def test_generate_eq_function(self): # create terminal nodes term_node = Node(NodeType.CONSTANT, value=100.0) input_node = Node(NodeType.INPUT, name="x") # create function nodes mul_func = Node(NodeType.FUNCTION, name="MUL", arity=2, branches=[input_node, term_node]) rad_func = Node(NodeType.FUNCTION, name="RAD", arity=1, branches=[mul_func]) sin_func = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[rad_func]) # create tree tree = Tree() tree.root = sin_func tree.update() # generate equation function eq_func = evaluator.generate_eq_function(tree, self.functions, self.config) # assert self.assertIsNotNone(eq_func) self.assertEquals(round(eq_func(1), 4), 0.9848)
def test_eval_tree(self): # create terminal nodes term_node = Node(NodeType.CONSTANT, value=100.0) input_node = Node(NodeType.INPUT, name="x") # create function nodes mul_func = Node( NodeType.FUNCTION, name="MUL", arity=2, branches=[input_node, term_node] ) rad_func = Node( NodeType.FUNCTION, name="RAD", arity=1, branches=[mul_func] ) sin_func = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[rad_func] ) # create tree tree = Tree() tree.root = sin_func tree.update() # evaluate tree score, output = evaluator.eval_tree(tree, self.functions, self.config) self.assertEquals(round(score, 7), 0.5000001)
def test_eval_tree(self): # create terminal nodes term_node = Node(NodeType.CONSTANT, value=100.0) input_node = Node(NodeType.INPUT, name="x") # create function nodes mul_func = Node(NodeType.FUNCTION, name="MUL", arity=2, branches=[input_node, term_node]) rad_func = Node(NodeType.FUNCTION, name="RAD", arity=1, branches=[mul_func]) sin_func = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[rad_func]) # create tree tree = Tree() tree.root = sin_func tree.update() # evaluate tree score, output = evaluator.eval_tree(tree, self.functions, self.config) self.assertEquals(round(score, 7), 0.5000001)
def full_method(self): # initialize tree tree = Tree() tree.size = 1 tree.depth = self.max_depth tree.root = self.generate_func_node() tree.tree_type = self.gen_config.get("tree_type", None) # build tree via full method self.full_method_build_tree(tree, tree.root, 0) tree.update() return tree
def test_equal(self): # create nodes left_node_1 = Node(NodeType.CONSTANT, value=1.0) right_node_1 = Node(NodeType.CONSTANT, value=2.0) left_node_2 = Node(NodeType.CONSTANT, value=3.0) right_node_2 = Node(NodeType.CONSTANT, value=4.0) cos_func_1 = Node(NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_1]) sin_func_1 = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_1]) cos_func_2 = Node(NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_2]) sin_func_2 = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_2]) add_func = Node(NodeType.FUNCTION, name="ADD", arity=2, branches=[cos_func_1, sin_func_1]) sub_func = Node(NodeType.FUNCTION, name="SUB", arity=2, branches=[sin_func_2, cos_func_2]) # create tree_1 tree_1 = Tree() tree_1.root = add_func tree_1.update() # create tree_2 tree_2 = Tree() tree_2.root = sub_func tree_2.update() self.assertTrue(tree_1.equals(tree_1)) self.assertFalse(tree_1.equals(tree_2)) self.assertTrue(tree_2.equals(tree_2)) self.assertFalse(tree_2.equals(tree_1))
def test_generate_eq_function_multivars(self): # create terminal nodes term_node = Node(NodeType.INPUT, name="var2") input_node = Node(NodeType.INPUT, name="var1") # create function nodes div_func = Node( NodeType.FUNCTION, name="DIV", arity=2, branches=[input_node, term_node] ) # create tree tree = Tree() tree.root = div_func tree.update() # generate equation function config = { "input_variables": [ { "type": "INPUT", "name": "var1" }, { "type": "INPUT", "name": "var2" } ], "functions": { "ADD": "+", "SUB": "-", "MUL": "*", "DIV": "/", "POW": "**", "SIN": "math.sin", "COS": "math.cos", "RAD": "math.radians", "LN": "math.ln", "LOG": "math.log" } } eq_func = evaluator.generate_eq_function(tree, self.functions, config) # assert self.assertIsNotNone(eq_func) self.assertEquals(eq_func(1.0, 2.0), 0.5)
