def plot_header(fname, ff, iod_line): # ppgplot arrays heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Plot ppg.pgopen(fname) ppg.pgpap(0.0, 1.0) ppg.pgsvp(0.1, 0.95, 0.1, 0.8) ppg.pgsch(0.8) ppg.pgmtxt("T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if is_calibrated(ff): ppg.pgsci(1) else: ppg.pgsci(2) ppg.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppg.pgsci(1) ppg.pgmtxt("T", 3.6, 0.0, 0.0, ("FoV: %.2f\\(2218)x%.2f\\(2218) " "Scale: %.2f''x%.2f'' pix\\u-1\\d") % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppg.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.zmaxmin, ff.zmaxmax)) ppg.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppg.pgsch(1.0) ppg.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppg.pglab("x (pix)", "y (pix)", " ") ppg.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)
def plot_selection_new(ident, dt=1.0, w=10.0): dx, dy = ident.x1 - ident.x0, ident.y1 - ident.y0 ang = np.mod(np.arctan2(dy, dx), 2.0 * np.pi) r = np.sqrt(dx**2 + dy**2) drdt = r / (ident.t1 - ident.t0) sa, ca = np.sin(ang), np.cos(ang) dx = np.array([-dt, -dt, ident.t1 + dt, ident.t1 + dt, -dt]) * drdt dy = np.array([w, -w, -w, w, w]) x = ca * dx - sa * dy + ident.x0 y = sa * dx + ca * dy + ident.y0 ppg.pgline(x, y) ppg.pgpt1(x[0], y[0], 17) ppg.pgpt1(x[1], y[1], 17) ppg.pgsch(0.65) ppg.pgslw(2) if (x[0] < x[1]) & (ident.x0 < ident.x1): ppg.pgptxt(x[1], y[1] - 1.5 * w, 0.0, 0.0, " %05d" % ident.norad) else: ppg.pgptxt(x[0], y[0] + 0.5 * w, 0.0, 0.0, " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgslw(1) return
def plotdVdz(): nv = 3. nr = 1. ppgplot.pgbeg("dVdz.ps/vcps", 1, 1) #color port. ppgplot.pgpap(8., 1.25) ppgplot.pgpage ppgplot.pgsch(1.2) #font size ppgplot.pgslw(3) #line width # 1st panel with symbols w/ stddev errorbars x1 = .15 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .425 y3 = .575 y4 = .85 xlabel = 14.1 - 14. ylabel = 1.15 schdef = 1.2 slwdef = 4 ppgplot.pgsch(schdef) xmin = 0. xmax = 1.1 ymin = 0. ymax = 1.2 ppgplot.pgsvp(x1, x4, y1, y4) #sets viewport ppgplot.pgslw(slwdef) #line width ppgplot.pgswin(xmin, xmax, ymin, ymax) #axes limits ppgplot.pgbox('bcnst', .2, 2, 'bcvnst', .2, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "z") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "(1/DH)\u3\d c dV\dc\u/dv/d\gW") z = N.arange(0., 5., .1) beta = ((1 + z)**2 - 1) / ((1 + z)**2 + 1) dV = N.zeros(len(z), 'd') for i in range(len(z)): #dz=dv/(1+z[i])*(1- ((1+z[i])**2 -1)/((1+z[i])**2+1))**(-2) #z1=z[i]-0.5*dz #z2=z[i]+0.5*dz #dV[i]=my.dL(z2,h) - my.dL(z1,h) dA = my.DA(z[i], h) * 206264. / 1000. dV[i] = DH * (1 + z[i]) * (dA)**2 / (my.E( z[i])) / (1 - beta[i])**2 / DH**3 #dV[i]=DH*(1+z[i])**2*(dA)**2/(my.E(z[i]))/DH**3#for comparison w/Hogg if z[i] < 1: print i, z[i], dV[i], dV[i]**(1. / 3.) ppgplot.pgline(z, dV) ppgplot.pgend()
def resetdefaults(): """ resetdefaults(): Reset global plotting variables to default values. """ global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \ ppgplot_color_, ppgplot_font_size_ ppgplot.pgscf(ppgplot_font_) ppgplot.pgsls(ppgplot_linestyle_) ppgplot.pgslw(ppgplot_linewidth_) ppgplot.pgsci(ppgplot_colors_[ppgplot_color_]) ppgplot.pgsch(ppgplot_font_size_)
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time subplot for the spd plots. Input: dms: list of dms of single pulse events to be plotted. times: list of times of single pulse events to be plotted. sigmas: list of sigmas of single pulse events to be plotted. dm_arr: array of dms of the main single pulse group (plotted in black). sigma_arr: array of sigmas of the main single pulse group (plotted in black). time_arr: array of times of single pulse group (plotted in black). Total_observed_time: float : Total observation time xwin: True or False. Use xwin or vcps window. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time subplot for the spd plots. Input: dms: list of dms of single pulse events to be plotted. times: list of times of single pulse events to be plotted. sigmas: list of sigmas of single pulse events to be plotted. dm_arr: array of dms of the main single pulse group (plotted in black). sigma_arr: array of sigmas of the main single pulse group (plotted in black). time_arr: array of times of single pulse group (plotted in black). Total_observed_time: float : Total observation time xwin: True or False. Use xwin or vcps window. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def resetdefaults(): """ resetdefaults(): Reset global plotting variables to default values. """ global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \ ppgplot_color_, ppgplot_font_size_ ppgplot.pgscf(ppgplot_font_) ppgplot.pgsls(ppgplot_linestyle_) ppgplot.pgslw(ppgplot_linewidth_) ppgplot.pgsci(ppgplot_colors_[ppgplot_color_]) # My little add-on to switch the background to white reset_colors() ppgplot.pgsch(ppgplot_font_size_)
def plotsighaall(sig, psig, o2b, file, nbin): o2b = N.array(o2b, 'f') sig = N.array(sig, 'f') psig = N.array(psig, 'f') #o2b=o2b+4. o2 = N.compress(o2b > -500., o2b) sig = N.compress(o2b > -500., sig) psig = N.compress(o2b > -500., psig) psplot = file + ".ps" psplotinit(psplot) #ppgplot.pgsch(0.7) ppgplot.pgslw(7) (sigbin, o2bin) = my.binit(sig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgswin(-2., 2., -5., 20.) ppgplot.pgbox('blcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW(H\ga) (\(2078))') ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgpt(sigbin, o2bin, 17) ppgplot.pgpt(N.log10(sig), o2, 1) #my.errory(sigbin,o2bin,yerr) #print 'dude2', sigbin, o2bin ppgplot.pgsci(2) ppgplot.pgline(sigbin, o2bin) (sigbin, o2bin) = my.binit(psig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgsci(1) ppgplot.pgpt(sigbin, o2bin, 21) #my.errory(sigbin,o2bin,yerr) ppgplot.pgsci(4) ppgplot.pgline(sigbin, o2bin) ppgplot.pgsci(1) ppgplot.pgend()
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def startPlotter(self): if self.plotDeviceIsOpened: raise ValueError("You already started a plot!") devId = pgplot.pgopen(self.deviceName) self.plotDeviceIsOpened = True if not self.widthInches is None: pgplot.pgpap(self.widthInches, self.yOnXRatio) # For devices /xs, /xw, /png etc, should make the paper white and the ink black. Only for /ps does pgplot default to that. # deviceWithoutFile = self.deviceName.split('/')[-1] if deviceWithoutFile == 'xs' or deviceWithoutFile == 'xw' or deviceWithoutFile == 'png': pgplot.pgscr(0, 1.0, 1.0, 1.0) pgplot.pgscr(1, 0.0, 0.0, 0.0) pgplot.pgsvp(self._vXLo, self._vXHi, self._vYLo, self._vYHi) if self.fixAspect: pgplot.pgwnad(self.worldXLo, self.worldXHi, self.worldYLo, self.worldYHi) else: pgplot.pgswin(self.worldXLo, self.worldXHi, self.worldYLo, self.worldYHi) pgplot.pgsfs(2) pgplot.pgslw(1) pgplot.pgsch(self._charHeight) self._setColourRepresentations() # Set up things so calling pgplot.pggray() won't overwrite the CR of any of the colours in self.colours. # (minCI, maxCI) = pgplot.pgqcir() if minCI <= self.maxCI: pgplot.pgscir(self.maxCI + 1, maxCI) (xLoPixels, xHiPixels, yLoPixels, yHiPixels) = pgplot.pgqvsz(3) (xLoInches, xHiInches, yLoInches, yHiInches) = pgplot.pgqvsz(1) self.xPixelWorld = (xHiInches - xLoInches) / (xHiPixels - xLoPixels) self.yPixelWorld = (yHiInches - yLoInches) / (yHiPixels - yLoPixels)
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def plotngalsigmaradcuts(): nr = 1. nv = 3. bbJmax = -18. ppgplot.pgbeg("ngalmhalo-radcut.ps/vcps", 1, 1) #color port. ppgplot.pgpap(8., 1.25) ppgplot.pgpage ppgplot.pgsch(1.2) #font size ppgplot.pgslw(3) #line width # 1st panel with symbols w/ stddev errorbars str1 = "R\dp\u < " str2 = " R\dv\u" x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .425 y3 = .575 y4 = .85 xlabel = 14.25 - 14. ylabel = 1.14 ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport g.cutonlbj(bbJmax) #print "within plotradcuts, after cutonlbj, len(g.x1) = ",len(g.x1) nr = 1. c.measurengalcontam(nv, nr, g) #print "nr = ",nr, " ave contam = ",N.average(c.contam) sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut) ppgplot.pgsch(.8) ppgplot.pgslw(3) #label="R\dp\u < "+str(nr)+"R\dv\u" label = str1 + str(nr) + str2 ppgplot.pgtext(xlabel, ylabel, label) nr = .5 ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgpanl(1,1) c.measurengalcontam(nv, nr, g) #print "nr = ",nr, " ave contam = ",N.average(c.contam) sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut) label = str1 + str(nr) + str2 ppgplot.pgsch(.8) ppgplot.pgslw(3) ppgplot.pgtext(xlabel, ylabel, label) ppgplot.pgend()
def sub1plotngalmcl(x, y1, y2): schdef = 1.2 slwdef = 4 ppgplot.pgsch(schdef) xmin = -.5 xmax = 1. ymin = 0. ymax = 60. #nbin=5 ppgplot.pgslw(slwdef) #line width ppgplot.pgswin(xmin, xmax, ymin, ymax) #axes limits ppgplot.pgbox('bcnlst', 1.0, 0, 'bcvnst', 10., 2) #tickmarks and labeling ppgplot.pgmtxt( 'b', 2.5, 0.5, 0.5, "log\d10\u(10\u14\d M\dhalo\u/h\u-1\d M\d\(2281)\u)") #xlabel ppgplot.pgmtxt('l', 2.1, 0.5, 0.5, "N\dgal\u") (xbin, ybin, ybinerr) = my.biniterr(x, y1, nbin) print y1 print 'ybin for y1 = ', ybin xbin = N.log10( xbin) + 12. - 14. #add back 10^12 Msun, then divide by 10^14 ppgplot.pgsch(1.5) ppgplot.pgpt(xbin, ybin, 7) ppgplot.pgslw(3) ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.) #my.errory(xbin,ybin,ybinerr) (xbin, ybin, ybinerr) = my.biniterr(x, y2, nbin) print y2 print 'ybin = ', ybin xbin = N.log10( xbin) + 12. - 14. #add back 10^12 Msun, then divide by 10^14 ppgplot.pgsch(1.75) ppgplot.pgpt(xbin, ybin, 17) ppgplot.pgsch(schdef) ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.) ppgplot.pgslw(slwdef)
def linelabel(xlabel, ylabel, dx, ystep, dxl, dyl, label): #draw key schdef = ppgplot.pgqch() ppgplot.pgsch(1.1) ppgplot.pgtext(xlabel, ylabel, label) ppgplot.pgsch(1.1) ylabel = ylabel - 2. * ystep xs = N.arange(xlabel, (xlabel + dx), .01) ys = ylabel * N.ones(len(xs), 'd') ppgplot.pgsls(1) ppgplot.pgline(xs, ys) ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Memb") ylabel = ylabel - ystep ys = ylabel * N.ones(len(xs), 'd') ppgplot.pgsls(4) ppgplot.pgline(xs, ys) ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Contam") ppgplot.pgsch(schdef) ppgplot.pgsls(1)
def plotsigo2all(sig, psig, o2b, file, nbin): #o2=N.zeros(len(o2b),'f') #for i in range(len(o2b)): #print i, sig[i], psig[i], o2b[i] # if o2b[i] < 0: # o2[i]=-1*o2b[i] #print "hey", o2[i] o2 = o2b psplot = file + ".ps" psplotinit(psplot) ppgplot.pgsch(0.7) (sigbin, o2bin) = my.binit(sig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgswin(-1., 3., -.5, 10.) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW([OII]) (\(2078))') ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgsci(2) ppgplot.pgpt(sigbin, o2bin, 17) #print 'dude2', sigbin, o2bin ppgplot.pgline(sigbin, o2bin) (sigbin, o2bin) = my.binit(psig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgsci(4) ppgplot.pgpt(sigbin, o2bin, 21) ppgplot.pgline(sigbin, o2bin) ppgplot.pgsci(1) ppgplot.pgend()
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2 = rangex otherxaxis = 0 else: otherxaxis = 1 if rangey2 is None: rangey2 = rangey otheryaxis = 0 else: otheryaxis = 1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1, 1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks == 'in': env = "CMST" else: env = "CMSTI" if logx2: lxenv = 'L' else: lxenv = '' if logy2: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox(env + lxenv, 0.0, 0, env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env + lyenv, 0.0, 0) else: ppgplot.pgbox(env + lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks == 'in': env = "ST" else: env = "STI" if logx: lxenv = 'L' else: lxenv = '' if logy: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) else: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id == 1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
