Ejemplo n.º 1
0
    def test_generate_eq_function(self):
        # create terminal nodes
        term_node = Node(NodeType.CONSTANT, value=100.0)
        input_node = Node(NodeType.INPUT, name="x")

        # create function nodes
        mul_func = Node(NodeType.FUNCTION,
                        name="MUL",
                        arity=2,
                        branches=[input_node, term_node])

        rad_func = Node(NodeType.FUNCTION,
                        name="RAD",
                        arity=1,
                        branches=[mul_func])

        sin_func = Node(NodeType.FUNCTION,
                        name="SIN",
                        arity=1,
                        branches=[rad_func])

        # create tree
        tree = Tree()
        tree.root = sin_func
        tree.update()

        # generate equation function
        eq_func = evaluator.generate_eq_function(tree, self.functions,
                                                 self.config)

        # assert
        self.assertIsNotNone(eq_func)
        self.assertEquals(round(eq_func(1), 4), 0.9848)
Ejemplo n.º 2
0
    def test_eval_tree(self):
        # create terminal nodes
        term_node = Node(NodeType.CONSTANT, value=100.0)
        input_node = Node(NodeType.INPUT, name="x")

        # create function nodes
        mul_func = Node(
            NodeType.FUNCTION,
            name="MUL",
            arity=2,
            branches=[input_node, term_node]
        )

        rad_func = Node(
            NodeType.FUNCTION,
            name="RAD",
            arity=1,
            branches=[mul_func]
        )

        sin_func = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[rad_func]
        )

        # create tree
        tree = Tree()
        tree.root = sin_func
        tree.update()

        # evaluate tree
        score, output = evaluator.eval_tree(tree, self.functions, self.config)
        self.assertEquals(round(score, 7), 0.5000001)
Ejemplo n.º 3
0
    def test_eval_tree(self):
        # create terminal nodes
        term_node = Node(NodeType.CONSTANT, value=100.0)
        input_node = Node(NodeType.INPUT, name="x")

        # create function nodes
        mul_func = Node(NodeType.FUNCTION,
                        name="MUL",
                        arity=2,
                        branches=[input_node, term_node])

        rad_func = Node(NodeType.FUNCTION,
                        name="RAD",
                        arity=1,
                        branches=[mul_func])

        sin_func = Node(NodeType.FUNCTION,
                        name="SIN",
                        arity=1,
                        branches=[rad_func])

        # create tree
        tree = Tree()
        tree.root = sin_func
        tree.update()

        # evaluate tree
        score, output = evaluator.eval_tree(tree, self.functions, self.config)
        self.assertEquals(round(score, 7), 0.5000001)
Ejemplo n.º 4
0
    def full_method(self):
        # initialize tree
        tree = Tree()
        tree.size = 1
        tree.depth = self.max_depth
        tree.root = self.generate_func_node()
        tree.tree_type = self.gen_config.get("tree_type", None)

        # build tree via full method
        self.full_method_build_tree(tree, tree.root, 0)
        tree.update()

        return tree
Ejemplo n.º 5
0
    def test_equal(self):
        # create nodes
        left_node_1 = Node(NodeType.CONSTANT, value=1.0)
        right_node_1 = Node(NodeType.CONSTANT, value=2.0)

        left_node_2 = Node(NodeType.CONSTANT, value=3.0)
        right_node_2 = Node(NodeType.CONSTANT, value=4.0)

        cos_func_1 = Node(NodeType.FUNCTION,
                          name="COS",
                          arity=1,
                          branches=[left_node_1])
        sin_func_1 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[right_node_1])

        cos_func_2 = Node(NodeType.FUNCTION,
                          name="COS",
                          arity=1,
                          branches=[left_node_2])
        sin_func_2 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[right_node_2])

        add_func = Node(NodeType.FUNCTION,
                        name="ADD",
                        arity=2,
                        branches=[cos_func_1, sin_func_1])

        sub_func = Node(NodeType.FUNCTION,
                        name="SUB",
                        arity=2,
                        branches=[sin_func_2, cos_func_2])

        # create tree_1
        tree_1 = Tree()
        tree_1.root = add_func
        tree_1.update()

        # create tree_2
        tree_2 = Tree()
        tree_2.root = sub_func
        tree_2.update()

        self.assertTrue(tree_1.equals(tree_1))
        self.assertFalse(tree_1.equals(tree_2))
        self.assertTrue(tree_2.equals(tree_2))
        self.assertFalse(tree_2.equals(tree_1))
Ejemplo n.º 6
0
    def test_generate_eq_function_multivars(self):
        # create terminal nodes
        term_node = Node(NodeType.INPUT, name="var2")
        input_node = Node(NodeType.INPUT, name="var1")