def test_generate_eq_function_multivars(self): # create terminal nodes term_node = Node(NodeType.INPUT, name="var2") input_node = Node(NodeType.INPUT, name="var1") # create function nodes div_func = Node(NodeType.FUNCTION, name="DIV", arity=2, branches=[input_node, term_node]) # create tree tree = Tree() tree.root = div_func tree.update() # generate equation function config = { "input_variables": [{ "type": "INPUT", "name": "var1" }, { "type": "INPUT", "name": "var2" }], "functions": { "ADD": "+", "SUB": "-", "MUL": "*", "DIV": "/", "POW": "**", "SIN": "math.sin", "COS": "math.cos", "RAD": "math.radians", "LN": "math.ln", "LOG": "math.log" } } eq_func = evaluator.generate_eq_function(tree, self.functions, config) # assert self.assertIsNotNone(eq_func) self.assertEquals(eq_func(1.0, 2.0), 0.5)
def test_generate_eq_function(self): # create terminal nodes term_node = Node(NodeType.CONSTANT, value=100.0) input_node = Node(NodeType.INPUT, name="x") # create function nodes mul_func = Node( NodeType.FUNCTION, name="MUL", arity=2, branches=[input_node, term_node] ) rad_func = Node( NodeType.FUNCTION, name="RAD", arity=1, branches=[mul_func] ) sin_func = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[rad_func] ) # create tree tree = Tree() tree.root = sin_func tree.update() # generate equation function eq_func = evaluator.generate_eq_function( tree, self.functions, self.config ) # assert self.assertIsNotNone(eq_func) self.assertEquals(round(eq_func(1), 4), 0.9848)
class TreeCrossoverTests(unittest.TestCase): def setUp(self): self.config = { "tree_generation": { "initial_max_depth": 4 }, "crossover": { "method": "POINT_CROSSOVER", "probability": 1.0 }, "function_nodes": [{ "type": "FUNCTION", "name": "ADD", "arity": 2 }, { "type": "FUNCTION", "name": "SUB", "arity": 2 }, { "type": "FUNCTION", "name": "MUL", "arity": 2 }, { "type": "FUNCTION", "name": "DIV", "arity": 2 }, { "type": "FUNCTION", "name": "COS", "arity": 1 }, { "type": "FUNCTION", "name": "SIN", "arity": 1 }, { "type": "FUNCTION", "name": "RAD", "arity": 1 }], "terminal_nodes": [{ "type": "CONSTANT", "value": 1.0 }, { "type": "CONSTANT", "value": 2.0 }, { "type": "CONSTANT", "value": 2.0 }, { "type": "CONSTANT", "value": 3.0 }, { "type": "CONSTANT", "value": 4.0 }, { "type": "CONSTANT", "value": 5.0 }, { "type": "CONSTANT", "value": 6.0 }, { "type": "CONSTANT", "value": 7.0 }, { "type": "CONSTANT", "value": 8.0 }, { "type": "CONSTANT", "value": 9.0 }, { "type": "CONSTANT", "value": 10.0 }], "input_variables": [{ "type": "INPUT", "name": "x" }] } self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION") self.generator = TreeGenerator(self.config) self.crossover = TreeCrossover(self.config) self.parser = TreeParser() # create nodes left_node_1 = Node(NodeType.INPUT, name="x") right_node_1 = Node(NodeType.CONSTANT, value=2.0) node = Node(NodeType.CONSTANT, value=2.0) left_node_2 = Node(NodeType.CONSTANT, value=3.0) right_node_2 = Node(NodeType.CONSTANT, value=4.0) cos_func_1 = Node(NodeType.FUNCTION, name="ADD", arity=2, branches=[left_node_1, right_node_1]) sin_func_1 = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[node]) cos_func_2 = Node(NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_2]) sin_func_2 = Node(NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_2]) add_func = Node(NodeType.FUNCTION, name="ADD", arity=2, branches=[cos_func_1, sin_func_1]) sub_func = Node(NodeType.FUNCTION, name="SUB", arity=2, branches=[sin_func_2, cos_func_2]) # create tree_1 self.tree_1 = Tree() self.tree_1.root = add_func self.tree_1.update() print self.tree_1 # create tree_2 self.tree_2 = Tree() self.tree_2.root = sub_func