def main(): parser = OptionParser(usage) parser.add_option( "-x", "--xwin", action="store_true", dest="xwin", default=False, help="Don't make a postscript plot, just use an X-window") parser.add_option("-p", "--noplot", action="store_false", dest="makeplot", default=True, help="Look for pulses but do not generate a plot") parser.add_option( "-m", "--maxwidth", type="float", dest="maxwidth", default=0.0, help="Set the max downsampling in sec (see below for default)") parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0, help="Set a different threshold SNR (default=5.0)") parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0, help="Only plot events occuring after this time (s)") parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9, help="Only plot events occuring before this time (s)") parser.add_option("-g", "--glob", type="string", dest="globexp", default=None, help="Process the files from this glob expression") parser.add_option("-f", "--fast", action="store_true", dest="fast", default=False, help="Use a faster method of de-trending (2x speedup)") (opts, args) = parser.parse_args() if len(args) == 0: if opts.globexp == None: print full_usage sys.exit(0) else: args = [] for globexp in opts.globexp.split(): args += glob.glob(globexp) useffts = True dosearch = True if opts.xwin: pgplot_device = "/XWIN" else: pgplot_device = "" fftlen = 8192 # Should be a power-of-two for best speed chunklen = 8000 # Must be at least max_downfact less than fftlen detrendlen = 1000 # length of a linear piecewise chunk of data for detrending blocks_per_chunk = chunklen / detrendlen overlap = (fftlen - chunklen) / 2 worklen = chunklen + 2 * overlap # currently it is fftlen... max_downfact = 30 default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150] if args[0].endswith(".singlepulse"): filenmbase = args[0][:args[0].rfind(".singlepulse")] dosearch = False elif args[0].endswith(".dat"): filenmbase = args[0][:args[0].rfind(".dat")] else: filenmbase = args[0] # Don't do a search, just read results and plot if not dosearch: info, DMs, candlist, num_v_DMstr = \ read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end) orig_N, orig_dt = int(info.N), info.dt obstime = orig_N * orig_dt else: DMs = [] candlist = [] num_v_DMstr = {} # Loop over the input files for filenm in args: if filenm.endswith(".dat"): filenmbase = filenm[:filenm.rfind(".dat")] else: filenmbase = filenm info = infodata.infodata(filenmbase + ".inf") DMstr = "%.2f" % info.DM DMs.append(info.DM) N, dt = int(info.N), info.dt obstime = N * dt # Choose the maximum width to search based on time instead # of bins. This helps prevent increased S/N when the downsampling # changes as the DM gets larger. if opts.maxwidth > 0.0: downfacts = [ x for x in default_downfacts if x * dt <= opts.maxwidth ] else: downfacts = [x for x in default_downfacts if x <= max_downfact] if len(downfacts) == 0: downfacts = [default_downfacts[0]] if (filenm == args[0]): orig_N = N orig_dt = dt if useffts: fftd_kerns = make_fftd_kerns(downfacts, fftlen) if info.breaks: offregions = zip([x[1] for x in info.onoff[:-1]], [x[0] for x in info.onoff[1:]]) outfile = open(filenmbase + '.singlepulse', mode='w') # Compute the file length in detrendlens roundN = N / detrendlen * detrendlen numchunks = roundN / chunklen # Read in the file print 'Reading "%s"...' % filenm timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN) # Split the timeseries into chunks for detrending numblocks = roundN / detrendlen timeseries.shape = (numblocks, detrendlen) stds = Num.zeros(numblocks, dtype=Num.float64) # de-trend the data one chunk at a time print ' De-trending the data and computing statistics...' for ii, chunk in enumerate(timeseries): if opts.fast: # use median removal instead of detrending (2x speedup) tmpchunk = chunk.copy() tmpchunk.sort() med = tmpchunk[detrendlen / 2] chunk -= med tmpchunk -= med else: # The detrend calls are the most expensive in the program timeseries[ii] = scipy.signal.detrend(chunk, type='linear') tmpchunk = timeseries[ii].copy() tmpchunk.sort() # The following gets rid of (hopefully) most of the # outlying values (i.e. power dropouts and single pulses) # If you throw out 5% (2.5% at bottom and 2.5% at top) # of random gaussian deviates, the measured stdev is ~0.871 # of the true stdev. Thus the 1.0/0.871=1.148 correction below. # The following is roughly .std() since we already removed the median stds[ii] = Num.sqrt( (tmpchunk[detrendlen / 40:-detrendlen / 40]**2.0).sum() / (0.95 * detrendlen)) stds *= 1.148 # sort the standard deviations and separate those with # very low or very high values sort_stds = stds.copy() sort_stds.sort() # identify the differences with the larges values (this # will split off the chunks with very low and very high stds locut = (sort_stds[1:numblocks / 2 + 1] - sort_stds[:numblocks / 2]).argmax() + 1 hicut = (sort_stds[numblocks / 2 + 1:] - sort_stds[numblocks / 2:-1]).argmax() + numblocks / 2 - 2 std_stds = scipy.std(sort_stds[locut:hicut]) median_stds = sort_stds[(locut + hicut) / 2] lo_std = median_stds - 4.0 * std_stds hi_std = median_stds + 4.0 * std_stds # Determine a list of "bad" chunks. We will not search these. bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0] print " pseudo-median block standard deviation = %.2f" % ( median_stds) print " identified %d bad blocks out of %d (i.e. %.2f%%)" % \ (len(bad_blocks), len(stds), 100.0*float(len(bad_blocks))/float(len(stds))) stds[bad_blocks] = median_stds print " Now searching..." # Now normalize all of the data and reshape it to 1-D timeseries /= stds[:, Num.newaxis] timeseries.shape = (roundN, ) # And set the data in the bad blocks to zeros # Even though we don't search these parts, it is important # because of the overlaps for the convolutions for bad_block in bad_blocks: loind, hiind = bad_block * detrendlen, (bad_block + 1) * detrendlen timeseries[loind:hiind] = 0.0 # Convert to a set for faster lookups below bad_blocks = set(bad_blocks) # Step through the data dm_candlist = [] for chunknum in range(numchunks): loind = chunknum * chunklen - overlap hiind = (chunknum + 1) * chunklen + overlap # Take care of beginning and end of file overlap issues if (chunknum == 0): # Beginning of file chunk = Num.zeros(worklen, dtype=Num.float32) chunk[overlap:] = timeseries[loind + overlap:hiind] elif (chunknum == numchunks - 1): # end of the timeseries chunk = Num.zeros(worklen, dtype=Num.float32) chunk[:-overlap] = timeseries[loind:hiind - overlap] else: chunk = timeseries[loind:hiind] # Make a set with the current block numbers lowblock = blocks_per_chunk * chunknum currentblocks = set(Num.arange(blocks_per_chunk) + lowblock) localgoodblocks = Num.asarray( list(currentblocks - bad_blocks)) - lowblock # Search this chunk if it is not all bad if len(localgoodblocks): # This is the good part of the data (end effects removed) goodchunk = chunk[overlap:-overlap] # need to pass blocks/chunklen, localgoodblocks # dm_candlist, dt, opts.threshold to cython routine # Search non-downsampled data first # NOTE: these nonzero() calls are some of the most # expensive calls in the program. Best bet would # probably be to simply iterate over the goodchunk # in C and append to the candlist there. hibins = Num.flatnonzero(goodchunk > opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins / detrendlen # Add the candidates (which are sorted by bin) for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt dm_candlist.append( candidate(info.DM, val, time, bin, 1)) # Prepare our data for the convolution if useffts: fftd_chunk = rfft(chunk, -1) # Now do the downsampling... for ii, downfact in enumerate(downfacts): if useffts: # Note: FFT convolution is faster for _all_ downfacts, even 2 goodchunk = fft_convolve(fftd_chunk, fftd_kerns[ii], overlap, -overlap) else: # The normalization of this kernel keeps the post-smoothing RMS = 1 kernel = Num.ones(downfact, dtype=Num.float32) / \ Num.sqrt(downfact) smoothed_chunk = scipy.signal.convolve( chunk, kernel, 1) goodchunk = smoothed_chunk[overlap:-overlap] #hibins = Num.nonzero(goodchunk>opts.threshold)[0] hibins = Num.flatnonzero(goodchunk > opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins / detrendlen hibins = hibins.tolist() hivals = hivals.tolist() # Now walk through the new candidates and remove those # that are not the highest but are within downfact/2 # bins of a higher signal pulse hibins, hivals = prune_related1( hibins, hivals, downfact) # Insert the new candidates into the candlist, but # keep it sorted... for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt bisect.insort( dm_candlist, candidate(info.DM, val, time, bin, downfact)) # Now walk through the dm_candlist and remove the ones that # are within the downsample proximity of a higher # signal-to-noise pulse dm_candlist = prune_related2(dm_candlist, downfacts) print " Found %d pulse candidates" % len(dm_candlist) # Get rid of those near padding regions if info.breaks: prune_border_cases(dm_candlist, offregions) # Write the pulses to an ASCII output file if len(dm_candlist): #dm_candlist.sort(cmp_sigma) outfile.write( "# DM Sigma Time (s) Sample Downfact\n") for cand in dm_candlist: outfile.write(str(cand)) outfile.close() # Add these candidates to the overall candidate list for cand in dm_candlist: candlist.append(cand) num_v_DMstr[DMstr] = len(dm_candlist) if (opts.makeplot): # Step through the candidates to make a SNR list DMs.sort() snrs = [] for cand in candlist: snrs.append(cand.sigma) if snrs: maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3 else: maxsnr = int(opts.threshold) + 3 # Generate the SNR histogram snrs = Num.asarray(snrs) (num_v_snr, lo_snr, d_snr, num_out_of_range) = \ scipy.stats.histogram(snrs, int(maxsnr-opts.threshold+1), [opts.threshold, maxsnr]) snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \ + lo_snr + 0.5*d_snr num_v_snr = num_v_snr.astype(Num.float32) num_v_snr[num_v_snr == 0.0] = 0.001 # Generate the DM histogram num_v_DM = Num.zeros(len(DMs)) for ii, DM in enumerate(DMs): num_v_DM[ii] = num_v_DMstr["%.2f" % DM] DMs = Num.asarray(DMs) # open the plot device short_filenmbase = filenmbase[:filenmbase.find("_DM")] if opts.T_end > obstime: opts.T_end = obstime if pgplot_device: ppgplot.pgopen(pgplot_device) else: if (opts.T_start > 0.0 or opts.T_end < obstime): ppgplot.pgopen(short_filenmbase + '_%.0f-%.0fs_singlepulse.ps/VPS' % (opts.T_start, opts.T_end)) else: ppgplot.pgopen(short_filenmbase + '_singlepulse.ps/VPS') ppgplot.pgpap(7.5, 1.0) # Width in inches, aspect # plot the SNR histogram ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87) ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5), Num.log10(2 * max(num_v_snr))) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1) # plot the DM histogram ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87) # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0 ppgplot.pgswin( min(DMs) - 0.5, max(DMs) + 0.5, 0.0, 1.1 * max(num_v_DM + [1])) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(DMs, num_v_DM, 1) # plot the SNR vs DM plot ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87) ppgplot.pgswin(min(DMs) - 0.5, max(DMs) + 0.5, opts.threshold, maxsnr) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgsch(1.0) cand_ts = Num.zeros(len(candlist), dtype=Num.float32) cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32) cand_DMs = Num.zeros(len(candlist), dtype=Num.float32) for ii, cand in enumerate(candlist): cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \ cand.time, cand.sigma, cand.DM ppgplot.pgpt(cand_DMs, cand_SNRs, 20) # plot the DM vs Time plot ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52) ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs) - 0.5, max(DMs) + 0.5) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") # Circles are symbols 20-26 in increasing order snr_range = 12.0 cand_symbols = (cand_SNRs - opts.threshold) / snr_range * 6.0 + 20.5 cand_symbols = cand_symbols.astype(Num.int32) cand_symbols[cand_symbols > 26] = 26 for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii) # Now fill the infomation area ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97) ppgplot.pgsch(1.0) ppgplot.pgmtxt('T', 0.5, 0.0, 0.0, "Single pulse results for '%s'" % short_filenmbase) ppgplot.pgsch(0.8) # first row ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\ info.object) ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):') ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA) ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f' % orig_N) # second row ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\ info.telescope) ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):') ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC) ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\ (orig_dt*1e6)) # third row if info.instrument.find("pigot") >= 0: instrument = "Spigot" else: instrument = info.instrument ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s' % instrument) if (info.bary): ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f' % info.epoch) else: ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f' % info.epoch) ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\ ((info.numchan/2-0.5)*info.chan_width+info.lofreq)) ppgplot.pgiden() ppgplot.pgend()