        # create function nodes
        div_func = Node(
            NodeType.FUNCTION,
            name="DIV",
            arity=2,
            branches=[input_node, term_node]
        )

        # create tree
        tree = Tree()
        tree.root = div_func
        tree.update()

        # generate equation function
        config = {
            "input_variables": [
                {
                    "type": "INPUT",
                    "name": "var1"
                },
                {
                    "type": "INPUT",
                    "name": "var2"
                }
            ],

            "functions": {
                "ADD": "+",
                "SUB": "-",
                "MUL": "*",
                "DIV": "/",
                "POW": "**",
                "SIN": "math.sin",
                "COS": "math.cos",
                "RAD": "math.radians",
                "LN": "math.ln",
                "LOG": "math.log"
            }
        }
        eq_func = evaluator.generate_eq_function(tree, self.functions, config)

        # assert
        self.assertIsNotNone(eq_func)
        self.assertEquals(eq_func(1.0, 2.0), 0.5)
Ejemplo n.º 7
0
    def test_generate_eq_function_multivars(self):
        # create terminal nodes
        term_node = Node(NodeType.INPUT, name="var2")
        input_node = Node(NodeType.INPUT, name="var1")

        # create function nodes
        div_func = Node(NodeType.FUNCTION,
                        name="DIV",
                        arity=2,
                        branches=[input_node, term_node])

        # create tree
        tree = Tree()
        tree.root = div_func
        tree.update()

        # generate equation function
        config = {
            "input_variables": [{
                "type": "INPUT",
                "name": "var1"
            }, {
                "type": "INPUT",
                "name": "var2"
            }],
            "functions": {
                "ADD": "+",
                "SUB": "-",
                "MUL": "*",
                "DIV": "/",
                "POW": "**",
                "SIN": "math.sin",
                "COS": "math.cos",
                "RAD": "math.radians",
                "LN": "math.ln",
                "LOG": "math.log"
            }
        }
        eq_func = evaluator.generate_eq_function(tree, self.functions, config)

        # assert
        self.assertIsNotNone(eq_func)
        self.assertEquals(eq_func(1.0, 2.0), 0.5)
Ejemplo n.º 8
0
    def test_generate_eq_function(self):
        # create terminal nodes
        term_node = Node(NodeType.CONSTANT, value=100.0)
        input_node = Node(NodeType.INPUT, name="x")

        # create function nodes
        mul_func = Node(
            NodeType.FUNCTION,
            name="MUL",
            arity=2,
            branches=[input_node, term_node]
        )

        rad_func = Node(
            NodeType.FUNCTION,
            name="RAD",
            arity=1,
            branches=[mul_func]
        )

        sin_func = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[rad_func]
        )

        # create tree
        tree = Tree()
        tree.root = sin_func
        tree.update()

        # generate equation function
        eq_func = evaluator.generate_eq_function(
            tree,
            self.functions,
            self.config
        )

        # assert
        self.assertIsNotNone(eq_func)
        self.assertEquals(round(eq_func(1), 4), 0.9848)
Ejemplo n.º 9
0
class TreeCrossoverTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "tree_generation": {
                "initial_max_depth": 4
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 1.0
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.crossover = TreeCrossover(self.config)
        self.parser = TreeParser()

        # create nodes
        left_node_1 = Node(NodeType.INPUT, name="x")
        right_node_1 = Node(NodeType.CONSTANT, value=2.0)
        node = Node(NodeType.CONSTANT, value=2.0)

        left_node_2 = Node(NodeType.CONSTANT, value=3.0)
        right_node_2 = Node(NodeType.CONSTANT, value=4.0)

        cos_func_1 = Node(NodeType.FUNCTION,
                          name="ADD",
                          arity=2,
                          branches=[left_node_1, right_node_1])

        sin_func_1 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[node])

        cos_func_2 = Node(NodeType.FUNCTION,
                          name="COS",
                          arity=1,
                          branches=[left_node_2])
        sin_func_2 = Node(NodeType.FUNCTION,
                          name="SIN",
                          arity=1,
                          branches=[right_node_2])

        add_func = Node(NodeType.FUNCTION,
                        name="ADD",
                        arity=2,
                        branches=[cos_func_1, sin_func_1])

        sub_func = Node(NodeType.FUNCTION,
                        name="SUB",
                        arity=2,
                        branches=[sin_func_2, cos_func_2])

