コード例 #1
0
ファイル: extract.py プロジェクト: zisi/stvid
def plot_header(fname, ff, iod_line):
    # ppgplot arrays
    heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0])
    heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0])
    heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0])
    heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0])

    # Plot
    ppg.pgopen(fname)
    ppg.pgpap(0.0, 1.0)
    ppg.pgsvp(0.1, 0.95, 0.1, 0.8)

    ppg.pgsch(0.8)
    ppg.pgmtxt("T", 6.0, 0.0, 0.0,
               "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
    if is_calibrated(ff):
        ppg.pgsci(1)
    else:
        ppg.pgsci(2)
    ppg.pgmtxt(
        "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
        (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1]))
    ppg.pgsci(1)
    ppg.pgmtxt("T", 3.6, 0.0, 0.0, ("FoV: %.2f\\(2218)x%.2f\\(2218) "
                                    "Scale: %.2f''x%.2f'' pix\\u-1\\d") %
               (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
    ppg.pgmtxt(
        "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
        (np.mean(ff.zmax), np.std(ff.zmax), ff.zmaxmin, ff.zmaxmax))
    ppg.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

    ppg.pgsch(1.0)
    ppg.pgwnad(0.0, ff.nx, 0.0, ff.ny)
    ppg.pglab("x (pix)", "y (pix)", " ")
    ppg.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)
コード例 #2
0
def plot_selection_new(ident, dt=1.0, w=10.0):
    dx, dy = ident.x1 - ident.x0, ident.y1 - ident.y0
    ang = np.mod(np.arctan2(dy, dx), 2.0 * np.pi)
    r = np.sqrt(dx**2 + dy**2)
    drdt = r / (ident.t1 - ident.t0)
    sa, ca = np.sin(ang), np.cos(ang)

    dx = np.array([-dt, -dt, ident.t1 + dt, ident.t1 + dt, -dt]) * drdt
    dy = np.array([w, -w, -w, w, w])
    x = ca * dx - sa * dy + ident.x0
    y = sa * dx + ca * dy + ident.y0

    ppg.pgline(x, y)
    ppg.pgpt1(x[0], y[0], 17)
    ppg.pgpt1(x[1], y[1], 17)
    ppg.pgsch(0.65)
    ppg.pgslw(2)
    if (x[0] < x[1]) & (ident.x0 < ident.x1):
        ppg.pgptxt(x[1], y[1] - 1.5 * w, 0.0, 0.0, " %05d" % ident.norad)
    else:
        ppg.pgptxt(x[0], y[0] + 0.5 * w, 0.0, 0.0, " %05d" % ident.norad)
    ppg.pgsch(1.0)
    ppg.pgslw(1)

    return
コード例 #3
0
ファイル: millenium.py プロジェクト: rfinn/pythonCode
def plotdVdz():
    nv = 3.
    nr = 1.
    ppgplot.pgbeg("dVdz.ps/vcps", 1, 1)  #color port.
    ppgplot.pgpap(8., 1.25)
    ppgplot.pgpage
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(3)  #line width

    # 1st panel with symbols w/ stddev errorbars

    x1 = .15
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .425
    y3 = .575
    y4 = .85
    xlabel = 14.1 - 14.
    ylabel = 1.15
    schdef = 1.2
    slwdef = 4
    ppgplot.pgsch(schdef)
    xmin = 0.
    xmax = 1.1
    ymin = 0.
    ymax = 1.2

    ppgplot.pgsvp(x1, x4, y1, y4)  #sets viewport
    ppgplot.pgslw(slwdef)  #line width
    ppgplot.pgswin(xmin, xmax, ymin, ymax)  #axes limits
    ppgplot.pgbox('bcnst', .2, 2, 'bcvnst', .2, 2)  #tickmarks and labeling
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "z")  #xlabel
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "(1/DH)\u3\d c dV\dc\u/dv/d\gW")

    z = N.arange(0., 5., .1)
    beta = ((1 + z)**2 - 1) / ((1 + z)**2 + 1)
    dV = N.zeros(len(z), 'd')
    for i in range(len(z)):
        #dz=dv/(1+z[i])*(1- ((1+z[i])**2 -1)/((1+z[i])**2+1))**(-2)
        #z1=z[i]-0.5*dz
        #z2=z[i]+0.5*dz
        #dV[i]=my.dL(z2,h) - my.dL(z1,h)
        dA = my.DA(z[i], h) * 206264. / 1000.
        dV[i] = DH * (1 + z[i]) * (dA)**2 / (my.E(
            z[i])) / (1 - beta[i])**2 / DH**3
        #dV[i]=DH*(1+z[i])**2*(dA)**2/(my.E(z[i]))/DH**3#for comparison w/Hogg
        if z[i] < 1:
            print i, z[i], dV[i], dV[i]**(1. / 3.)