def main(options): global keepPlotting keepPlotting = True debug = options.debug inputMS = options.inms if inputMS == "": print "Error: You must specify a MS name." print ' Use "uvplot.py -h" to get help.' return if inputMS.endswith("/"): inputMS = inputMS[:-1] inputMSbasename = inputMS.split("/")[-1] if inputMSbasename == "": # The user has not specified the full path of the MS inputMSbasename = inputMS device = options.device if device == "?": ppgplot.pgldev() return xaxis = options.xaxis yaxis = options.yaxis column = options.column nx, ny = options.nxy.split(",") axlimits = options.axlimits.split(",") if len(axlimits) == 4: xmin, xmax, ymin, ymax = axlimits else: print "Error: You must specify four axis limits" return showFlags = options.flag flagCol = options.colflag showAutocorr = options.autocorr showStats = options.statistics timeslots = options.timeslots.split(",") if len(timeslots) != 2: print "Error: Timeslots format is start,end" return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) antToPlotSpl = options.antennas.split(",") antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split("..") if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1): antToPlot.append(j) else: print "Error: Could not understand antenna list." return polarizations = options.polar.split(",") for i in range(len(polarizations)): polarizations[i] = int(polarizations[i]) convertStokes = options.stokes operation = options.operation if operation != "": operation = int(operation) if convertStokes: print "Error: Stokes conversion is not compatible with special operations" return channels = options.channels.split(",") if len(channels) != 2: print "Error: Channels format is start,end" return for i in range(len(channels)): channels[i] = int(channels[i]) if channels[1] == -1: channels[1] = None # last element even if there is only one else: channels[1] += 1 queryMode = options.query doUnwrap = options.wrap if not queryMode: # open the graphics device, use the right number of panels ppgplot.pgbeg(device, int(nx), int(ny)) # set the font size ppgplot.pgsch(1.5) ppgplot.pgvstd() # open the main table and print some info about the MS t = pt.table(inputMS, readonly=True, ack=False) firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows() - 1) intTime = t.getcell("INTERVAL", 0) print "Integration time:\t%f sec" % (intTime) nTimeslots = (lastTime - firstTime) / intTime if timeslots[1] == -1: timeslots[1] = nTimeslots else: timeslots[1] += 1 print "Number of timeslots:\t%d" % (nTimeslots) # open the antenna and spectral window subtables tant = pt.table(t.getkeyword("ANTENNA"), readonly=True, ack=False) tsp = pt.table(t.getkeyword("SPECTRAL_WINDOW"), readonly=True, ack=False) numChannels = len(tsp.getcell("CHAN_FREQ", 0)) print "Number of channels:\t%d" % (numChannels) print "Reference frequency:\t%5.2f MHz" % (tsp.getcell("REF_FREQUENCY", 0) / 1.0e6) # Station names antList = tant.getcol("NAME") if len(antToPlot) == 1 and antToPlot[0] == -1: antToPlot = range(len(antList)) print "Station list (only starred stations will be plotted):" for i in range(len(antList)): star = " " if i in antToPlot: star = "*" print "%s %2d\t%s" % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query( "TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s" % (firstTime + timeslots[0] * intTime, firstTime + timeslots[1] * intTime, str(antToPlot), str(antToPlot)) ) # values to use for each polarization plotColors = [1, 2, 3, 4] labXPositions = [0.35, 0.45, 0.55, 0.65] labYPositions = [1.0, 1.0, 1.0, 1.0] if convertStokes: polLabels = ["I", "Q", "U", "V"] else: polLabels = ["XX", "XY", "YX", "YY"] # define nicely written axis labels axisLabels = { "time": "Time", "chan": "Channel", "freq": "Frequency [MHz]", "amp": "Visibility amplitude", "real": "Real part of visibility", "imag": "Imaginary part of visibility", "phase": "Visibility phase [radians]", } # Now we loop through the baselines ppgplot.pgpage() for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]): if not keepPlotting: return ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: if not showAutocorr: continue # Get the values to plot, strategy depends on axis type if xaxis == "time": xaxisvals = getXAxisVals(tpart, xaxis, channels) yaxisvals = getYAxisVals( tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes ) else: xaxisvals = getXAxisVals(tsp, xaxis, channels) yaxisvals = getYAxisVals( tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1 ) if xaxisvals == None: # This baseline must be empty, go to next one print "No good data on baseline %s - %s" % (antList[ant1], antList[ant2]) continue if debug: print xaxisvals.shape print yaxisvals.shape for r in range(len(xaxisvals)): print "%s" % yaxisvals[r] if len(xaxisvals) != len(yaxisvals): # something is wrong print "Error: X and Y axis types incompatible" return # Plot the data, each polarization in a different color ppgplot.pgsci(1) if xmin == "": minx = xaxisvals.min() else: minx = float(xmin) if xmax == "": maxx = xaxisvals.max() else: maxx = float(xmax) if ymin == "": miny = yaxisvals.min() if numpy.ma.getmaskarray(yaxisvals.min()): print "All data flagged on baseline %s - %s" % (antList[ant1], antList[ant2]) continue else: miny = float(ymin) if ymax == "": maxy = yaxisvals.max() else: maxy = float(ymax) if minx == maxx: minx -= 1.0 maxx += 1.0 else: diffx = maxx - minx minx -= 0.02 * diffx maxx += 0.02 * diffx if miny == maxy: miny -= 1.0 maxy += 1.0 else: diffy = maxy - miny miny -= 0.02 * diffy maxy += 0.02 * diffy # ppgplot.pgpage() ppgplot.pgswin(minx, maxx, miny, maxy) if xaxis == "time": ppgplot.pgtbox("ZHOBCNST", 0.0, 0, "BCNST", 0.0, 0) else: ppgplot.pgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0) # ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2])) # ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename) ppgplot.pglab( axisLabels[xaxis], axisLabels[yaxis], inputMSbasename + "(" + getDataDescription(column) + "): %s - %s" % (antList[ant1], antList[ant2]), ) if operation != 0: # some operations is defined if operation == 1: label = "XX-YY" elif operation == 2: label = "XY.YX*" else: print "Special operation not defined" return ppgplot.pgsci(plotColors[0]) tmpvals = yaxisvals print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len( tmpvals[~tmpvals.mask] ), "points of " + label ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1]) else: for j in polarizations: ppgplot.pgsci(plotColors[j]) tmpvals = yaxisvals[:, j] if j == polarizations[0]: print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len( tmpvals[~tmpvals.mask] ), "points per polarization" ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j]) ppgplot.pgpage() # Close the PGPLOT device ppgplot.pgclos()
if m.sunalt > 0.0: ppgplot.pgscr(0, 0.0, 0.0, 0.4) elif m.sunalt > -6.0: ppgplot.pgscr(0, 0.0, 0.0, 0.3) elif m.sunalt > -12.0: ppgplot.pgscr(0, 0.0, 0.0, 0.2) elif m.sunalt > -18.0: ppgplot.pgscr(0, 0.0, 0.0, 0.1) else: ppgplot.pgscr(0, 0.0, 0.0, 0.0) ppgplot.pgsci(0) # Plot box ppgplot.pgrect(-1.5 * m.w, 1.5 * m.w, -m.w, m.w) ppgplot.pgsci(1) ppgplot.pgsch(1.0) ppgplot.pgbox("BC", 0., 0, "BC", 0., 0) ppgplot.pgpt1(0., 0., 2) # Plot field-of-view ppgplot.pgsfs(2) ppgplot.pgrect(-m.fw, m.fw, -m.fh, m.fh) ppgplot.pgsfs(1) # Top left string ppgplot.pgsch(0.8) text = "%s UTC; %s (%04d) [%+.4f\\u\\(2218)\\d, %+.4f\\u\\(2218)\\d, %.0fm]" % ( m.t.isot, m.observer, m.site, m.lat, m.lon, m.elev) ppgplot.pgmtxt("T", 0.6, 0., 0., text) # Bottom string
def psplotinit(output): file=output+"/vcps" ppgplot.pgbeg(file,1,1) ppgplot.pgpap(8.,1.) ppgplot.pgsch(1.7) #font size ppgplot.pgslw(7) #line width
def main(options): global keepPlotting keepPlotting = True debug = options.debug inputMS = glob.glob(options.inms) if inputMS == '': print 'Error: You must specify a MS name.' print ' Use "uvplot.py -h" to get help.' return if options.inms.endswith('/'): options.inms = options.inms[:-1] inputMSbasename = options.inms.split('/')[-1] if inputMSbasename == '': # The user has not specified the full path of the MS inputMSbasename = options.inms device = options.device if device=='?': ppgplot.pgldev() return xaxis = options.xaxis if xaxis == 'ha': print 'Adding derived columns to allow plotting hour angle...' try: pt.addDerivedMSCal(inputMS) except: print 'Failed, trying to remove and add columns...' try: pt.removeDerivedMSCal(inputMS) pt.addDerivedMSCal(inputMS) except: print 'That failed too... plotting HA seems to not be possible.' return yaxis = options.yaxis column = options.column nx, ny = options.nxy.split(',') axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin,xmax,ymin,ymax = axlimits else: print 'Error: You must specify four axis limits' return showFlags = options.flag flagCol = options.colflag showAutocorr = options.autocorr showStats = options.statistics timeslots = options.timeslots.split(',') if len(timeslots) != 2: print 'Error: Timeslots format is start,end' return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]),int(tmpspl[1])+1): antToPlot.append(j) else: print 'Error: Could not understand antenna list.' return polarizations = options.polar.split(',') for i in range(len(polarizations)): polarizations[i] = int(polarizations[i]) convertStokes = options.stokes operation = options.operation if operation != '': operation = int(operation) if convertStokes: print 'Error: Stokes conversion is not compatible with special operations' return channels = options.channels.split(',') if len(channels) != 2: print 'Error: Channels format is start,end' return for i in range(len(channels)): channels[i] = int(channels[i]) if channels[1] == -1: channels[1] = None # last element even if there is only one else: channels[1] += 1 queryMode = options.query doUnwrap = options.wrap if not queryMode: # open the graphics device, use the right number of panels ppgplot.pgbeg(device, int(nx), int(ny)) # set the font size ppgplot.pgsch(1.5) ppgplot.pgvstd() # open the main table and print some info about the MS t = pt.table(inputMS, readonly=True, ack=False) firstTime = t.query(sortlist='TIME',columns='TIME',limit=1).getcell("TIME", 0) lastTime = t.query(sortlist='TIME',columns='TIME',offset=t.nrows()-1).getcell("TIME", 0) intTime = t.getcell("INTERVAL", 0) print 'Integration time:\t%f sec' % (intTime) nTimeslots = (lastTime - firstTime) / intTime if timeslots[1] == -1: timeslots[1] = nTimeslots else: timeslots[1] += 1 print 'Number of timeslots:\t%d' % (nTimeslots) # open the antenna and spectral window subtables tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) tsp = pt.table(t.getkeyword('SPECTRAL_WINDOW'), readonly=True, ack=False) numChannels = len(tsp.getcell('CHAN_FREQ',0)) print 'Number of channels:\t%d' % (numChannels) print 'Reference frequency:\t%5.2f MHz' % (tsp.getcell('REF_FREQUENCY',0)/1.e6) # Station names antList = tant.getcol('NAME') if len(antToPlot)==1 and antToPlot[0]==-1: antToPlot = range(len(antList)) print 'Station list (only starred stations will be plotted):' for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print '%s %2d\t%s' % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[1]*intTime,str(antToPlot),str(antToPlot))) # values to use for each polarization plotColors = [1,2,3,4] labXPositions = [0.35,0.45,0.55,0.65] labYPositions = [1.0,1.0,1.0,1.0] if convertStokes: polLabels = ['I','Q','U','V'] else: polLabels = ['XX','XY','YX','YY'] # define nicely written axis labels axisLabels = {'time': 'Time', 'ha': 'Hour angle', 'chan': 'Channel', 'freq': 'Frequency [MHz]', 'amp': 'Visibility amplitude', 'real': 'Real part of visibility', 'imag': 'Imaginary part of visibility', 'phase': 'Visibility phase [radians]'} # Now we loop through the baselines ppgplot.pgpage() for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]): if not keepPlotting: return ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: if not showAutocorr: continue # Get the values to plot, strategy depends on axis type if xaxis == 'time' or xaxis == 'ha': xaxisvals = getXAxisVals(tpart, xaxis, channels) yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes) else: xaxisvals = getXAxisVals(tsp, xaxis, channels) yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1) if xaxisvals == None: # This baseline must be empty, go to next one print 'No good data on baseline %s - %s' % (antList[ant1],antList[ant2]) continue if debug: print xaxisvals.shape print yaxisvals.shape for r in range(len(xaxisvals)): print '%s'%yaxisvals[r] if len(xaxisvals) != len(yaxisvals): # something is wrong print 'Error: X and Y axis types incompatible' return # Plot the data, each polarization in a different color ppgplot.pgsci(1) if xmin == '': minx = xaxisvals.min() else: minx = float(xmin) if xmax == '': maxx = xaxisvals.max() else: maxx = float(xmax) if ymin == '': miny = yaxisvals.min() if numpy.ma.getmaskarray(yaxisvals.min()): print 'All data flagged on baseline %s - %s' % (antList[ant1],antList[ant2]) continue else: miny = float(ymin) if ymax == '': maxy = yaxisvals.max() else: maxy = float(ymax) if minx == maxx: minx -= 1.0 maxx += 1.0 else: diffx = maxx - minx minx -= 0.02*diffx maxx += 0.02*diffx if miny == maxy: miny -= 1.0 maxy += 1.0 else: diffy = maxy - miny miny -= 0.02*diffy maxy += 0.02*diffy #ppgplot.pgpage() ppgplot.pgswin(minx,maxx,miny,maxy) if xaxis == 'time' or xaxis == 'ha': ppgplot.pgtbox('ZHOBCNST',0.0,0,'BCNST',0.0,0) else: ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0) #ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2])) #ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename) ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], inputMSbasename + '(' + getDataDescription(column) + '): %s - %s'%(antList[ant1],antList[ant2])) if operation != 0: # some operations is defined if operation == 1: label = 'XX-YY' elif operation == 2: label = 'XY.YX*' else: print 'Special operation not defined' return ppgplot.pgsci(plotColors[0]) tmpvals = yaxisvals print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points of ' + label ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1]) else: for j in polarizations: ppgplot.pgsci(plotColors[j]) tmpvals = yaxisvals[:,j] if j == polarizations[0]: print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points per polarization' ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j]) ppgplot.pgpage() # Close the PGPLOT device ppgplot.pgclos() if xaxis=='ha': print 'Removing derived columns...' pt.removeDerivedMSCal(inputMS)