        # create tree_1
        self.tree_1 = Tree()
        self.tree_1.root = add_func
        self.tree_1.update()

        print self.tree_1

        # create tree_2
        self.tree_2 = Tree()
        self.tree_2.root = sub_func
        self.tree_2.update()

    def tearDown(self):
        del self.config
        del self.generator
        del self.parser

    def build_tree_str(self, tree):
        tree_str = ""

        for node in tree.program:
            if hasattr(node, "name") and node.name is not None:
                tree_str += "node:{0} addr:{1}\n".format(node.name, id(node))
            else:
                tree_str += "node:{0} addr:{1}\n".format(node.value, id(node))

        return tree_str

    def tree_equals(self, tree_1_str, tree_2_str):
        if tree_1_str == tree_2_str:
            return True
        else:
            return False

    def test_point_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.point_crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1")
        print(tree_1_before)
        print("\nTree 2")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1")
        print(tree_1_after)
        print("\nTree 2")
        print(tree_2_after)

        # asserts
        self.assertTrue(self.tree_equals(tree_1_before, tree_1_before))
        self.assertTrue(self.tree_equals(tree_2_before, tree_2_before))
        self.assertTrue(self.tree_equals(tree_1_after, tree_1_after))
        self.assertTrue(self.tree_equals(tree_2_after, tree_2_after))

        self.assertFalse(self.tree_equals(tree_1_before, tree_1_after))
        self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))

    def test_common_region_point_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.common_region_point_crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1")
        print(tree_1_before)
        print("\nTree 2")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1")
        print(tree_1_after)
        print("\nTree 2")
        print(tree_2_after)

    def test_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1!")
        print(tree_1_before)
        print("\nTree 2!")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1!")
        print(tree_1_after)
        print("\nTree 2!")
        print(tree_2_after)

        # asserts
        self.assertTrue(self.tree_equals(tree_1_before, tree_1_before))
        self.assertTrue(self.tree_equals(tree_2_before, tree_2_before))
        self.assertTrue(self.tree_equals(tree_1_after, tree_1_after))
        self.assertTrue(self.tree_equals(tree_2_after, tree_2_after))

        self.assertFalse(self.tree_equals(tree_1_before, tree_1_after))
        self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))
Ejemplo n.º 10
0
class TreeCrossoverTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "tree_generation": {
                "initial_max_depth": 4
            },

            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 1.0
            },

            "function_nodes": [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1},
                {"type": "FUNCTION", "name": "RAD", "arity": 1}
            ],

            "terminal_nodes": [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 3.0},
                {"type": "CONSTANT", "value": 4.0},
                {"type": "CONSTANT", "value": 5.0},
                {"type": "CONSTANT", "value": 6.0},
                {"type": "CONSTANT", "value": 7.0},
                {"type": "CONSTANT", "value": 8.0},
                {"type": "CONSTANT", "value": 9.0},
                {"type": "CONSTANT", "value": 10.0}
            ],

            "input_variables": [
                {"type": "INPUT", "name": "x"}
            ]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.crossover = TreeCrossover(self.config)
        self.parser = TreeParser()

        # create nodes
        left_node_1 = Node(NodeType.INPUT, name="x")
        right_node_1 = Node(NodeType.CONSTANT, value=2.0)
        node = Node(NodeType.CONSTANT, value=2.0)

        left_node_2 = Node(NodeType.CONSTANT, value=3.0)
        right_node_2 = Node(NodeType.CONSTANT, value=4.0)

        cos_func_1 = Node(
            NodeType.FUNCTION,
            name="ADD",
            arity=2,
            branches=[left_node_1, right_node_1]
        )

        sin_func_1 = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[node]
        )

        cos_func_2 = Node(
            NodeType.FUNCTION,
            name="COS",
            arity=1,
            branches=[left_node_2]
        )
        sin_func_2 = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[right_node_2]
        )

        add_func = Node(
            NodeType.FUNCTION,
            name="ADD",
            arity=2,
            branches=[cos_func_1, sin_func_1]
        )

        sub_func = Node(
            NodeType.FUNCTION,
            name="SUB",
            arity=2,
            branches=[sin_func_2, cos_func_2]
        )

