Ejemplo n.º 1
0
def convert_effects(effects):
    import pddl
    new_effects = make_effects([('_noop',)]) # To ensure the action has at least one effect
    for effect in effects:
        class_name = effect.__class__.__name__
        if class_name == 'Effect':
            peffect_name = effect.peffect.__class__.__name__
            if peffect_name in ('Increase', 'Decrease'):
                # TODO: currently ignoring numeric conditions
                continue
            new_effects.append(pddl.Effect(convert_parameters(effect.parameters),
                                           pddl.Conjunction(list(map(convert_condition, effect.condition))).simplified(),
                                           convert_condition(effect.peffect)))
        else:
            raise NotImplementedError(class_name)
    return new_effects
Ejemplo n.º 2
0
def get_stream_actions(results,
                       unique_binding=False,
                       unit_efforts=True,
                       effort_scale=1):
    #from pddl_parser.parsing_functions import parse_action
    import pddl
    stream_result_from_name = {}
    stream_actions = []
    for i, result in enumerate(results):
        #if not isinstance(stream_result, StreamResult):
        if type(result) == FunctionResult:
            continue
        effort = get_instance_effort(result.instance, unit_efforts)
        if effort == INF:
            continue
        # TODO: state constraints
        # TODO: selectively negate axioms
        result_name = '{}-{}'.format(result.external.name, i)
        #result_name = '{}_{}_{}'.format(result.external.name, # No spaces & parens
        #                        ','.join(map(pddl_from_object, result.instance.input_objects)),
        #                        ','.join(map(pddl_from_object, result.output_objects)))
        assert result_name not in stream_result_from_name
        stream_result_from_name[result_name] = result

        preconditions = list(result.instance.get_domain())
        effects = list(result.get_certified())
        #if ORDER_OUTPUT:
        #    enforce_output_order(result, preconditions, effects)
        if unique_binding:
            enforce_single_binding(result, preconditions, effects)
        if is_optimizer_result(
                result):  # These effects don't seem to be pruned
            effects.append(
                substitute_expression(result.external.stream_fact,
                                      result.get_mapping()))
        parameters = []  # Usually all parameters are external
        stream_actions.append(
            pddl.Action(name=result_name,
                        parameters=parameters,
                        num_external_parameters=len(parameters),
                        precondition=make_preconditions(preconditions),
                        effects=make_effects(effects),
                        cost=make_cost(effort_scale *
                                       effort)))  # Can also be None
    return stream_actions, stream_result_from_name
Ejemplo n.º 3
0
def compile_to_exogenous_actions(evaluations, domain, streams):
    import pddl
    # TODO: automatically derive fluents
    # TODO: version of this that operates on fluents of length one?
    # TODO: better instantiation when have full parameters
    # TODO: conversion from stream cost to real cost units?
    # TODO: any predicates derived would need to be replaced as well
    fluent_predicates = get_fluents(domain)
    certified_predicates = {
        get_prefix(a)
        for s in streams for a in s.certified
    }
    future_map = {p: 'f-{}'.format(p) for p in certified_predicates}
    augment_evaluations(evaluations, future_map)
    rename_future = lambda a: rename_atom(a, future_map)
    for stream in list(streams):
        if not isinstance(stream, Stream):
            raise NotImplementedError(stream)
        # TODO: could also just have conditions asserting that one of the fluent conditions fails
        streams.append(
            create_static_stream(stream, evaluations, fluent_predicates,
                                 rename_future))
        stream_atom = streams[-1].certified[0]
        parameters = [
            pddl.TypedObject(p, OBJECT) for p in get_args(stream_atom)
        ]
        # TODO: add to predicates as well?
        domain.predicate_dict[get_prefix(stream_atom)] = pddl.Predicate(
            get_prefix(stream_atom), parameters)
        preconditions = [stream_atom] + list(stream.domain)
        effort = 1  # TODO: use stream info
        #effort = 1 if unit_cost else result.instance.get_effort()
        #if effort == INF:
        #    continue
        domain.actions.append(
            pddl.Action(name='call-{}'.format(stream.name),
                        parameters=parameters,
                        num_external_parameters=len(parameters),
                        precondition=make_preconditions(preconditions),
                        effects=make_effects(stream.certified),
                        cost=make_cost(effort)))
        stream.certified = tuple(
            set(stream.certified) | set(map(rename_future, stream.certified)))
Ejemplo n.º 4
0
def add_plan_constraints(constraints,
                         domain,
                         evaluations,
                         goal_exp,
                         internal=False):
    if (constraints is None) or (constraints.skeletons is None):
        return goal_exp
    import pddl
    # TODO: unify this with the constraint ordering
    # TODO: can constrain to use a plan prefix
    prefix = get_internal_prefix(internal)
    assigned_predicate = ASSIGNED_PREDICATE.format(prefix)
    bound_predicate = BOUND_PREDICATE.format(prefix)
    group_predicate = GROUP_PREDICATE.format(prefix)
    order_predicate = ORDER_PREDICATE.format(prefix)
    new_facts = []
    for group in constraints.groups:
        for value in constraints.groups[group]:
            # TODO: could make all constants groups (like an equality group)
            fact = (group_predicate, to_obj(group), to_obj(value))
            new_facts.append(fact)
    new_actions = []
    new_goals = []
    for num, skeleton in enumerate(constraints.skeletons):
        actions, orders = skeleton
        incoming_orders, _ = neighbors_from_orders(orders)
        order_facts = [(order_predicate, to_obj('n{}'.format(num)),
                        to_obj('t{}'.format(step)))
                       for step in range(len(actions))]
        for step, (name, args) in enumerate(actions):
            # TODO: could also just remove the free parameter from the action
            new_action = deepcopy(
                find_unique(lambda a: a.name == name, domain.actions))
            local_from_global = {
                a: p.name
                for a, p in safe_zip(args, new_action.parameters)
                if is_parameter(a)
            }