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin, path, results_path): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) # Parse identifications idents = [satid(line) for line in lines] # Identify unknowns for ident0 in idents: if ident0.catalog == "unidentified": for ident1 in idents: if ident1.catalog == "unidentified": continue # Find matches p1 = inside_selection(ident1, ident0.t0, ident0.x0, ident0.y0) p2 = inside_selection(ident1, ident0.t1, ident0.x1, ident0.y1) # Match found if p1 and p2: # Copy info ident0.norad = ident1.norad ident0.catalog = ident1.catalog ident0.state = ident1.state ident1.state = "remove" break # Loop over identifications for ident in idents: # Skip superseded unknowns if ident.state == "remove": continue # Skip slow moving objects drdt = np.sqrt(ident.dxdt**2 + ident.dydt**2) if drdt < drdtmin: continue # Extract significant pixels along a track x, y, t, sig = ff.significant_pixels_along_track( trksig, ident.x0, ident.y0, ident.dxdt, ident.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot plot_header(fname.replace(".fits", "_%05d.png/png" % ident.norad), ff, iod_line) ppg.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.zmaxmax, ff.zmaxmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgmove(xmin, ymin) ppg.pgdraw(xmax, ymax) ppg.pgsch(0.65) ppg.pgtext(np.array([x0]), np.array([y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line) elif ident.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = ident.x0 + ident.dxdt * t, ident.y0 + ident.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: store_not_seen(ident, fname, results_path) continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = ident.x0 + ident.dxdt * tmid ymid = ident.y0 + ident.dydt * tmid ztrk = ndimage.gaussian_filter( ff.track(ident.dxdt, ident.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: store_not_seen(ident, fname, results_path) continue # Skip if point is outside selection area if inside_selection(ident, tmid, x0, y0) is False: store_not_seen(ident, fname, results_path) continue # Format IOD line cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot pngfile = fname.replace(".fits", "_%05d.png" % ident.norad) plot_header(pngfile + "/png", ff, iod_line) ppg.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) plot_selection(ident, xmid, ymid) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([ident.x0]), np.array([ident.y0]), 17) ppg.pgmove(ident.x0, ident.y0) ppg.pgdraw(ident.x1, ident.y1) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgsch(0.65) ppg.pgtext(np.array([ident.x0]), np.array([ident.y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line)
psfile = str(filename)+".ps" # print ("psfile\n") ppgplot.pgbegin(0,"psfile/VCPS", 1, 1) # pgbegin(0,"psfile/PS", 1, 1) # Plot Setting #################################################################### ppgplot.pgpaper(8,1.25) # window/paper size (width(inch), aspect) ppgplot.pgscf(2) # characte font (1: normal, 2: roman, 3: italic, 4: script) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.89) # viewport in the window (relative) ppgplot.pglab("", "", "Local Time [hour]") ppgplot.pgsvp(0.12, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pglabel("", "Airmass", "") # label settingoto s ppgplot.pgsch(1.0) # character height (size) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pgswin(t_min, t_max, a_max, a_min) # MIN,MAX of coordinate ppgplot.pgbox('BCTS', 0.0, 0, 'BCTSNV1', 0.1, 0) # coordinate settings ppgplot.pgbox('0', 0.0, 0, 'BCTSMV1', 0.1, 0) # coordinate settings # Put Header/ Axes Label ##################################################################### ##################################################################### # READ USER INPUT ##################################################################### year = sys.argv[2]#ARGV[1] month = sys.argv[3]#ARGV[2] day = sys.argv[4]#ARGV[3]
print superPixel superMax = numpy.ma.max(superPixel) superMin = numpy.ma.min(superPixel) variance = numpy.ma.var(superPixel) numPixels = numpy.ma.count(superPixel) print ( "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f" % (position[1], position[0], superMax, superMin, variance, variance / numPixels) ) ppgplot.pgslct(spPreview["pgplotHandle"]) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray( boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot["pgPlotTransform"] ) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot["pgplotHandle"]) pointingObject = {"x": position[1], "y": position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [startX, startX, startX + superPixelSize, startX + superPixelSize] ypts = [startY, startY + superPixelSize, startY + superPixelSize, startY] ppgplot.pgsfs(2) ppgplot.pgsci(4) ppgplot.pgpoly(xpts, ypts) tempBitmap = numpy.zeros(numpy.shape(imageCopy)) tempBitmap = gridCircle(position[0], position[1], radius, tempBitmap) additionalMask = numpy.ma.make_mask(tempBitmap)
(xmin, ymin, xmax, ymax) = determineFullFrameSize(allWindows) fullFramexsize = xmax - xmin fullFrameysize = ymax - ymin """ Set up the PGPLOT windows """ xyPositionPlot = {} xyPositionPlot['pgplotHandle'] = ppgplot.pgopen('/xs') xyPositionPlot['yLimit'] = 1.0 xyPositionPlot['numXYPanels'] = len(referenceApertures.sources) ppgplot.pgpap(6.18, 1.618) ppgplot.pgsubp(1, xyPositionPlot['numXYPanels']) ppgplot.pgsci(5) for panel in range(xyPositionPlot['numXYPanels']): currentSize = ppgplot.pgqch() ppgplot.pgsch(1) yLimit = xyPositionPlot['yLimit'] ppgplot.pgenv(startFrame, startFrame + frameRange, -yLimit, yLimit, 0, -2) ppgplot.pgbox('A', 0.0, 0, 'BCG', 0.0, 0) ppgplot.pglab("", "%d"%panel, "") ppgplot.pgsch(currentSize) ppgplot.pgask(False) ppgplot.pgsci(1) if (arg.preview): bitmapView = {} bitmapView['pgplotHandle'] = ppgplot.pgopen('/xs') ppgplot.pgpap(8, 1)
def main(options): debug = options.debug MSlist = [] device = options.device if device == '?': ppgplot.pgldev() return for inmspart in options.inms.split(','): for msname in glob.iglob(inmspart): MSlist.append(msname) if len(MSlist) == 0: print('Error: You must specify at least one MS name.') print(' Use "uvplot.py -h" to get help.') return if len(MSlist) > 1: print('WARNING: Antenna selection (other than all) may not work well') print(' when plotting more than one MS. Carefully inspect the') print(' listings of antenna numbers/names!') if options.title == '': plottitle = options.inms else: plottitle = options.title axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin, xmax, ymin, ymax = axlimits else: print('Error: You must specify four axis limits') return timeslots = options.timeslots.split(',') if len(timeslots) != 3: print('Error: Timeslots format is start,skip,end') return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) if timeslots[i] < 0: print('Error: timeslots values must not be negative') return doPlotColors = options.colors antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1): antToPlot.append(j) else: print('Error: Could not understand antenna list.') return queryMode = options.query plotLambda = options.kilolambda badval = 0.0 xaxisvals0 = numpy.array([]) yaxisvals0 = numpy.array([]) xaxisvals1 = numpy.array([]) yaxisvals1 = numpy.array([]) xaxisvals2 = numpy.array([]) yaxisvals2 = numpy.array([]) xaxisvals3 = numpy.array([]) yaxisvals3 = numpy.array([]) xaxisvals4 = numpy.array([]) yaxisvals4 = numpy.array([]) xaxisvals5 = numpy.array([]) yaxisvals5 = numpy.array([]) savex0 = numpy.array([]) savey0 = numpy.array([]) savex1 = numpy.array([]) savey1 = numpy.array([]) savex2 = numpy.array([]) savey2 = numpy.array([]) savex3 = numpy.array([]) savey3 = numpy.array([]) savex4 = numpy.array([]) savey4 = numpy.array([]) savex5 = numpy.array([]) savey5 = numpy.array([]) numPlotted = 0 ptcolor = 0 for inputMS in MSlist: # open the main table and print some info about the MS print('Getting info for', inputMS) t = pt.table(inputMS, readonly=True, ack=False) tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'), readonly=True, ack=False) ref_freq = tfreq.getcol('REF_FREQUENCY', nrow=1)[0] ch_freq = tfreq.getcol('CHAN_FREQ', nrow=1)[0] print('Reference frequency:\t%f MHz' % (ref_freq / 1.e6)) if options.wideband: ref_wavelength = 2.99792458e8 / ch_freq else: ref_wavelength = [2.99792458e8 / ref_freq] print('Reference wavelength:\t%f m' % (ref_wavelength[0])) if options.sameuv and numPlotted > 0: print('Assuming same uvw as first MS!') if plotLambda: for w in ref_wavelength: xaxisvals0 = numpy.append( xaxisvals0, [savex0 / w / 1000., -savex0 / w / 1000.]) yaxisvals0 = numpy.append( yaxisvals0, [savey0 / w / 1000., -savey0 / w / 1000.]) xaxisvals1 = numpy.append( xaxisvals1, [savex1 / w / 1000., -savex1 / w / 1000.]) yaxisvals1 = numpy.append( yaxisvals1, [savey1 / w / 1000., -savey1 / w / 1000.]) xaxisvals2 = numpy.append( xaxisvals2, [savex2 / w / 1000., -savex2 / w / 1000.]) yaxisvals2 = numpy.append( yaxisvals2, [savey2 / w / 1000., -savey2 / w / 1000.]) xaxisvals3 = numpy.append( xaxisvals3, [savex3 / w / 1000., -savex3 / w / 1000.]) yaxisvals3 = numpy.append( yaxisvals3, [savey3 / w / 1000., -savey3 / w / 1000.]) xaxisvals4 = numpy.append( xaxisvals4, [savex4 / w / 1000., -savex4 / w / 1000.]) yaxisvals4 = numpy.append( yaxisvals4, [savey4 / w / 1000., -savey4 / w / 1000.]) xaxisvals5 = numpy.append( xaxisvals5, [savex5 / w / 1000., -savex5 / w / 1000.]) yaxisvals5 = numpy.append( yaxisvals5, [savey5 / w / 1000., -savey5 / w / 1000.]) else: print( 'Plotting more than one MS with same uv, all in meters... do you want -k?' ) xaxisvals0 = numpy.append(xaxisvals0, [savex0, -savex0]) yaxisvals0 = numpy.append(yaxisvals0, [savey0, -savey0]) xaxisvals1 = numpy.append(xaxisvals1, [savex1, -savex1]) yaxisvals1 = numpy.append(yaxisvals1, [savey1, -savey1]) xaxisvals2 = numpy.append(xaxisvals2, [savex2, -savex2]) yaxisvals2 = numpy.append(yaxisvals2, [savey2, -savey2]) xaxisvals3 = numpy.append(xaxisvals3, [savex3, -savex3]) yaxisvals3 = numpy.append(yaxisvals3, [savey3, -savey3]) xaxisvals4 = numpy.append(xaxisvals4, [savex4, -savex4]) yaxisvals4 = numpy.append(yaxisvals4, [savey4, -savey4]) xaxisvals5 = numpy.append(xaxisvals5, [savex5, -savex5]) yaxisvals5 = numpy.append(yaxisvals5, [savey5, -savey5]) continue firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows() - 1) intTime = t.getcell("INTERVAL", 0) print('Integration time:\t%f sec' % (intTime)) nTimeslots = (lastTime - firstTime) / intTime print('Number of timeslots:\t%d' % (nTimeslots)) if timeslots[1] == 0: if nTimeslots >= 100: timeskip = int(nTimeslots / 100) else: timeskip = 1 else: timeskip = int(timeslots[1]) print('For each baseline, plotting one point every %d samples' % (timeskip)) if timeslots[2] == 0: timeslots[2] = nTimeslots # open the antenna subtable tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) # Station names antList = tant.getcol('NAME') if len(antToPlot) == 1 and antToPlot[0] == -1: antToPlot = list(range(len(antList))) print('Station list (only starred stations will be plotted):') for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print('%s %2d\t%s' % (star, i, antList[i])) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query( 'TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime + timeslots[0] * intTime, firstTime + timeslots[2] * intTime, str(antToPlot), str(antToPlot)), columns='ANTENNA1,ANTENNA2,UVW') # Now we loop through the baselines i = 0 nb = (len(antToPlot) * (len(antToPlot) - 1)) / 2 sys.stdout.write('Reading uvw for %d baselines: %04d/%04d' % (nb, i, nb)) sys.stdout.flush() for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]): ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: continue i += 1 sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d' % (i, nb)) sys.stdout.flush() if