def convert_effects(effects): import pddl new_effects = make_effects([('_noop',)]) # To ensure the action has at least one effect for effect in effects: class_name = effect.__class__.__name__ if class_name == 'Effect': peffect_name = effect.peffect.__class__.__name__ if peffect_name in ('Increase', 'Decrease'): # TODO: currently ignoring numeric conditions continue new_effects.append(pddl.Effect(convert_parameters(effect.parameters), pddl.Conjunction(list(map(convert_condition, effect.condition))).simplified(), convert_condition(effect.peffect))) else: raise NotImplementedError(class_name) return new_effects
def get_stream_actions(results, unique_binding=False, unit_efforts=True, effort_scale=1): #from pddl_parser.parsing_functions import parse_action import pddl stream_result_from_name = {} stream_actions = [] for i, result in enumerate(results): #if not isinstance(stream_result, StreamResult): if type(result) == FunctionResult: continue effort = get_instance_effort(result.instance, unit_efforts) if effort == INF: continue # TODO: state constraints # TODO: selectively negate axioms result_name = '{}-{}'.format(result.external.name, i) #result_name = '{}_{}_{}'.format(result.external.name, # No spaces & parens # ','.join(map(pddl_from_object, result.instance.input_objects)), # ','.join(map(pddl_from_object, result.output_objects))) assert result_name not in stream_result_from_name stream_result_from_name[result_name] = result preconditions = list(result.instance.get_domain()) effects = list(result.get_certified()) #if ORDER_OUTPUT: # enforce_output_order(result, preconditions, effects) if unique_binding: enforce_single_binding(result, preconditions, effects) if is_optimizer_result( result): # These effects don't seem to be pruned effects.append( substitute_expression(result.external.stream_fact, result.get_mapping())) parameters = [] # Usually all parameters are external stream_actions.append( pddl.Action(name=result_name, parameters=parameters, num_external_parameters=len(parameters), precondition=make_preconditions(preconditions), effects=make_effects(effects), cost=make_cost(effort_scale * effort))) # Can also be None return stream_actions, stream_result_from_name
def compile_to_exogenous_actions(evaluations, domain, streams): import pddl # TODO: automatically derive fluents # TODO: version of this that operates on fluents of length one? # TODO: better instantiation when have full parameters # TODO: conversion from stream cost to real cost units? # TODO: any predicates derived would need to be replaced as well fluent_predicates = get_fluents(domain) certified_predicates = { get_prefix(a) for s in streams for a in s.certified } future_map = {p: 'f-{}'.format(p) for p in certified_predicates} augment_evaluations(evaluations, future_map) rename_future = lambda a: rename_atom(a, future_map) for stream in list(streams): if not isinstance(stream, Stream): raise NotImplementedError(stream) # TODO: could also just have conditions asserting that one of the fluent conditions fails streams.append( create_static_stream(stream, evaluations, fluent_predicates, rename_future)) stream_atom = streams[-1].certified[0] parameters = [ pddl.TypedObject(p, OBJECT) for p in get_args(stream_atom) ] # TODO: add to predicates as well? domain.predicate_dict[get_prefix(stream_atom)] = pddl.Predicate( get_prefix(stream_atom), parameters) preconditions = [stream_atom] + list(stream.domain) effort = 1 # TODO: use stream info #effort = 1 if unit_cost else result.instance.get_effort() #if effort == INF: # continue domain.actions.append( pddl.Action(name='call-{}'.format(stream.name), parameters=parameters, num_external_parameters=len(parameters), precondition=make_preconditions(preconditions), effects=make_effects(stream.certified), cost=make_cost(effort))) stream.certified = tuple( set(stream.certified) | set(map(rename_future, stream.certified)))
def add_plan_constraints(constraints, domain, evaluations, goal_exp, internal=False): if (constraints is None) or (constraints.skeletons is None): return goal_exp import pddl # TODO: unify this with the constraint ordering # TODO: can constrain to use a plan prefix prefix = get_internal_prefix(internal) assigned_predicate = ASSIGNED_PREDICATE.format(prefix) bound_predicate = BOUND_PREDICATE.format(prefix) group_predicate = GROUP_PREDICATE.format(prefix) order_predicate = ORDER_PREDICATE.format(prefix) new_facts = [] for group in constraints.groups: for value in constraints.groups[group]: # TODO: could make all constants groups (like an equality group) fact = (group_predicate, to_obj(group), to_obj(value)) new_facts.append(fact) new_actions = [] new_goals = [] for num, skeleton in enumerate(constraints.skeletons): actions, orders = skeleton incoming_orders, _ = neighbors_from_orders(orders) order_facts = [(order_predicate, to_obj('n{}'.format(num)), to_obj('t{}'.format(step))) for step in range(len(actions))] for step, (name, args) in enumerate(actions): # TODO: could also just remove the free parameter from the action new_action = deepcopy( find_unique(lambda a: a.name == name, domain.actions)) local_from_global = { a: p.name