            ancestors, descendants = get_ancestors(step,
                                                   orders), get_descendants(
                                                       step, orders)
            parallel = set(range(
                len(actions))) - ancestors - descendants - {step}

            parameters = set(filter(is_parameter, args))
            ancestor_parameters = parameters & set(
                filter(is_parameter,
                       (p for idx in ancestors for p in actions[idx][1])))
            #descendant_parameters = parameters & set(filter(is_parameter, (p for idx in descendants for p in actions[idx][1])))
            parallel_parameters = parameters & set(
                filter(is_parameter,
                       (p for idx in parallel for p in actions[idx][1])))

            #bound_preconditions = [Imply(bound, assigned) for bound, assigned in safe_zip(bound_facts, assigned_facts)]
            bound_condition = pddl.Conjunction([
                pddl.Disjunction(
                    map(fd_from_fact, [
                        Not((bound_predicate, to_constant(p))),
                        (assigned_predicate, to_constant(p),
                         local_from_global[p])
                    ])) for p in parallel_parameters
            ])
            existing_preconditions = [(assigned_predicate, to_constant(p),
                                       local_from_global[p])
                                      for p in ancestor_parameters]

            constant_pairs = [(a, p.name)
                              for a, p in safe_zip(args, new_action.parameters)
                              if is_constant(a)]
            group_preconditions = [
                (group_predicate if is_hashable(a) and
                 (a in constraints.groups) else EQ, to_obj(a), p)
                for a, p in constant_pairs
            ]
            order_preconditions = [
                order_facts[idx] for idx in incoming_orders[step]
            ]
            new_preconditions = existing_preconditions + group_preconditions + order_preconditions + [
                Not(order_facts[step])
            ]
            new_action.precondition = pddl.Conjunction([
                new_action.precondition, bound_condition,
                make_preconditions(new_preconditions)
            ]).simplified()