doPlotColors: stNameStr = antList[ant1][0] + antList[ant2][0] if stNameStr == 'CC': ptcolor = 0 elif stNameStr == 'RR': ptcolor = 1 elif 'C' in stNameStr and 'R' in stNameStr: ptcolor = 2 elif 'C' in stNameStr: ptcolor = 3 elif 'R' in stNameStr: ptcolor = 4 else: ptcolor = 5 # Get the values to plot uvw = tpart.getcol('UVW', rowincr=timeskip) if numPlotted == 0: savex0 = numpy.append(savex0, [uvw[:, 0], -uvw[:, 0]]) savey0 = numpy.append(savey0, [uvw[:, 1], -uvw[:, 1]]) savex1 = numpy.append(savex1, [uvw[:, 0], -uvw[:, 0]]) savey1 = numpy.append(savey1, [uvw[:, 1], -uvw[:, 1]]) savex2 = numpy.append(savex2, [uvw[:, 0], -uvw[:, 0]]) savey2 = numpy.append(savey2, [uvw[:, 1], -uvw[:, 1]]) savex3 = numpy.append(savex3, [uvw[:, 0], -uvw[:, 0]]) savey3 = numpy.append(savey3, [uvw[:, 1], -uvw[:, 1]]) savex4 = numpy.append(savex4, [uvw[:, 0], -uvw[:, 0]]) savey4 = numpy.append(savey4, [uvw[:, 1], -uvw[:, 1]]) savex5 = numpy.append(savex5, [uvw[:, 0], -uvw[:, 0]]) savey5 = numpy.append(savey5, [uvw[:, 1], -uvw[:, 1]]) if plotLambda: for w in ref_wavelength: if ptcolor == 0: xaxisvals0 = numpy.append( xaxisvals0, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals0 = numpy.append( yaxisvals0, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 1: xaxisvals1 = numpy.append( xaxisvals1, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals1 = numpy.append( yaxisvals1, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 2: xaxisvals2 = numpy.append( xaxisvals2, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals2 = numpy.append( yaxisvals2, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 3: xaxisvals3 = numpy.append( xaxisvals3, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals3 = numpy.append( yaxisvals3, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 4: xaxisvals4 = numpy.append( xaxisvals4, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals4 = numpy.append( yaxisvals4, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 5: xaxisvals5 = numpy.append( xaxisvals5, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals5 = numpy.append( yaxisvals5, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) else: if ptcolor == 0: xaxisvals0 = numpy.append(xaxisvals0, [uvw[:, 0], -uvw[:, 0]]) yaxisvals0 = numpy.append(yaxisvals0, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 1: xaxisvals1 = numpy.append(xaxisvals1, [uvw[:, 0], -uvw[:, 0]]) yaxisvals1 = numpy.append(yaxisvals1, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 2: xaxisvals2 = numpy.append(xaxisvals2, [uvw[:, 0], -uvw[:, 0]]) yaxisvals2 = numpy.append(yaxisvals2, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 3: xaxisvals3 = numpy.append(xaxisvals3, [uvw[:, 0], -uvw[:, 0]]) yaxisvals3 = numpy.append(yaxisvals3, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 4: xaxisvals4 = numpy.append(xaxisvals4, [uvw[:, 0], -uvw[:, 0]]) yaxisvals4 = numpy.append(yaxisvals4, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 5: xaxisvals5 = numpy.append(xaxisvals5, [uvw[:, 0], -uvw[:, 0]]) yaxisvals5 = numpy.append(yaxisvals5, [uvw[:, 1], -uvw[:, 1]]) #if debug: # print uvw.shape # print xaxisvals.shape # print yaxisvals.shape #else: # sys.stdout.write('.') # sys.stdout.flush() sys.stdout.write(' Done!\n') numPlotted += 1 print('Plotting uv points ...') # open the graphics device, using only one panel ppgplot.pgbeg(device, 1, 1) # set the font size ppgplot.pgsch(1) ppgplot.pgvstd() xaxisvals = numpy.append( xaxisvals0, numpy.append( xaxisvals1, numpy.append( xaxisvals2, numpy.append(xaxisvals3, numpy.append(xaxisvals4, xaxisvals5))))) yaxisvals = numpy.append( yaxisvals0, numpy.append( yaxisvals1, numpy.append( yaxisvals2, numpy.append(yaxisvals3, numpy.append(yaxisvals4, yaxisvals5))))) tmpvals0 = numpy.sqrt(xaxisvals0**2 + yaxisvals0**2) tmpvals1 = numpy.sqrt(xaxisvals1**2 + yaxisvals1**2) tmpvals2 = numpy.sqrt(xaxisvals2**2 + yaxisvals2**2) tmpvals3 = numpy.sqrt(xaxisvals3**2 + yaxisvals3**2) tmpvals4 = numpy.sqrt(xaxisvals4**2 + yaxisvals4**2) tmpvals5 = numpy.sqrt(xaxisvals5**2 + yaxisvals5**2) # Plot the data if debug: print(xaxisvals0[tmpvals0 != badval]) print(yaxisvals0[tmpvals0 != badval]) ppgplot.pgsci(1) uvmax = max(xaxisvals.max(), yaxisvals.max()) uvmin = min(xaxisvals.min(), yaxisvals.min()) uvuplim = 0.02 * (uvmax - uvmin) + uvmax uvlolim = uvmin - 0.02 * (uvmax - uvmin) if xmin == '': minx = uvlolim else: minx = float(xmin) if xmax == '': maxx = uvuplim else: maxx = float(xmax) if ymin == '': miny = uvlolim else: miny = float(ymin) if ymax == '': maxy = uvuplim else: maxy = float(ymax) if minx == maxx: minx = -1.0 maxx = 1.0 if miny == maxy: miny = -1.0 maxy = 1.0 ppgplot.pgpage() ppgplot.pgswin(minx, maxx, miny, maxy) ppgplot.pgbox('BCNST', 0.0, 0, 'BCNST', 0.0, 0) if plotLambda: ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s' % (plottitle)) else: ppgplot.pglab('u [m]', 'v [m]', '%s' % (plottitle)) ppgplot.pgpt(xaxisvals0[tmpvals0 != badval], yaxisvals0[tmpvals0 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.35, 0.5, 'C-C') ppgplot.pgsci(2) ppgplot.pgpt(xaxisvals1[tmpvals1 != badval], yaxisvals1[tmpvals1 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.50, 0.5, 'R-R') ppgplot.pgsci(4) ppgplot.pgpt(xaxisvals2[tmpvals2 != badval], yaxisvals2[tmpvals2 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'C-R') ppgplot.pgsci(3) ppgplot.pgpt(xaxisvals3[tmpvals3 != badval], yaxisvals3[tmpvals3 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.55, 0.5, 'C-I') ppgplot.pgsci(5) ppgplot.pgpt(xaxisvals4[tmpvals4 != badval], yaxisvals4[tmpvals4 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'R-I') ppgplot.pgsci(6) ppgplot.pgpt(xaxisvals5[tmpvals5 != badval], yaxisvals5[tmpvals5 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.75, 0.5, 'I-I') # Close the PGPLOT device ppgplot.pgclos()
def mratiopg(): ppgplot.pgbeg("maccratio.ps/vcps",1,1) #color port. ppgplot.pgpap(8.,1.) ppgplot.pgpage ppgplot.pgsch(1.3) #font size ppgplot.pgslw(7) #line width # 1st panel with symbols w/ stddev errorbars #ylabel="SFR (M\d\(2281) \u yr\u-1\d)" ylabel="L(H\ga) (10\u41\d erg s\u-1\d)" xlabel="M\dr\u " x1=.15 x2=.5 x3=.5 x4=.85 y1=x1 y2=x2 y3=x3 y4=x4 emarker=18 smarker=23 xmin=N.log10(1.e14) xmax=N.log10(2.5e15) #ymin=-1. #ymax=3. ymin=0. ymax=25. ppgplot.pgsvp(x1,x4,y1,y4) #sets viewport ppgplot.pgswin(xmin,xmax,ymin,ymax) #axes limits ppgplot.pgbox('blncst',1.,2,'bcvnst',2.,2) #tickmarks and labeling for i in range(len(lz1lm.mass)): m=lz1lm.mass[i] l=lz1lm.maccret[i] h=hz1lm.maccret[i] r=h/l print i,m,l,h,r #print lz1lm.maccret #print hz1lm.maccret #print hz3lm.maccret r3lm=(hz3lm.maccret)/(lz3lm.maccret) r3hm=(hz3hm.maccret)/(lz3hm.maccret) #for i in range(len(r3)): # print i,lz3.sigma[i],hz3.sigma[i],lz3.mass[i],hz3.mass[i] # print i,lz01.sigma[i],hz01.sigma[i],lz01.mass[i],hz01.mass[i] r1lm=hz1lm.maccret/lz1lm.maccret r1hm=hz1hm.maccret/lz1hm.maccret #ra=N.array(hz01.maccret,'d') #rb=N.array(lz01.maccret,'d') #r01=ra/rb #for i in range(len(r01)): #print "ratio ",hz01.maccret[i],lz01.maccret[i],ra[i],rb[i],r01[i] ppgplot.pgsci(14) ppgplot.pgsls(1) ppgplot.pgline(N.log10(lz3lm.mass),r3lm) ppgplot.pgsls(2) ppgplot.pgline(N.log10(lz3hm.mass),r3hm) ppgplot.pgsci(1) ppgplot.pgsls(1) ppgplot.pgline(N.log10(lz1lm.mass),r1lm) ppgplot.pgsls(2) ppgplot.pgline(N.log10(lz1hm.mass),r1hm) xlabel='M\dcl\u (M\d\(2281)\u)' ylabel='M\dacc\u(z=0.75) / M\dacc\u(z=0.07)' ppgplot.pgsch(1.8) ppgplot.pgslw(7) ppgplot.pgmtxt('b',2.2,0.5,0.5,ylabel) #xlabel ppgplot.pgmtxt('l',2.5,0.5,0.5,xlabel) ppgplot.pgend()
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() # ppgplot arrays tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Loop over identifications for line in lines: # Decode id = satid(line) # Skip slow moving objects drdt = np.sqrt(id.dxdt**2 + id.dydt**2) if drdt < drdtmin: continue # Extract significant pixels x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) #ppgplot.pgopen("/xs") ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if (3600.0 * ff.crres[0] < 1e-3 ) | (3600.0 * ff.crres[1] < 1e-3) | ( ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0): ppgplot.pgsci(2) else: ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.vmax, ff.vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgmove(xmin, ymin) ppgplot.pgdraw(xmax, ymax) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend() elif id.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = id.x0 + id.dxdt * tmid ymid = id.y0 + id.dydt * tmid ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: continue # Skip if point is outside selection area if inside_selection(id, xmid, ymid, x0, y0) == False: continue # Format IOD line cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) plot_selection(id, xmid, ymid) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17) ppgplot.pgmove(id.x0, id.y0) ppgplot.pgdraw(id.x1, id.y1) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend()
if o.hasEphemeris: HJD = o.getColumn('HJD') mag = o.getColumn('mag') err = o.getColumn('err') phases = [o.ephemeris.getPhase(h) for h in HJD] extendPhases = copy.deepcopy(phases) for p in phases: extendPhases.append(p + 1.0) phases = extendPhases mag.extend(mag) err.extend(err) # print phases magMax = numpy.max(mag) + err[numpy.argmax(mag)] magMin = numpy.min(mag) - err[numpy.argmin(mag)] meanError = numpy.mean(err) if extraColumn: ppgplot.pgsch(1.8) ppgplot.pgsch(1.6) ppgplot.pgenv(0. ,2.0 , magMax + meanError*2, magMin - meanError*2, 0, 0) # ppgplot.pglab("Phase", "CRTS mag", "Phase plot: %s [%d]"%(o.id, len(phases)/2) ) ppgplot.pglab("Phase", "CRTS mag", "WD%s"%o.id) ppgplot.pgtext(0.1, magMax + meanError*2 - 0.01, "%.2f d"%(o.ephemeris.Period)) ppgplot.pgsch(1.0) ppgplot.pgpt(phases, mag) ppgplot.pgerrb(2, phases, mag, err, 0) ppgplot.pgerrb(4, phases, mag, err, 0) matplotlib.pyplot.xlabel("Phase", size = labelSize) matplotlib.pyplot.ylabel('CRTS magnitude', size = labelSize) matplotlib.pyplot.errorbar(phases, mag, color='k', yerr=err, fmt = '.', ecolor='0.75', capsize=0) if extraColumn: additionalData = o.getColumn(extraColumnName)
def plot_rating_sheet(rating): """ Plot a fact sheet on the ratings in the database corresponding to 'rating'. 'rating' is a dictionary of information from the MySQL database (as returned by 'get_all_rating_types()'. """ plot_utils.beginplot("rating_report%s.ps" % currdatetime.strftime('%y%m%d'), vertical=True) ch0 = ppgplot.pgqch() ppgplot.pgsch(0.5) ch = ppgplot.pgqch() ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 1 of 2" % (rating["name"], currdatetime.strftime('%c'))) ppgplot.pgsch(ch) # Plot Histograms all_ratings = get_ratings(rating["rating_id"]) range = xmin,xmax = np.min(all_ratings), np.max(all_ratings) ppgplot.pgsci(1) ppgplot.pgslw(1) #===== Total/Classified/Unclassified # Get data ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) (tot_counts, tot_left_edges)=np.histogram(all_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(tot_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, tot_counts) (clsfd_counts, clsfd_left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3,4,5,6,7)), bins=NUMBINS, range=range) ppgplot.pgsci(3) # plot classified in green ppgplot.pgbin(tot_left_edges, clsfd_counts) unclsfd_counts = tot_counts-clsfd_counts ppgplot.pgsci(2) # plot unclassified in red ppgplot.pgbin(tot_left_edges, unclsfd_counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Counts","") #===== Class 1/2/3 ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) (counts, left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3)), bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Class 1/2/3","") #===== RFI ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) rfi_ratings = get_ratings(rating["rating_id"], human_classification=(4,)) (counts, left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI","") #===== Noise ppgplot.pgsvp(0.1, 0.9, 0.3, 0.45) noise_ratings = get_ratings(rating["rating_id"], human_classification=(5,)) (counts, left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Noise","") #===== Known/Harmonic ppgplot.pgsvp(0.1, 0.9, 0.15, 0.3) known_ratings = get_ratings(rating["rating_id"], human_classification=(6,7)) (counts, left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known/Harmonic","") #===== Second page for differential histograms plot_utils.nextpage(vertical=True) ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 2 of 2" % (rating["name"], currdatetime.strftime('%c'))) #===== RFI - Known ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) if rfi_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - known_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") #===== RFI - Noise ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) if noise_ratings.size==0 or rfi_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") #===== Known - Noise ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) if noise_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) # Y-axis label is taken care of outside of if/else (below) ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = known_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgswin(xmin,xmax,0,1) ppgplot.pgsch(0.5) ppgplot.pgbox("NTS",0,5,"",0,0) ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known - Noise","") ppgplot.pgsch(ch0) # reset character height