    ppgplot.pgline(z, dV)

    ppgplot.pgend()
コード例 #4
0
ファイル: Pgplot.py プロジェクト: lao19881213/presto_on_gpu
def resetdefaults():
    """
    resetdefaults():
        Reset global plotting variables to default values.
    """
    global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \
           ppgplot_color_, ppgplot_font_size_
    ppgplot.pgscf(ppgplot_font_)
    ppgplot.pgsls(ppgplot_linestyle_)
    ppgplot.pgslw(ppgplot_linewidth_)
    ppgplot.pgsci(ppgplot_colors_[ppgplot_color_])
    ppgplot.pgsch(ppgplot_font_size_)
コード例 #5
0
ファイル: Pgplot.py プロジェクト: ChrisLaidler/presto
def resetdefaults():
    """
    resetdefaults():
        Reset global plotting variables to default values.
    """
    global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \
           ppgplot_color_, ppgplot_font_size_
    ppgplot.pgscf(ppgplot_font_)
    ppgplot.pgsls(ppgplot_linestyle_)
    ppgplot.pgslw(ppgplot_linewidth_)
    ppgplot.pgsci(ppgplot_colors_[ppgplot_color_])
    ppgplot.pgsch(ppgplot_font_size_)
コード例 #6
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr,
                 Total_observed_time, xwin):
    """
    Plot DM vs Time subplot for the spd plots.
    Input: 
        dms: list of dms of single pulse events to be plotted.
        times: list of times of single pulse events to be plotted.
        sigmas: list of sigmas of single pulse events to be plotted.
        dm_arr: array of dms of the main single pulse group (plotted in black).
        sigma_arr: array of sigmas of the main single pulse group (plotted in black).
        time_arr: array of times of single pulse group (plotted in black).
        Total_observed_time: float : Total observation time 
        xwin: True or False. Use xwin or vcps window.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
コード例 #7
0
ファイル: sp_pgplot.py プロジェクト: matteobachetti/presto
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin):
    """
    Plot DM vs Time subplot for the spd plots.
    Input: 
        dms: list of dms of single pulse events to be plotted.
        times: list of times of single pulse events to be plotted.
        sigmas: list of sigmas of single pulse events to be plotted.
        dm_arr: array of dms of the main single pulse group (plotted in black).
        sigma_arr: array of sigmas of the main single pulse group (plotted in black).
        time_arr: array of times of single pulse group (plotted in black).
        Total_observed_time: float : Total observation time 
        xwin: True or False. Use xwin or vcps window.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
コード例 #8
0
ファイル: Pgplot.py プロジェクト: bretonr/presto
def resetdefaults():
    """
    resetdefaults():
        Reset global plotting variables to default values.
    """
    global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \
           ppgplot_color_, ppgplot_font_size_
    ppgplot.pgscf(ppgplot_font_)
    ppgplot.pgsls(ppgplot_linestyle_)
    ppgplot.pgslw(ppgplot_linewidth_)
    ppgplot.pgsci(ppgplot_colors_[ppgplot_color_])
    # My little add-on to switch the background to white
    reset_colors()
    ppgplot.pgsch(ppgplot_font_size_)
コード例 #9
0
ファイル: ediscslocal.py プロジェクト: rfinn/pythonCode
def plotsighaall(sig, psig, o2b, file, nbin):
    o2b = N.array(o2b, 'f')
    sig = N.array(sig, 'f')
    psig = N.array(psig, 'f')
    #o2b=o2b+4.
    o2 = N.compress(o2b > -500., o2b)
    sig = N.compress(o2b > -500., sig)
    psig = N.compress(o2b > -500., psig)

    psplot = file + ".ps"
    psplotinit(psplot)
    #ppgplot.pgsch(0.7)
    ppgplot.pgslw(7)
    (sigbin, o2bin) = my.binit(sig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgswin(-2., 2., -5., 20.)
    ppgplot.pgbox('blcnst', 0.0, 0.0, 'bcvnst', 0.0,
                  0.0)  #tickmarks and labeling
    ppgplot.pgsch(1.0)
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)")  #xlabel
    ppgplot.pgsch(1.2)
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW(H\ga) (\(2078))')