            new_parameters = parameters - ancestors
            bound_facts = [(bound_predicate, to_constant(p))
                           for p in new_parameters]
            assigned_facts = [(assigned_predicate, to_constant(p),
                               local_from_global[p]) for p in new_parameters]
            new_effects = bound_facts + assigned_facts + [order_facts[step]]
            new_action.effects.extend(make_effects(new_effects))
            # TODO: should also negate the effects of all other sequences here

            new_actions.append(new_action)
            #new_action.dump()
        new_goals.append(
            And(*[order_facts[idx] for idx in incoming_orders[GOAL_INDEX]]))

    add_predicate(domain, make_predicate(order_predicate, ['?num', '?step']))
    if constraints.exact:
        domain.actions[:] = []
    domain.actions.extend(new_actions)
    new_goal_exp = And(goal_exp, Or(*new_goals))
    for fact in new_facts:
        add_fact(evaluations, fact, result=INTERNAL_EVALUATION)
    return new_goal_exp
Ejemplo n.º 5
0
def add_plan_constraints(constraints,
                         domain,
                         evaluations,
                         goal_exp,
                         internal=False):
    if (constraints is None) or (constraints.skeletons is None):
        return goal_exp
    import pddl
    # TODO: can search over skeletons first and then fall back
    # TODO: unify this with the constraint ordering
    # TODO: can constrain to use a plan prefix
    prefix = '_' if internal else ''
    assigned_predicate = ASSIGNED_PREDICATE.format(prefix)
    group_predicate = GROUP_PREDICATE.format(prefix)
    order_predicate = ORDER_PREDICATE.format(prefix)
    for group in constraints.groups:
        for value in constraints.groups[group]:
            # TODO: could make all constants groups (like an equality group)
            fact = (group_predicate, to_obj(group), to_obj(value))
            add_fact(evaluations, fact, result=INTERNAL_EVALUATION)
    new_actions = []
    new_goals = []
    for num, skeleton in enumerate(constraints.skeletons):
        # TODO: change the prefix for these
        order_facts = [(order_predicate, to_obj('n{}'.format(num)),
                        to_obj('t{}'.format(step)))
                       for step in range(len(skeleton) + 1)]
        add_fact(evaluations, order_facts[0], result=INTERNAL_EVALUATION)
        new_goals.append(order_facts[-1])
        bound_parameters = set()
        for step, (name, args) in enumerate(skeleton):
            # TODO: could also just remove the free parameter from the action
            new_action = deepcopy(
                find_unique(lambda a: a.name == name, domain.actions))
            constant_pairs = [(a, p.name)
                              for a, p in safe_zip(args, new_action.parameters)
                              if not is_parameter(a) and a != WILD]
            skeleton_parameters = list(filter(is_parameter, args))
            existing_parameters = [
                p for p in skeleton_parameters if p in bound_parameters
            ]
            local_from_global = {
                a: p.name
                for a, p in safe_zip(args, new_action.parameters)
                if is_parameter(a)
            }

            group_preconditions = [
                (group_predicate if is_hashable(a) and
                 (a in constraints.groups) else EQ, to_obj(a), p)
                for a, p in constant_pairs
            ]
            new_preconditions = make_assignment_facts(assigned_predicate, local_from_global, existing_parameters) + \
                                group_preconditions + [order_facts[step]]
            new_action.precondition = pddl.Conjunction([
                new_action.precondition,
                make_preconditions(new_preconditions)
            ]).simplified()

            new_effects = make_assignment_facts(assigned_predicate, local_from_global, skeleton_parameters) \
                          + [Not(order_facts[step]), order_facts[step + 1]]
            new_action.effects.extend(make_effects(new_effects))
            # TODO: should also negate the effects of all other sequences here

            new_actions.append(new_action)
            bound_parameters.update(skeleton_parameters)
            #new_action.dump()
    add_predicate(domain, make_predicate(order_predicate, ['?num', '?step']))
    if constraints.exact:
        domain.actions[:] = []
    domain.actions.extend(new_actions)
    new_goal_exp = And(goal_exp, Or(*new_goals))
    return new_goal_exp