def setmask(command, data, cdata): """ Sets the mask on a dset and dumps a file containing the mask which can be applied to other dsets using 'appmask'. This is an interactive routine which will request input from the user and is better not used in batch processing. Repeated calls of this routine can be used to build complex masks. The masks are always applied in the original order so that you can mask then partially unmask for example. Note that whatever slot you choose to define the mask will always end up masked; if you don't want this you may want to make a copy. Interactive usage: setmask slot mfile append [device reset x1 x2 y1 y2] mask type Arguments: slot -- an example slot to plot. mfile -- mask file append -- append to an old mask file if possible device -- plot device, e.g. '/xs' reset -- rest plot limits or not x1 -- left X plot limit x2 -- right X plot limit y1 -- bottom Y plot limit y2 -- top Y plot limit mask -- mask 'M', or unmask 'U' or quit 'Q'. type -- type of mask: 'X' masks using ranges in X Mask types: X -- mask a range in X Y -- mask a range in Y I -- mask a range of pixel indices P -- mask in 'phase', i.e. a range that repeats periodically. """ import trm.dnl.mask as mask # generate arguments inpt = inp.Input(DINT_ENV, DINT_DEF, inp.clist(command)) # register parameters inpt.register('slot', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('mfile', inp.Input.GLOBAL, inp.Input.PROMPT) inpt.register('append', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('device', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('reset', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('x1', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('x2', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('y1', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('y2', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('mask', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('type', inp.Input.LOCAL, inp.Input.PROMPT) # get inputs slots = inpt.get_value('slot', 'slot to plot for mask definition', '1') slist = interp_slots(slots, True, data, nfind=1) dset = data[slist[0]] device = inpt.get_value('device', 'plot device', '/xs') # mask file mfile = inpt.get_value('mfile', 'mask file to save results to', subs.Fname('mask','.msk', subs.Fname.NEW)) append = inpt.get_value('append', 'add to an old mask file if possible', True) if append and mfile.exists(): mptr = open(mfile,'rb') gmask = pickle.load(mptr) gmask.app_mask(dset) mptr.close() else: gmask = mask.Gmask() # other parameters reset = inpt.get_value('reset', 'reset plot limits automatically?', True) # compute default limits (x1,x2,y1,y2) = dset.plimits() if (x2 - x1) < (x1+x2)/2./100.: xoff = x1 x1 = 0. x2 -= xoff else: xoff = 0. yoff = 0. if reset: inpt.set_default('x1', x1) inpt.set_default('x2', x2) inpt.set_default('y1', y1) inpt.set_default('y2', y2) x1 = inpt.get_value('x1', 'left-hand limit of plot', x1) x2 = inpt.get_value('x2', 'right-hand limit of plot', x2) y1 = inpt.get_value('y1', 'bottom limit of plot', y1) y2 = inpt.get_value('y2', 'top limit of plot', y2) m_or_u = inpt.get_value('mask', 'M(ask), U(nmask) or Q(uit)?', 'm', lvals=['m', 'M', 'u', 'U', 'q', 'Q']) if m_or_u.upper() == 'M': mtext = 'mask' else: mtext = 'unmask' mask_type = inpt.get_value('type', 'X, Y, P(hase), I(ndex) or Q(uit)?', 'x', lvals=['x', 'X', 'y', 'Y', 'p', 'P', 'i', 'I', 'q', 'Q']) # initialise plot try: pg.pgopen(device) pg.pgsch(1.5) pg.pgscf(2) pg.pgslw(2) pg.pgsci(4) pg.pgenv(x1,x2,y1,y2,0,0) (xlabel,ylabel) = dset.plabel(xoff,yoff) pg.pgsci(2) pg.pglab(xlabel, ylabel, dset.title) # plot the dset dset.plot(xoff,yoff) x = (x1+x2)/2. y = (y1+y2)/2. # now define masks ch = 'X' while ch.upper() != 'Q': # go through mask options if mask_type.upper() == 'X': print('Set cursor at the one end of the X range, Q to quit') (xm1,y,ch) = pg.pgband(7,0,x,y) if ch.upper() != 'Q': print('Set cursor at the other end of ' + 'the X range, Q to quit') xm2,y,ch = pg.pgband(7,0,xm1,y) if ch.upper() != 'Q': if xm1 > xm2: xm1,xm2 = xm2,xm1 umask = mask.Xmask(xoff+xm1, xoff+xm2, m_or_u.upper() == 'M') elif mask_type.upper() == 'I': print('Place cursor near a point and click to ' + mtext + ' it, Q to quit') x,y,ch = pg.pgband(7,0,x,y) if ch.upper() != 'Q': xmm1,xmm2,ymm1,ymm2 = pg.pgqvp(2) xscale = (xmm2-xmm1)/(x2-x1) yscale = (ymm2-ymm1)/(y2-y1) # only consider good data of opposite 'polarity' to the # change we are making. ok = (dset.good == True) & \ (dset.mask == (m_or_u.upper() == 'M')) if len(dset.x.dat[ok == True]): # compute physical squared distance of cursor from # points sqdist = npy.power( xscale*(dset.x.dat[ok]-(xoff+x)),2) + \ npy.power(yscale*(dset.y.dat[ok]-(yoff+y)),2) # select the index giving the minimum distance indices = npy.arange(len(dset))[ok] index = indices[sqdist.min() == sqdist][0] umask = mask.Imask(index, m_or_u.upper() == 'M') else: print('There seem to be no data to ' + mtext + '; data already ' + mtext + 'ed are ignored.') umask = None if ch.upper() != 'Q' and umask is not None: gmask.append(umask) umask.app_mask(dset) print('overplotting data') # over-plot the dset dset.plot(xoff,yoff) pg.pgclos() except pg.ioerror, err: raise DintError(str(err))
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2=rangex otherxaxis=0 else: otherxaxis=1 if rangey2 is None: rangey2=rangey otheryaxis=0 else: otheryaxis=1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # My little add-on to switch the background to white if device == '/XWIN': reset_colors() if device == '/AQT': ppgplot.pgsci(0) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1,1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks=='in': env = "CMST" else: env = "CMSTI" if logx2: lxenv='L' else: lxenv='' if logy2: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox(env+lxenv, 0.0, 0, env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env+lyenv, 0.0, 0) else: ppgplot.pgbox(env+lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks=='in': env = "ST" else: env = "STI" if logx: lxenv='L' else: lxenv='' if logy: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) else: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) # My little add-on to switch the background to white if device == '/AQT' or device == '/XWIN': reset_colors() # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id==1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
def gotoit(): nbin = 10 #c=Cluster() #g=Galaxy() clusterfile = "clusters.spec.dat" print "reading in cluster file to get cluster parameters" c.creadfiles(clusterfile) print "got ", len(c.z), " clusters" c.convarray() c.Kcorr() go2 = [] #combined arrays containing all galaxies gsf = [] #combined arrays containing all galaxies gsig5 = [] gsig10 = [] gsig52r200 = [] #spec catalogs extended out to 2xR200 gsig102r200 = [] #spec catalogs extended out to 2xR200 gsig5phot = [] gsig10phot = [] sgo2 = [] #combined arrays containing all galaxies sgha = [] #combined arrays containing all galaxies sgsf = [] #combined arrays containing all galaxies sgsig5 = [] sgsig10 = [] sgsig52r200 = [] #spec catalogs extended out to 2xR200 sgsig102r200 = [] #spec catalogs extended out to 2xR200 sgsig5phot = [] sgsig10phot = [] if (mode < 1): c.getsdssphotcats() c.getsdssspeccats() gr = [] #list of median g-r colors psplotinit('summary.ps') x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .45 y3 = .55 y4 = .85 ppgplot.pgsch(1.2) #font size ppgplot.pgslw(2) #for i in range(len(c.z)): cl = [10] (xl, xu, yl, yu) = ppgplot.pgqvp(0) print "viewport = ", xl, xu, yl, yu complall = [] for i in range(len(c.z)): #for i in cl: gname = "g" + str(i) gname = Galaxy() gspecfile = "abell" + str(c.id[i]) + ".spec.dat" gname.greadfiles(gspecfile, i) print "number of members = ", len(gname.z) if len(gname.z) < 10: print "less than 10 members", len(gname.z) continue gname.convarray() #gname.cullmembers() #gname.getmemb()#get members w/in R200 #gr.append(N.average(gname.g-gname.r)) gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat" gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i) print i, c.id[i], " getnearest, first call", len(gname.ra), len( gname.sra), sum(gname.smemb) #gname.getnearest(i) (gname.sig52r200, gname.sig102r200) = gname.getnearestgen( gname.ra, gname.dec, gname.sra, gname.sdec, i ) #measure distances from ra1, dec1 to members in catalog ra2, dec2 sig52r200 = N.compress(gname.memb > 0, gname.sig52r200) gsig52r200[len(gsig5phot):] = sig52r200 sig102r200 = N.compress(gname.memb > 0, gname.sig102r200) gsig102r200[len(gsig10phot):] = sig102r200 gphotfile = "abell" + str(c.id[i]) + ".phot.dat" gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i]) gname.getnearest(i) #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot) #print gspecfile, c.z[i],c.kcorr[i] (ds5, ds10) = gname.gwritefiles(gspecfile, i) o2 = N.compress(gname.memb > 0, gname.o2) go2[len(go2):] = o2 sf = N.compress(gname.memb > 0, gname.sf) gsf[len(gsf):] = sf sig5 = N.compress(gname.memb > 0, gname.sig5) gsig5[len(gsig5):] = sig5 sig10 = N.compress(gname.memb > 0, gname.sig10) gsig10[len(gsig10):] = sig10 sig5phot = N.compress(gname.memb > 0, gname.sig5phot) gsig5phot[len(gsig5phot):] = sig5phot sig10phot = N.compress(gname.memb > 0, gname.sig10phot) gsig10phot[len(gsig10phot):] = sig10phot ds5 = N.array(ds5, 'f') ds10 = N.array(ds10, 'f') #print len(ds5),len(ds10) #ppgplot.pgsvp(xl,xu,yl,yu) ppgplot.pgsvp(0.1, .9, .08, .92) ppgplot.pgslw(7) label = 'Abell ' + str( c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i]) ppgplot.pgtext(0., 1., label) ppgplot.pgslw(2) ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-1., 3., -1., 3.) #axes limits ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u(phot) (gal/Mpc\u2\d)") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(sig10phot) y = N.log10(sig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) xp = N.array([-0.5], 'f') yp = N.array([2.5], 'f') ppgplot.pgpt(xp, yp, 17) ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot') ppgplot.pgsci(4) xp = N.array([-0.5], 'f') yp = N.array([2.2], 'f') ppgplot.pgpt(xp, yp, 21) ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot') y = N.log10(sig102r200) ppgplot.pgsch(.9) ppgplot.pgpt(x, y, 21) ppgplot.pgsch(1.2) ppgplot.pgslw(2) #line width ppgplot.pgsci(1) #ppgplot.pgenv(-200.,200.,-1.,20.,0,0) #ppgplot.pgsci(2) #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1) #ppgplot.pgsci(4) #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1) #ppgplot.pgsci(1) #ppgplot.pglab("\gD\gS","Ngal",gspecfile) #ppgplot.pgpanl(1,2) g = N.compress(gname.memb > 0, gname.g) r = N.compress(gname.memb > 0, gname.r) V = N.compress(gname.memb > 0, gname.V) dmag = N.compress(gname.memb > 0, gname.dmagnearest) dnearest = N.compress(gname.memb > 0, gname.nearest) dz = N.compress(gname.memb > 0, gname.dz) #ppgplot.pgsvp(x3,x4,y1,y2) #sets viewport #ppgplot.pgenv(-.5,3.,-1.,5.,0,0) #ppgplot.pgpt((g-V),(g-r),17) #ppgplot.pgsci(1) #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile) ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin( (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i])) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec") #ppgplot.pglab("RA",'Dec',gspecfile) ppgplot.pgsfs(2) ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i]) ppgplot.pgsls(4) ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i]) ppgplot.pgsls(1) #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.)) ppgplot.pgsci(2) ppgplot.pgpt(gname.ra, gname.dec, 17) ppgplot.pgsci(4) ppgplot.pgpt(gname.photra, gname.photdec, 21) ppgplot.pgsci(1) #calculate completeness w/in R200 dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2) dphot = N.sqrt((gname.photra - c.ra[i])**2 + (gname.photdec - c.dec[i])**2) nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot)) nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec)) s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % ( str(c.id[i]), float(nspec / nphot), nspec, nphot) print s complall.append(float(nspec / nphot)) ppgplot.pgsvp(x3, x4, y3, y4) #sets viewport #ppgplot.pgsvp(x1,x2,y3,y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-0.005, .05, -1., 1.) ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "Dist to nearest phot neighbor (deg)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) ppgplot.pgpt(dnearest, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) dm = N.compress(dnearest < 0.01, dmag) std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm)) #ppgplot.pgslw(7) #label='Abell '+str(c.id[i]) #ppgplot.pgtext(0.,1.,label) ppgplot.pgslw(2) label = '\gDM\dV\u(err) = ' + std ppgplot.pgsch(.9) ppgplot.pgtext(0., .8, label) #label = "z = %5.2f"%(c.z[i]) #ppgplot.pgtext(0.,.8,label) ppgplot.pgsch(1.2) #ppgplot.pgsvp(x3,x4,y3,y4) #sets viewport #ppgplot.pgenv(-.15,.15,-3.,3.,0,0) #ppgplot.pgsci(2) #ppgplot.pgpt(dz,dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile) ppgplot.pgsvp(x3, x4, y1, y2) #sets viewport ppgplot.pgswin(-3., 3., -1., 1.) ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i] ppgplot.pgpt(dv, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(0.,3.5,-3.,3.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((g-r),dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("g-r",'\gD Mag',gspecfile) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((V),dmag,17) #x=N.arange(-30.,30.,1.) #y=0*x #ppgplot.pgsci(1) #ppgplot.pgsls(2) #ppgplot.pgline(x,y) #ppgplot.pgsls(1) #ppgplot.pgsci(1) #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile) #ppgplot.pgpage() #ppgplot.pgpage() #combine galaxy data ppgplot.pgpage() (sssig5, sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra, gname.sdec, i) #get spec-spec local density (spsig5, spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra, gname.photdec, i) #get spec-phot local density o2 = N.compress(gname.smemb > 0, gname.so2) sgo2[len(sgo2):] = o2 ha = N.compress(gname.smemb > 0, gname.sha) sgha[len(sgha):] = ha sf = N.compress(gname.smemb > 0, gname.ssf) sgsf[len(sgsf):] = sf sig5 = N.compress(gname.smemb > 0, sssig5) sgsig5[len(sgsig5):] = sig5 sig10 = N.compress(gname.smemb > 0, sssig10) sgsig10[len(sgsig10):] = sig10 sig5phot = N.compress(gname.smemb > 0, spsig5) sgsig5phot[len(sgsig5phot):] = sig5phot sig10phot = N.compress(gname.smemb > 0, spsig10) sgsig10phot[len(sgsig10phot):] = sig10phot #gr=N.array(gr,'f') #c.assigncolor(gr) #for i in range(len(c.z)): # print c.id[i],c.z[i],c.r200[i],c.r200deg[i] print "Average Completeness w/in R200 = ", N.average(N.array( complall, 'f')) print "sig o2", len(gsig10), len(gsig10phot), len(go2) print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2) plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin) #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin) plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin) #sf frac versus sigma plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin) #sf frac versus sigma plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all', nbin) #sf frac versus sigma plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all', nbin) #sf frac versus sigma #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20) #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30) plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10) #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma psplotinit('one2one.ps') ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0) ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)", "\gS\d10\u(spec) (gal/Mpc\u2\d)", "") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(gsig10phot) y = N.log10(gsig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) ppgplot.pgsch(1.) ppgplot.pgsci(1) ppgplot.pgend()
ppgplot.pgsch(1.6) ppgplot.pgenv(0, 2, numpy.max(mag), numpy.min(mag), 0, 0) ppgplot.pglab("Phase", "PTF magnitude", "%s"%(arg.name)) ppgplot.pgsch(1.0) ppgplot.pgpt(phases, mag) ppgplot.pgerrb(2, phases, mag, err, 0) ppgplot.pgerrb(4, phases, mag, err, 0) ppgplot.pgsci(2) model = modelledData.getColumn('mag') model.extend(model) ppgplot.pgsls(2) ppgplot.pgslw(7) ppgplot.pgline(phases, model) """ ppgplot.pgsch(1.6) ppgplot.pgenv(0, 2, 0, maxFlux, 0, 0) ppgplot.pglab("Phase", "PTF flux (mJy)", "%s"%(arg.name)) ppgplot.pgsch(1.0) ppgplot.pgpt(phases, flux) ppgplot.pgerrb(2, phases, flux, flux_err, 0) ppgplot.pgerrb(4, phases, flux, flux_err, 0) ppgplot.pgsci(2) ppgplot.pgsls(2) ppgplot.pgslw(7) modelPhases = modelledData.getColumn('phase') temp = copy.deepcopy(modelPhases) for p in modelPhases: temp.append(p + 1.0) modelPhases = temp model = modelledData.getColumn('flux')
def main(): parser = OptionParser(usage) parser.add_option("-x", "--xwin", action="store_true", dest="xwin", default=False, help="Don't make a postscript plot, just use an X-window") parser.add_option("-p", "--noplot", action="store_false", dest="makeplot", default=True, help="Look for pulses but do not generate a plot") parser.add_option("-m", "--maxwidth", type="float", dest="maxwidth", default=0.0, help="Set the max downsampling in sec (see below for default)") parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0, help="Set a different threshold SNR (default=5.0)") parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0, help="Only plot events occuring after this time (s)") parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9, help="Only plot events occuring before this time (s)") parser.add_option("-g", "--glob", type="string", dest="globexp", default=None, help="Process the files from this glob expression") parser.add_option("-f", "--fast", action="store_true", dest="fast", default=False, help="Use a faster method of de-trending (2x speedup)") parser.add_option("-b", "--nobadblocks", action="store_false", dest="badblocks", default=True, help="Don't check for bad-blocks (may save strong pulses)") parser.add_option("-d", "--detrendlen", type="int", dest="detrendfact", default=1, help="Chunksize for detrending (pow-of-2 in 1000s)") (opts, args) = parser.parse_args() if len(args)==0: if opts.globexp==None: print full_usage sys.exit(0) else: args = [] for globexp in opts.globexp.split(): args += glob.glob(globexp) useffts = True dosearch = True if opts.xwin: pgplot_device = "/XWIN" else: pgplot_device = "" fftlen = 8192 # Should be a power-of-two for best speed chunklen = 8000 # Must be at least max_downfact less than fftlen assert(opts.detrendfact in [1,2,4,8,16,32]) detrendlen = opts.detrendfact*1000 if (detrendlen > chunklen): chunklen = detrendlen fftlen = int(next2_to_n(chunklen)) blocks_per_chunk = chunklen / detrendlen overlap = (fftlen - chunklen)/2 worklen = chunklen + 2*overlap # currently it is fftlen... max_downfact = 30 default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150, 220, 300] if args[0].endswith(".singlepulse"): filenmbase = args[0][:args[0].rfind(".singlepulse")] dosearch = False elif args[0].endswith(".dat"): filenmbase = args[0][:args[0].rfind(".dat")] else: filenmbase = args[0] # Don't do a search, just read results and plot if not dosearch: info, DMs, candlist, num_v_DMstr = \ read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end) orig_N, orig_dt = int(info.N), info.dt obstime = orig_N * orig_dt else: DMs = [] candlist = [] num_v_DMstr = {} # Loop over the input files for filenm in args: if filenm.endswith(".dat"): filenmbase = filenm[:filenm.rfind(".dat")] else: filenmbase = filenm info = infodata.infodata(filenmbase+".inf") DMstr = "%.2f"%info.DM DMs.append(info.DM) N, dt = int(info.N), info.dt obstime = N * dt # Choose the maximum width to search based on time instead # of bins. This helps prevent increased S/N when the downsampling # changes as the DM gets larger. if opts.maxwidth > 0.0: downfacts = [x for x in default_downfacts if x*dt <= opts.maxwidth] else: downfacts = [x for x in default_downfacts if x <= max_downfact] if len(downfacts) == 0: downfacts = [default_downfacts[0]] if (filenm == args[0]): orig_N = N orig_dt = dt if info.breaks: offregions = zip([x[1] for x in info.onoff[:-1]], [x[0] for x in info.onoff[1:]]) # If last break spans to end of file, don't read it in (its just padding) if offregions[-1][1] == N - 1: N = offregions[-1][0] + 1 outfile = open(filenmbase+'.singlepulse', mode='w') # Compute the file length in detrendlens roundN = N/detrendlen * detrendlen numchunks = roundN / chunklen # Read in the file print 'Reading "%s"...'%filenm timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN) # Split the timeseries into chunks for detrending numblocks = roundN/detrendlen timeseries.shape = (numblocks, detrendlen) stds = Num.zeros(numblocks, dtype=Num.float64) # de-trend the data one chunk at a time print ' De-trending the data and computing statistics...' for ii, chunk in enumerate(timeseries): if opts.fast: # use median removal instead of detrending (2x speedup) tmpchunk = chunk.copy() tmpchunk.sort() med = tmpchunk[detrendlen/2] chunk -= med tmpchunk -= med else: # The detrend calls are the most expensive in the program timeseries[ii] = scipy.signal.detrend(chunk, type='linear') tmpchunk = timeseries[ii].copy() tmpchunk.sort() # The following gets rid of (hopefully) most of the # outlying values (i.e. power dropouts and single pulses) # If you throw out 5% (2.5% at bottom and 2.5% at top) # of random gaussian deviates, the measured stdev is ~0.871 # of the true stdev. Thus the 1.0/0.871=1.148 correction below. # The following is roughly .std() since we already removed the median stds[ii] = Num.sqrt((tmpchunk[detrendlen/40:-detrendlen/40]**2.0).sum() / (0.95*detrendlen)) stds *= 1.148 # sort the standard deviations and separate those with # very low or very high values sort_stds = stds.copy() sort_stds.sort() # identify the differences with the larges values (this # will split off the chunks with very low and very high stds locut = (sort_stds[1:numblocks/2+1] - sort_stds[:numblocks/2]).argmax() + 1 hicut = (sort_stds[numblocks/2+1:] - sort_stds[numblocks/2:-1]).argmax() + numblocks/2 - 2 std_stds = scipy.std(sort_stds[locut:hicut]) median_stds = sort_stds[(locut+hicut)/2] print " pseudo-median block standard deviation = %.2f" % (median_stds) if (opts.badblocks): lo_std = median_stds - 4.0 * std_stds hi_std = median_stds + 4.0 * std_stds # Determine a list of "bad" chunks. We will not search these. bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0] print " identified %d bad blocks out of %d (i.e. %.2f%%)" % \ (len(bad_blocks), len(stds), 100.0*float(len(bad_blocks))/float(len(stds))) stds[bad_blocks] = median_stds else: bad_blocks = [] print " Now searching..." # Now normalize all of the data and reshape it to 1-D timeseries /= stds[:,Num.newaxis] timeseries.shape = (roundN,) # And set the data in the bad blocks to zeros # Even though we don't search these parts, it is important # because of the overlaps for the convolutions for bad_block in bad_blocks: loind, hiind = bad_block*detrendlen, (bad_block+1)*detrendlen timeseries[loind:hiind] = 0.0 # Convert to a set for faster lookups below bad_blocks = set(bad_blocks) # Step through the data dm_candlist = [] for chunknum in xrange(numchunks): loind = chunknum*chunklen-overlap hiind = (chunknum+1)*chunklen+overlap # Take care of beginning and end of file overlap issues if (chunknum==0): # Beginning of file chunk = Num.zeros(worklen, dtype=Num.float32) chunk[overlap:] = timeseries[loind+overlap:hiind] elif (chunknum==numchunks-1): # end of the timeseries chunk = Num.zeros(worklen, dtype=Num.float32) chunk[:-overlap] = timeseries[loind:hiind-overlap] else: chunk = timeseries[loind:hiind] # Make a set with the current block numbers lowblock = blocks_per_chunk * chunknum currentblocks = set(Num.arange(blocks_per_chunk) + lowblock) localgoodblocks = Num.asarray(list(currentblocks - bad_blocks)) - lowblock # Search this chunk if it is not all bad if len(localgoodblocks): # This is the good part of the data (end effects removed) goodchunk = chunk[overlap:-overlap] # need to pass blocks/chunklen, localgoodblocks # dm_candlist, dt, opts.threshold to cython routine # Search non-downsampled data first # NOTE: these nonzero() calls are some of the most # expensive calls in the program. Best bet would # probably be to simply iterate over the goodchunk # in C and append to the candlist there. hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen # Add the candidates (which are sorted by bin) for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt dm_candlist.append(candidate(info.DM, val, time, bin, 1)) # Now do the downsampling... for downfact in downfacts: if useffts: # Note: FFT convolution is faster for _all_ downfacts, even 2 chunk2 = Num.concatenate((Num.zeros(1000), chunk, Num.zeros(1000))) goodchunk = Num.convolve(chunk2, Num.ones(downfact), mode='same') / Num.sqrt(downfact) goodchunk = goodchunk[overlap:-overlap] #O qualcosa di simile, altrimenti non so perche' trova piu' candidati! Controllare! else: # The normalization of this kernel keeps the post-smoothing RMS = 1 kernel = Num.ones(downfact, dtype=Num.float32) / \ Num.sqrt(downfact) smoothed_chunk = scipy.signal.convolve(chunk, kernel, 1) goodchunk = smoothed_chunk[overlap:-overlap] #hibins = Num.nonzero(goodchunk>opts.threshold)[0] hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen hibins = hibins.tolist() hivals = hivals.tolist() # Now walk through the new candidates and remove those # that are not the highest but are within downfact/2 # bins of a higher signal pulse hibins, hivals = prune_related1(hibins, hivals, downfact) # Insert the new candidates into the candlist, but # keep it sorted... for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt bisect.insort(dm_candlist, candidate(info.DM, val, time, bin, downfact)) # Now walk through the dm_candlist and remove the ones that # are within the downsample proximity of a higher # signal-to-noise pulse dm_candlist = prune_related2(dm_candlist, downfacts) print " Found %d pulse candidates"%len(dm_candlist) # Get rid of those near padding regions if info.breaks: prune_border_cases(dm_candlist, offregions) # Write the pulses to an ASCII output file if len(dm_candlist): #dm_candlist.sort(cmp_sigma) outfile.write("# DM Sigma Time (s) Sample Downfact\n") for cand in dm_candlist: outfile.write(str(cand)) outfile.close() # Add these candidates to the overall candidate list for cand in dm_candlist: candlist.append(cand) num_v_DMstr[DMstr] = len(dm_candlist) if (opts.makeplot): # Step through the candidates to make a SNR list DMs.sort() snrs = [] for cand in candlist: if not Num.isinf(cand.sigma): snrs.append(cand.sigma) if snrs: maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3 else: maxsnr = int(opts.threshold) + 3 # Generate the SNR histogram snrs = Num.asarray(snrs) (num_v_snr, lo_snr, d_snr, num_out_of_range) = \ scipy.stats.histogram(snrs, int(maxsnr-opts.threshold+1), [opts.threshold, maxsnr]) snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \ + lo_snr + 0.5*d_snr num_v_snr = num_v_snr.astype(Num.float32) num_v_snr[num_v_snr==0.0] = 0.001 # Generate the DM histogram num_v_DM = Num.zeros(len(DMs)) for ii, DM in enumerate(DMs): num_v_DM[ii] = num_v_DMstr["%.2f"%DM] DMs = Num.asarray(DMs) # open the plot device short_filenmbase = filenmbase[:filenmbase.find("_DM")] if opts.T_end > obstime: opts.T_end = obstime if pgplot_device: ppgplot.pgopen(pgplot_device) else: if (opts.T_start > 0.0 or opts.T_end < obstime): ppgplot.pgopen(short_filenmbase+'_%.0f-%.0fs_singlepulse.ps/VPS'% (opts.T_start, opts.T_end)) else: ppgplot.pgopen(short_filenmbase+'_singlepulse.ps/VPS') ppgplot.pgpap(7.5, 1.0) # Width in inches, aspect # plot the SNR histogram ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87) ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5), Num.log10(2*max(num_v_snr))) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1) # plot the DM histogram ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87) # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0 ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, 0.0, 1.1*max(num_v_DM+[1])) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(DMs, num_v_DM, 1) # plot the SNR vs DM plot ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87) ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, opts.threshold, maxsnr) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgsch(1.0) cand_ts = Num.zeros(len(candlist), dtype=Num.float32) cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32) cand_DMs = Num.zeros(len(candlist), dtype=Num.float32) for ii, cand in enumerate(candlist): cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \ cand.time, cand.sigma, cand.DM ppgplot.pgpt(cand_DMs, cand_SNRs, 20) # plot the DM vs Time plot ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52) ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs)-0.5, max(DMs)+0.5) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") # Circles are symbols 20-26 in increasing order snr_range = 12.0 cand_symbols = (cand_SNRs-opts.threshold)/snr_range * 6.0 + 20.5 cand_symbols = cand_symbols.astype(Num.int32) cand_symbols[cand_symbols>26] = 26 for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols==ii)[0] ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii) # Now fill the infomation area ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97) ppgplot.pgsch(1.0) ppgplot.pgmtxt('T', 0.5, 0.0, 0.0, "Single pulse results for '%s'"%short_filenmbase) ppgplot.pgsch(0.8) # first row ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\ info.object) ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):') ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA) ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f'%orig_N) # second row ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\ info.telescope) ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):') ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC) ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\ (orig_dt*1e6)) # third row if info.instrument.find("pigot") >= 0: instrument = "Spigot" else: instrument = info.instrument ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s'%instrument) if (info.bary): ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f'%info.epoch) else: ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f'%info.epoch) ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\ ((info.numchan/2-0.5)*info.chan_width+info.lofreq)) ppgplot.pgiden() ppgplot.pgend()
print superPixel superMax = numpy.ma.max(superPixel) superMin = numpy.ma.min(superPixel) variance = numpy.ma.var(superPixel) numPixels = numpy.ma.count(superPixel) print( "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f" % (position[1], position[0], superMax, superMin, variance, variance / numPixels)) ppgplot.pgslct(spPreview['pgplotHandle']) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray(boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot['pgPlotTransform']) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot['pgplotHandle']) pointingObject = {'x': position[1], 'y': position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [ startX, startX, startX + superPixelSize, startX + superPixelSize ] ypts = [ startY, startY + superPixelSize, startY + superPixelSize, startY ]
def main(options): debug = options.debug MSlist = [] for inmspart in options.inms.split(','): for msname in glob.iglob(inmspart): MSlist.append(msname) if len(MSlist) == 0: print 'Error: You must specify at least one MS name.' print ' Use "uvplot.py -h" to get help.' return if len(MSlist) > 1: print 'WARNING: Antenna selection (other than all) may not work well' print ' when plotting more than one MS. Carefully inspect the' print ' listings of antenna numbers/names!' device = options.device if device=='?': ppgplot.pgldev() return if options.title == '': plottitle = options.inms else: plottitle = options.title axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin,xmax,ymin,ymax = axlimits else: print 'Error: You must specify four axis limits' return timeslots = options.timeslots.split(',') if len(timeslots) != 3: print 'Error: Timeslots format is start,skip,end' return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) if timeslots[i] < 0: print 'Error: timeslots values must not be negative' return antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]),int(tmpspl[1])+1): antToPlot.append(j) else: print 'Error: Could not understand antenna list.' return queryMode = options.query plotLambda = options.kilolambda badval = 0.0 xaxisvals = numpy.array([]) yaxisvals = numpy.array([]) savex = numpy.array([]) savey = numpy.array([]) numPlotted = 0 for inputMS in MSlist: # open the main table and print some info about the MS print 'Getting info for', inputMS t = pt.table(inputMS, readonly=True, ack=False) tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),readonly=True,ack=False) ref_freq = tfreq.getcol('REF_FREQUENCY',nrow=1)[0] ch_freq = tfreq.getcol('CHAN_FREQ',nrow=1)[0] print 'Reference frequency:\t%f MHz' % (ref_freq/1.e6) if options.wideband: ref_wavelength = 2.99792458e8/ch_freq else: ref_wavelength = [2.99792458e8/ref_freq] print 'Reference wavelength:\t%f m' % (ref_wavelength[0]) if options.sameuv and numPlotted > 0: print 'Assuming same uvw as first MS!' if plotLambda: for w in ref_wavelength: xaxisvals = numpy.append(xaxisvals,[savex/w/1000.,-savex/w/1000.]) yaxisvals = numpy.append(yaxisvals,[savey/w/1000.,-savey/w/1000.]) else: print 'Plotting more than one MS with same uv, all in meters... do you want -k?' xaxisvals = numpy.append(xaxisvals,[savex,-savex]) yaxisvals = numpy.append(yaxisvals,[savey,-savey]) continue firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows()-1) intTime = t.getcell("INTERVAL", 0) print 'Integration time:\t%f sec' % (intTime) nTimeslots = (lastTime - firstTime) / intTime print 'Number of timeslots:\t%d' % (nTimeslots) if timeslots[1] == 0: if nTimeslots >= 100: timeskip = int(nTimeslots/100) else: timeskip = 1 else: timeskip = int(timeslots[1]) print 'For each baseline, plotting one point every %d samples' % (timeskip) if timeslots[2] == 0: timeslots[2] = nTimeslots # open the antenna subtable tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) # Station names antList = tant.getcol('NAME') if len(antToPlot)==1 and antToPlot[0]==-1: antToPlot = range(len(antList)) print 'Station list (only starred stations will be plotted):' for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print '%s %2d\t%s' % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[2]*intTime,str(antToPlot),str(antToPlot)), columns='ANTENNA1,ANTENNA2,UVW') # Now we loop through the baselines i = 0 nb = (len(antToPlot)*(len(antToPlot)-1))/2 sys.stdout.write('Reading uvw for %d baselines: %04d/%04d'%(nb,i,nb)) sys.stdout.flush() for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]): ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: continue i += 1 sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d'%(i,nb)) sys.stdout.flush() # Get the values to plot uvw = tpart.getcol('UVW', rowincr=timeskip) if numPlotted == 0: savex = numpy.append(savex,[uvw[:,0],-uvw[:,0]]) savey = numpy.append(savey,[uvw[:,1],-uvw[:,1]]) if plotLambda: for w in ref_wavelength: xaxisvals = numpy.append(xaxisvals,[uvw[:,0]/w/1000.,-uvw[:,0]/w/1000.]) yaxisvals = numpy.append(yaxisvals,[uvw[:,1]/w/1000.,-uvw[:,1]/w/1000.]) else: xaxisvals = numpy.append(xaxisvals,[uvw[:,0],-uvw[:,0]]) yaxisvals = numpy.append(yaxisvals,[uvw[:,1],-uvw[:,1]]) #if debug: # print uvw.shape # print xaxisvals.shape # print yaxisvals.shape #else: # sys.stdout.write('.') # sys.stdout.flush() sys.stdout.write(' Done!\n') numPlotted += 1 print 'Plotting uv points ...' # open the graphics device, using only one panel ppgplot.pgbeg(device, 1, 1) # set the font size ppgplot.pgsch(1) ppgplot.pgvstd() # Plot the data if debug: print xaxisvals xaxisvals = numpy.array(xaxisvals) yaxisvals = numpy.array(yaxisvals) tmpvals = numpy.sqrt(xaxisvals**2+yaxisvals**2) ppgplot.pgsci(1) uvmax = max(xaxisvals.max(),yaxisvals.max()) uvmin = min(xaxisvals.min(),yaxisvals.min()) uvuplim = 0.02*(uvmax-uvmin)+uvmax uvlolim = uvmin-0.02*(uvmax-uvmin) if xmin == '': minx = uvlolim else: minx = float(xmin) if xmax == '': maxx = uvuplim else: maxx = float(xmax) if ymin == '': miny = uvlolim else: miny = float(ymin) if ymax == '': maxy = uvuplim else: maxy = float(ymax) if minx == maxx: minx = -1.0 maxx = 1.0 if miny == maxy: miny = -1.0 maxy = 1.0 ppgplot.pgpage() ppgplot.pgswin(minx,maxx,miny,maxy) ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0) if plotLambda: ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s'%(plottitle)) else: ppgplot.pglab('u [m]', 'v [m]', '%s'%(plottitle)) ppgplot.pgpt(xaxisvals[tmpvals!=badval], yaxisvals[tmpvals!=badval], 1) # Close the PGPLOT device ppgplot.pgclos()
#os.system("sex j+n.fits,cnc105jalign2.fits \n") #os.system("sex j+n.fits,ncc105jalign3.fits \n") os.system("sex ncc105jalign3.fits \n") #os.system("sex c1054j2cna.fits \n") im1 = Catalog() im1.readcat() #os.system("sex cnc105jalign2.fits,c1054j2cna.fits \n") #os.system("sex j+n.fits,c1054j2cna.fits \n") #os.system("sex c1054j2cna.fits,gediscsj.fits -MAG_ZEROPOINT 23.88\n") #os.system("sex ncc105jalign3.fits,gediscsj.fits -MAG_ZEROPOINT 22.84\n") os.system("sex ncc105jalign3.fits,ngdim20_mp.fits\n") im2 = Catalog() im2.readcat() ppgplot.pgbeg("all.ps/vcps", 2, 2) ppgplot.pgsch(2.) #font size ppgplot.pgslw(4) #line width xysimple(im1.magauto, im2.magauto, "magauto mask", "magauto") ppgplot.pgpage y = im1.magauto - im2.magauto ave = N.average(y) std = scipy.stats.std(y) print "Ave diff in mag auto = ", ave, "+/-", std xysimple(im1.magauto, y, "magauto mask", "magauto mask - magauto") ppgplot.pgpage y = im1.magiso - im2.magiso ave = N.average(y) std = scipy.stats.std(y) print "Ave diff in iso mags = ", ave, "+/-", std xysimple(im1.magiso, y, "magiso mask", "magiso mask - magiso")