for a, p in safe_zip(args, new_action.parameters) if is_parameter(a) } ancestors, descendants = get_ancestors(step, orders), get_descendants( step, orders) parallel = set(range( len(actions))) - ancestors - descendants - {step} parameters = set(filter(is_parameter, args)) ancestor_parameters = parameters & set( filter(is_parameter, (p for idx in ancestors for p in actions[idx][1]))) #descendant_parameters = parameters & set(filter(is_parameter, (p for idx in descendants for p in actions[idx][1]))) parallel_parameters = parameters & set( filter(is_parameter, (p for idx in parallel for p in actions[idx][1]))) #bound_preconditions = [Imply(bound, assigned) for bound, assigned in safe_zip(bound_facts, assigned_facts)] bound_condition = pddl.Conjunction([ pddl.Disjunction( map(fd_from_fact, [ Not((bound_predicate, to_constant(p))), (assigned_predicate, to_constant(p), local_from_global[p]) ])) for p in parallel_parameters ]) existing_preconditions = [(assigned_predicate, to_constant(p), local_from_global[p]) for p in ancestor_parameters] constant_pairs = [(a, p.name) for a, p in safe_zip(args, new_action.parameters) if is_constant(a)] group_preconditions = [ (group_predicate if is_hashable(a) and (a in constraints.groups) else EQ, to_obj(a), p) for a, p in constant_pairs ] order_preconditions = [ order_facts[idx] for idx in incoming_orders[step] ] new_preconditions = existing_preconditions + group_preconditions + order_preconditions + [ Not(order_facts[step]) ] new_action.precondition = pddl.Conjunction([ new_action.precondition, bound_condition, make_preconditions(new_preconditions) ]).simplified() new_parameters = parameters - ancestors bound_facts = [(bound_predicate, to_constant(p)) for p in new_parameters] assigned_facts = [(assigned_predicate, to_constant(p), local_from_global[p]) for p in new_parameters] new_effects = bound_facts + assigned_facts + [order_facts[step]] new_action.effects.extend(make_effects(new_effects)) # TODO: should also negate the effects of all other sequences here new_actions.append(new_action) #new_action.dump() new_goals.append( And(*[order_facts[idx] for idx in incoming_orders[GOAL_INDEX]])) add_predicate(domain, make_predicate(order_predicate, ['?num', '?step'])) if constraints.exact: domain.actions[:] = [] domain.actions.extend(new_actions) new_goal_exp = And(goal_exp, Or(*new_goals)) for fact in new_facts: add_fact(evaluations, fact, result=INTERNAL_EVALUATION) return new_goal_exp
def add_plan_constraints(constraints, domain, evaluations, goal_exp, internal=False): if (constraints is None) or (constraints.skeletons is None): return goal_exp import pddl # TODO: can search over skeletons first and then fall back # TODO: unify this with the constraint ordering # TODO: can constrain to use a plan prefix prefix = '_' if internal else '' assigned_predicate = ASSIGNED_PREDICATE.format(prefix) group_predicate = GROUP_PREDICATE.format(prefix) order_predicate = ORDER_PREDICATE.format(prefix) for group in constraints.groups: for value in constraints.groups[group]: # TODO: could make all constants groups (like an equality group) fact = (group_predicate, to_obj(group), to_obj(value)) add_fact(evaluations, fact, result=INTERNAL_EVALUATION) new_actions = [] new_goals = [] for num, skeleton in enumerate(constraints.skeletons): # TODO: change the prefix for these order_facts = [(order_predicate, to_obj('n{}'.format(num)), to_obj('t{}'.format(step))) for step in range(len(skeleton) + 1)] add_fact(evaluations, order_facts[0], result=INTERNAL_EVALUATION) new_goals.append(order_facts[-1]) bound_parameters = set() for step, (name, args) in enumerate(skeleton): # TODO: could also just remove the free parameter from the action new_action = deepcopy( find_unique(lambda a: a.name == name, domain.actions)) constant_pairs = [(a, p.name) for a, p in safe_zip(args, new_action.parameters) if not is_parameter(a) and a != WILD] skeleton_parameters = list(filter(is_parameter, args)) existing_parameters = [ p for p in skeleton_parameters if p in bound_parameters ] local_from_global = { a: p.name for a, p in safe_zip(args, new_action.parameters) if is_parameter(a) } group_preconditions = [ (group_predicate if is_hashable(a) and (a in constraints.groups) else EQ, to_obj(a), p) for a, p in constant_pairs ] new_preconditions = make_assignment_facts(assigned_predicate, local_from_global, existing_parameters) + \ group_preconditions + [order_facts[step]] new_action.precondition = pddl.Conjunction([ new_action.precondition, make_preconditions(new_preconditions) ]).simplified() new_effects = make_assignment_facts(assigned_predicate, local_from_global, skeleton_parameters) \ + [Not(order_facts[step]), order_facts[step + 1]] new_action.effects.extend(make_effects(new_effects)) # TODO: should also negate the effects of all other sequences here new_actions.append(new_action) bound_parameters.update(skeleton_parameters) #new_action.dump() add_predicate(domain, make_predicate(order_predicate, ['?num', '?step'])) if constraints.exact: domain.actions[:] = [] domain.actions.extend(new_actions) new_goal_exp = And(goal_exp, Or(*new_goals)) return new_goal_exp