        # create tree_1
        self.tree_1 = Tree()
        self.tree_1.root = add_func
        self.tree_1.update()

        print self.tree_1

        # create tree_2
        self.tree_2 = Tree()
        self.tree_2.root = sub_func
        self.tree_2.update()

    def tearDown(self):
        del self.config
        del self.generator
        del self.parser

    def build_tree_str(self, tree):
        tree_str = ""

        for node in tree.program:
            if hasattr(node, "name") and node.name is not None:
                tree_str += "node:{0} addr:{1}\n".format(node.name, id(node))
            else:
                tree_str += "node:{0} addr:{1}\n".format(node.value, id(node))

        return tree_str

    def tree_equals(self, tree_1_str, tree_2_str):
        if tree_1_str == tree_2_str:
            return True
        else:
            return False

    def test_point_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.point_crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1")
        print(tree_1_before)
        print("\nTree 2")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1")
        print(tree_1_after)
        print("\nTree 2")
        print(tree_2_after)

        # asserts
        self.assertTrue(self.tree_equals(tree_1_before, tree_1_before))
        self.assertTrue(self.tree_equals(tree_2_before, tree_2_before))
        self.assertTrue(self.tree_equals(tree_1_after, tree_1_after))
        self.assertTrue(self.tree_equals(tree_2_after, tree_2_after))

        self.assertFalse(self.tree_equals(tree_1_before, tree_1_after))
        self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))

    def test_common_region_point_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.common_region_point_crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1")
        print(tree_1_before)
        print("\nTree 2")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1")
        print(tree_1_after)
        print("\nTree 2")
        print(tree_2_after)

    def test_crossover(self):
        # record before crossover
        tree_1_before = self.build_tree_str(self.tree_1)
        tree_2_before = self.build_tree_str(self.tree_2)

        # point crossover
        self.crossover.crossover(self.tree_1, self.tree_2)

        # record after crossover
        tree_1_after = self.build_tree_str(self.tree_1)
        tree_2_after = self.build_tree_str(self.tree_2)

        print("Before Crossover")
        print("\nTree 1!")
        print(tree_1_before)
        print("\nTree 2!")
        print(tree_2_before)

        print("\nAfter Crossover")
        print("\nTree 1!")
        print(tree_1_after)
        print("\nTree 2!")
        print(tree_2_after)

        # asserts
        self.assertTrue(self.tree_equals(tree_1_before, tree_1_before))
        self.assertTrue(self.tree_equals(tree_2_before, tree_2_before))
        self.assertTrue(self.tree_equals(tree_1_after, tree_1_after))
        self.assertTrue(self.tree_equals(tree_2_after, tree_2_after))

        self.assertFalse(self.tree_equals(tree_1_before, tree_1_after))
        self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))
Ejemplo n.º 11
0
    def test_equal(self):
        # create nodes
        left_node_1 = Node(NodeType.CONSTANT, value=1.0)
        right_node_1 = Node(NodeType.CONSTANT, value=2.0)

        left_node_2 = Node(NodeType.CONSTANT, value=3.0)
        right_node_2 = Node(NodeType.CONSTANT, value=4.0)

        cos_func_1 = Node(
            NodeType.FUNCTION,
            name="COS",
            arity=1,
            branches=[left_node_1]
        )
        sin_func_1 = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[right_node_1]
        )

        cos_func_2 = Node(
            NodeType.FUNCTION,
            name="COS",
            arity=1,
            branches=[left_node_2]
        )
        sin_func_2 = Node(
            NodeType.FUNCTION,
            name="SIN",
            arity=1,
            branches=[right_node_2]
        )

        add_func = Node(
            NodeType.FUNCTION,
            name="ADD",
            arity=2,
            branches=[cos_func_1, sin_func_1]
        )

        sub_func = Node(
            NodeType.FUNCTION,
            name="SUB",
            arity=2,
            branches=[sin_func_2, cos_func_2]
        )

        # create tree_1
        tree_1 = Tree()
        tree_1.root = add_func
        tree_1.update()

        # create tree_2
        tree_2 = Tree()
        tree_2.root = sub_func
        tree_2.update()

        self.assertTrue(tree_1.equals(tree_1))
        self.assertFalse(tree_1.equals(tree_2))
        self.assertTrue(tree_2.equals(tree_2))
        self.assertFalse(tree_2.equals(tree_1))