( graph, { 'name': embedding_segments_mean_name + '/NormCoefficients' }).create_node() norm_coefficients.in_port(0).connect( normalized_num_indices_per_object.out_port(0)) embedding_table_input.get_connection().add_destination( norm_coefficients.in_port(1)) # 5. replace EmbeddingSegmentMean with EmbeddingSegmentSum embedding_segments_sum = EmbeddingSegmentsSum( graph, { 'name': embedding_segments_mean_name + '/EmbeddingSegmentsSum' }).create_node() for in_port in embedding_segments_mean.in_ports(): if embedding_segments_mean.is_in_port_connected(in_port): embedding_segments_mean.in_port( in_port).get_connection().set_destination( embedding_segments_sum.in_port(in_port)) # 6. normalize EmbeddingSegmentSum results by computed coefficients result_node = Div(graph, { 'name': embedding_segments_mean_name + '/Div' }).create_node([embedding_segments_sum, norm_coefficients]) embedding_segments_mean.out_port(0).get_connection().set_source( result_node.out_port(0)) rename_nodes([(embedding_segments_mean, embedding_segments_mean_name + '/AbandonedName'), (result_node, embedding_segments_mean_name)]) graph.remove_nodes_from([embedding_segments_mean.id])
def replace_resize(graph: Graph, resize: Node): log.debug("Converting of ONNX Resize-11 to Interpolate-4 " "is triggered for node {}.".format( resize.soft_get('name', resize.id))) input_shape = resize.in_port(0).data.get_shape() input_rank = len(input_shape) resize_name = resize.soft_get('name', resize.id) if input_rank not in {4, 5}: log.warning( 'The input shape is not 4D or 5D for op with name {}'.format( resize_name)) return assert (resize.is_in_port_connected(0) and (resize.is_in_port_connected(2) or resize.is_in_port_connected(3))), \ "Scales or sizes inputs must be connected to Node {} with op {}.".format(resize.soft_get("name", resize.id), resize.op) assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \ 'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op, resize.soft_get("name", resize.id)) layout = graph.graph['layout'] if input_rank == 4: begin_dim = get_height_dim(layout, input_rank) end_dim = get_width_dim(layout, input_rank) + 1 else: begin_dim = get_depth_dim(layout, input_rank) end_dim = get_width_dim(layout, input_rank) + 1 sizes_ss = create_op_with_const_inputs( graph, StridedSlice, { 1: int64_array([begin_dim]), 2: int64_array([end_dim]), 3: int64_array([1]) }, { 'name': resize_name + '/StridedSlice_sizes', 'begin_mask': int64_array([1]), 'end_mask': int64_array([1]), 'new_axis_mask': int64_array([0]), 'shrink_axis_mask': int64_array([0]), 'ellipsis_mask': int64_array([0]) }) scales_ss = create_op_with_const_inputs( graph, StridedSlice, { 1: int64_array([begin_dim]), 2: int64_array([end_dim]), 3: int64_array([1]) }, { 'name': resize_name + '/StridedSlice_scales', 'begin_mask': int64_array([1]), 'end_mask': int64_array([1]), 'new_axis_mask': int64_array([0]), 'shrink_axis_mask': int64_array([0]), 'ellipsis_mask': int64_array([0]) }) axes_node = Const( graph, { 'name': resize_name + '/axis', 'value': int64_array(np.arange(begin_dim, end_dim)) }).create_node() shape_calculation_mode = 'sizes' if resize.is_in_port_connected( 3) else 'scales' interpolate_node = Interpolate( graph, { 'version': 'opset4', 'mode': convert_mode(resize.mode), 'coordinate_transformation_mode': resize.coordinate_transformation_mode, 'cube_coeff': resize.cube_coeff, 'nearest_mode': resize.nearest_mode, 'pads_begin': int64_array([0]), 'pads_end': int64_array([0]), 'antialias': 0, 'shape_calculation_mode': shape_calculation_mode, 'in_ports_count': 4 }).create_node() axes_node.out_port(0).connect(interpolate_node.in_port(3)) shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node() add_node = create_op_with_const_inputs(graph, Add, {1: float_array([1.0e-5])}, {'name': resize_name + '/Add'}) dst_dtype = np.float32 # even if data_type=FP16 use float32 for shape values if not resize.is_in_port_connected(3): cast_shape_to_float = Cast(graph, { 'dst_type': dst_dtype }).create_node() mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node() shape_of.out_port(0).connect(cast_shape_to_float.in_port(0)) cast_shape_to_float.out_port(0).connect(mul_node.in_port(0)) cast_add_result_to_int = Cast(graph, { 'dst_type': np.int64 }).create_node() floor_node = Floor(graph, { 'name': resize_name + '/Floor' }).create_node() mul_node.out_port(0).connect(add_node.in_port(0)) add_node.out_port(0).connect(floor_node.in_port(0)) floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0)) cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0)) sizes_ss.out_port(0).connect(interpolate_node.in_port(1)) scales_ss.out_port(0).connect(interpolate_node.in_port(2)) connection_of_resize_input = resize.in_port(0).get_connection() connection_of_resize_input.set_destination(interpolate_node.in_port(0)) connection_of_scales = resize.in_port(2).get_connection() connection_of_scales.set_destination(scales_ss.in_port(0)) connection_of_resize_input.get_source().connect(shape_of.in_port(0)) connection_of_scales.get_source().connect(mul_node.in_port(1)) else: cast_shape_to_float = Cast(graph, { 'dst_type': dst_dtype }).create_node() cast_sizes_to_float = Cast(graph, { 'dst_type': dst_dtype }).create_node() div_node = Div(graph, {'name': resize_name + '/Div'}).create_node() cast_sizes_to_float.out_port(0).connect(div_node.in_port(0)) cast_shape_to_float.out_port(0).connect(div_node.in_port(1)) shape_of.out_port(0).connect(cast_shape_to_float.in_port(0)) div_node.out_port(0).connect(add_node.in_port(0)) add_node.out_port(0).connect(scales_ss.in_port(0)) scales_ss.out_port(0).connect(interpolate_node.in_port(2)) sizes_ss.out_port(0).connect(interpolate_node.in_port(1)) connection_of_resize_input = resize.in_port(0).get_connection() connection_of_resize_input.set_destination(interpolate_node.in_port(0)) connection_of_sizes = resize.in_port(3).get_connection() connection_of_sizes.set_destination(sizes_ss.in_port(0)) connection_of_resize_input.get_source().connect(shape_of.in_port(0)) connection_of_sizes.get_source().connect( cast_sizes_to_float.in_port(0)) rename_nodes([(resize, resize_name + '/delete'), (interpolate_node, resize_name)]) resize.out_port(0).get_connection().set_source( interpolate_node.out_port(0))
def dequantize_data(fake_quantize: Node, dst_type: type, quantized_type: type) -> Node: graph = fake_quantize.graph quantized_data = fake_quantize.in_port(0).get_source().node name = fake_quantize.soft_get('name', fake_quantize.id) assert quantized_data.soft_get('type') == 'Convert' and quantized_data.dst_type == quantized_type, \ 'Weights aren`t compressed as expected for node {}'.format(fake_quantize.soft_get('name', fake_quantize.id)) dequantizing_cast = Cast( graph, dict(name=quantized_data.name + "/to_{}".format(np_data_type_to_destination_type(dst_type)), dst_type=dst_type, stop_value_propagation=True)).create_node() fake_quantize.in_port(0).get_connection().set_destination( dequantizing_cast.in_port(0)) # limits of dequantize in_low = fake_quantize.in_port(1).get_source() in_high = fake_quantize.in_port(2).get_source() out_low = fake_quantize.in_port(3).get_source() out_high = fake_quantize.in_port(4).get_source() # scale calculation output_range = Sub(graph, { 'name': name + '/output_range' }).create_node() output_range.in_port(0).connect(out_high) output_range.in_port(1).connect(out_low) input_range = Sub(graph, {'name': name + '/input_range'}).create_node() input_range.in_port(0).connect(in_high) input_range.in_port(1).connect(in_low) scale = Div(graph, {'name': name + '/scale'}).create_node() scale.in_port(0).connect(output_range.out_port(0)) scale.in_port(1).connect(input_range.out_port(0)) # shift calculation descaled_output_low = Div(graph, { 'name': name + '/descaled_output_low' }).create_node() descaled_output_low.in_port(0).connect(out_low) descaled_output_low.in_port(1).connect(scale.out_port(0)) shift = Sub(graph, {'name': name + '/shift'}).create_node() shift.in_port(0).connect(in_low) shift.in_port(1).connect(descaled_output_low.out_port(0)) zero = Const(graph, { 'name': name + '/zero', 'value': mo_array(0, dtype=dst_type) }).create_node() scale_eq_zero = Equal(graph, { 'name': name + '/scale_eq_zero' }).create_node() scale_eq_zero.in_port(0).connect(scale.out_port(0)) scale_eq_zero.in_port(1).connect(zero.out_port(0)) zero_point = Select(graph, { 'name': name + '/zero_point' }).create_node() zero_point.in_port(0).connect(scale_eq_zero.out_port(0)) zero_point.in_port(1).connect(zero.out_port(0)) zero_point.in_port(2).connect(shift.out_port(0)) # DeQuantize(x) == Mul(Sub(x, zero_point), scale) sub_zp = Sub(graph, {'name': name + '/minus_zp'}).create_node() sub_zp.in_port(0).connect(dequantizing_cast.out_port(0)) sub_zp.in_port(1).connect(zero_point.out_port(0)) mul_scale = Mul(graph, { 'name': name + '/mulpiply_by_scale' }).create_node() mul_scale.in_port(0).connect(sub_zp.out_port(0)) mul_scale.in_port(1).connect(scale.out_port(0)) fake_quantize.out_port(0).get_connection().set_source( mul_scale.out_port(0)) graph.remove_nodes_from([fake_quantize.id, fake_quantize.out_node(0)])