self.tree_2.update() def tearDown(self): del self.config del self.generator del self.parser def build_tree_str(self, tree): tree_str = "" for node in tree.program: if hasattr(node, "name") and node.name is not None: tree_str += "node:{0} addr:{1}\n".format(node.name, id(node)) else: tree_str += "node:{0} addr:{1}\n".format(node.value, id(node)) return tree_str def tree_equals(self, tree_1_str, tree_2_str): if tree_1_str == tree_2_str: return True else: return False def test_point_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.point_crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1") print(tree_1_before) print("\nTree 2") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1") print(tree_1_after) print("\nTree 2") print(tree_2_after) # asserts self.assertTrue(self.tree_equals(tree_1_before, tree_1_before)) self.assertTrue(self.tree_equals(tree_2_before, tree_2_before)) self.assertTrue(self.tree_equals(tree_1_after, tree_1_after)) self.assertTrue(self.tree_equals(tree_2_after, tree_2_after)) self.assertFalse(self.tree_equals(tree_1_before, tree_1_after)) self.assertFalse(self.tree_equals(tree_2_before, tree_2_after)) def test_common_region_point_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.common_region_point_crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1") print(tree_1_before) print("\nTree 2") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1") print(tree_1_after) print("\nTree 2") print(tree_2_after) def test_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1!") print(tree_1_before) print("\nTree 2!") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1!") print(tree_1_after) print("\nTree 2!") print(tree_2_after) # asserts self.assertTrue(self.tree_equals(tree_1_before, tree_1_before)) self.assertTrue(self.tree_equals(tree_2_before, tree_2_before)) self.assertTrue(self.tree_equals(tree_1_after, tree_1_after)) self.assertTrue(self.tree_equals(tree_2_after, tree_2_after)) self.assertFalse(self.tree_equals(tree_1_before, tree_1_after)) self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))
class TreeCrossoverTests(unittest.TestCase): def setUp(self): self.config = { "tree_generation": { "initial_max_depth": 4 }, "crossover": { "method": "POINT_CROSSOVER", "probability": 1.0 }, "function_nodes": [ {"type": "FUNCTION", "name": "ADD", "arity": 2}, {"type": "FUNCTION", "name": "SUB", "arity": 2}, {"type": "FUNCTION", "name": "MUL", "arity": 2}, {"type": "FUNCTION", "name": "DIV", "arity": 2}, {"type": "FUNCTION", "name": "COS", "arity": 1}, {"type": "FUNCTION", "name": "SIN", "arity": 1}, {"type": "FUNCTION", "name": "RAD", "arity": 1} ], "terminal_nodes": [ {"type": "CONSTANT", "value": 1.0}, {"type": "CONSTANT", "value": 2.0}, {"type": "CONSTANT", "value": 2.0}, {"type": "CONSTANT", "value": 3.0}, {"type": "CONSTANT", "value": 4.0}, {"type": "CONSTANT", "value": 5.0}, {"type": "CONSTANT", "value": 6.0}, {"type": "CONSTANT", "value": 7.0}, {"type": "CONSTANT", "value": 8.0}, {"type": "CONSTANT", "value": 9.0}, {"type": "CONSTANT", "value": 10.0} ], "input_variables": [ {"type": "INPUT", "name": "x"} ] } self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION") self.generator = TreeGenerator(self.config) self.crossover = TreeCrossover(self.config) self.parser = TreeParser() # create nodes left_node_1 = Node(NodeType.INPUT, name="x") right_node_1 = Node(NodeType.CONSTANT, value=2.0) node = Node(NodeType.CONSTANT, value=2.0) left_node_2 = Node(NodeType.CONSTANT, value=3.0) right_node_2 = Node(NodeType.CONSTANT, value=4.0) cos_func_1 = Node( NodeType.FUNCTION, name="ADD", arity=2, branches=[left_node_1, right_node_1] ) sin_func_1 = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[node] ) cos_func_2 = Node( NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_2] ) sin_func_2 = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_2] ) add_func = Node( NodeType.FUNCTION, name="ADD", arity=2, branches=[cos_func_1, sin_func_1] ) sub_func = Node( NodeType.FUNCTION, name="SUB", arity=2, branches=[sin_func_2, cos_func_2] ) # create tree_1 self.tree_1 = Tree() self.tree_1.root = add_func self.tree_1.update() print self.tree_1 # create tree_2 self.tree_2 = Tree() self.tree_2.root = sub_func self.tree_2.update() def tearDown(self): del self.config del self.generator del self.parser def build_tree_str(self, tree): tree_str = "" for node in tree.program: if hasattr(node, "name") and node.name is not None: tree_str += "node:{0} addr:{1}\n".format(node.name, id(node)) else: tree_str += "node:{0} addr:{1}\n".format(node.value, id(node)) return tree_str def tree_equals(self, tree_1_str, tree_2_str): if tree_1_str == tree_2_str: return True else: return False def test_point_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.point_crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1") print(tree_1_before) print("\nTree 2") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1") print(tree_1_after) print("\nTree 2") print(tree_2_after) # asserts self.assertTrue(self.tree_equals(tree_1_before, tree_1_before)) self.assertTrue(self.tree_equals(tree_2_before, tree_2_before)) self.assertTrue(self.tree_equals(tree_1_after, tree_1_after)) self.assertTrue(self.tree_equals(tree_2_after, tree_2_after)) self.assertFalse(self.tree_equals(tree_1_before, tree_1_after)) self.assertFalse(self.tree_equals(tree_2_before, tree_2_after)) def test_common_region_point_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.common_region_point_crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1") print(tree_1_before) print("\nTree 2") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1") print(tree_1_after) print("\nTree 2") print(tree_2_after) def test_crossover(self): # record before crossover tree_1_before = self.build_tree_str(self.tree_1) tree_2_before = self.build_tree_str(self.tree_2) # point crossover self.crossover.crossover(self.tree_1, self.tree_2) # record after crossover tree_1_after = self.build_tree_str(self.tree_1) tree_2_after = self.build_tree_str(self.tree_2) print("Before Crossover") print("\nTree 1!") print(tree_1_before) print("\nTree 2!") print(tree_2_before) print("\nAfter Crossover") print("\nTree 1!") print(tree_1_after) print("\nTree 2!") print(tree_2_after) # asserts self.assertTrue(self.tree_equals(tree_1_before, tree_1_before)) self.assertTrue(self.tree_equals(tree_2_before, tree_2_before)) self.assertTrue(self.tree_equals(tree_1_after, tree_1_after)) self.assertTrue(self.tree_equals(tree_2_after, tree_2_after)) self.assertFalse(self.tree_equals(tree_1_before, tree_1_after)) self.assertFalse(self.tree_equals(tree_2_before, tree_2_after))
def test_equal(self): # create nodes left_node_1 = Node(NodeType.CONSTANT, value=1.0) right_node_1 = Node(NodeType.CONSTANT, value=2.0) left_node_2 = Node(NodeType.CONSTANT, value=3.0) right_node_2 = Node(NodeType.CONSTANT, value=4.0) cos_func_1 = Node( NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_1] ) sin_func_1 = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_1] ) cos_func_2 = Node( NodeType.FUNCTION, name="COS", arity=1, branches=[left_node_2] ) sin_func_2 = Node( NodeType.FUNCTION, name="SIN", arity=1, branches=[right_node_2] ) add_func = Node( NodeType.FUNCTION, name="ADD", arity=2, branches=[cos_func_1, sin_func_1] ) sub_func = Node( NodeType.FUNCTION, name="SUB", arity=2, branches=[sin_func_2, cos_func_2] ) # create tree_1 tree_1 = Tree() tree_1.root = add_func tree_1.update() # create tree_2 tree_2 = Tree() tree_2.root = sub_func tree_2.update() self.assertTrue(tree_1.equals(tree_1)) self.assertFalse(tree_1.equals(tree_2)) self.assertTrue(tree_2.equals(tree_2)) self.assertFalse(tree_2.equals(tree_1))