    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width

    ppgplot.pgpt(sigbin, o2bin, 17)
    ppgplot.pgpt(N.log10(sig), o2, 1)
    #my.errory(sigbin,o2bin,yerr)
    #print 'dude2', sigbin, o2bin
    ppgplot.pgsci(2)
    ppgplot.pgline(sigbin, o2bin)
    (sigbin, o2bin) = my.binit(psig, o2, nbin)

    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgsci(1)
    ppgplot.pgpt(sigbin, o2bin, 21)
    #my.errory(sigbin,o2bin,yerr)
    ppgplot.pgsci(4)
    ppgplot.pgline(sigbin, o2bin)
    ppgplot.pgsci(1)
    ppgplot.pgend()
コード例 #10
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr,
                 Total_observed_time, xwin):
    """
    Plot DM vs Time.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
コード例 #11
0
    def startPlotter(self):
        if self.plotDeviceIsOpened:
            raise ValueError("You already started a plot!")

        devId = pgplot.pgopen(self.deviceName)
        self.plotDeviceIsOpened = True

        if not self.widthInches is None:
            pgplot.pgpap(self.widthInches, self.yOnXRatio)

        # For devices /xs, /xw, /png etc, should make the paper white and the ink black. Only for /ps does pgplot default to that.
        #
        deviceWithoutFile = self.deviceName.split('/')[-1]
        if deviceWithoutFile == 'xs' or deviceWithoutFile == 'xw' or deviceWithoutFile == 'png':
            pgplot.pgscr(0, 1.0, 1.0, 1.0)
            pgplot.pgscr(1, 0.0, 0.0, 0.0)

        pgplot.pgsvp(self._vXLo, self._vXHi, self._vYLo, self._vYHi)

        if self.fixAspect:
            pgplot.pgwnad(self.worldXLo, self.worldXHi, self.worldYLo,
                          self.worldYHi)
        else:
            pgplot.pgswin(self.worldXLo, self.worldXHi, self.worldYLo,
                          self.worldYHi)
        pgplot.pgsfs(2)

        pgplot.pgslw(1)
        pgplot.pgsch(self._charHeight)

        self._setColourRepresentations()

        # Set up things so calling pgplot.pggray() won't overwrite the CR of any of the colours in self.colours.
        #
        (minCI, maxCI) = pgplot.pgqcir()
        if minCI <= self.maxCI:
            pgplot.pgscir(self.maxCI + 1, maxCI)

        (xLoPixels, xHiPixels, yLoPixels, yHiPixels) = pgplot.pgqvsz(3)
        (xLoInches, xHiInches, yLoInches, yHiInches) = pgplot.pgqvsz(1)
        self.xPixelWorld = (xHiInches - xLoInches) / (xHiPixels - xLoPixels)
        self.yPixelWorld = (yHiInches - yLoInches) / (yHiPixels - yLoPixels)
コード例 #12
0
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin):
    """
    Plot DM vs Time.
    """
    min_dm = Num.min(dms)
    max_dm = Num.max(dms)
    ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54)
    ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm)
    ppgplot.pgsch(0.8)
    ppgplot.pgslw(3)
    ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
    ppgplot.pgslw(3)
    ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
    ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
    snr_range = 12.0
    cand_symbols = []
    cand_symbols_group = []
    for i in range(len(sigmas)):
        if sigmas[i] > 20.00:
            sigmas[i] = 20.0
        cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols.append(min(cand_symbol, 26))
    cand_symbols = Num.array(cand_symbols)
    for i in range(len(dm_arr)):
        cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5)
        cand_symbols_group.append(min(cand_symbol, 26))
    cand_symbols_group = Num.array(cand_symbols_group)
    dms = Num.array(dms)
    times = Num.array(times)
    dm_arr = Num.array(dm_arr)
    time_arr = Num.array(time_arr)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds = Num.nonzero(cand_symbols == ii)[0]
        ppgplot.pgshls(1, 0.0, 0.5, 0.0)
        ppgplot.pgpt(times[inds], dms[inds], ii)
    for ii in [26, 25, 24, 23, 22, 21, 20]:
        inds_1 = Num.nonzero(cand_symbols_group == ii)[0]
        if xwin:
            ppgplot.pgshls(1, 0.0, 0.8, 0.0)
        else:
            ppgplot.pgshls(1, 0.0, 0.0, 0.0)
        ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
コード例 #13
0
ファイル: millenium.py プロジェクト: rfinn/pythonCode
def plotngalsigmaradcuts():
    nr = 1.
    nv = 3.
    bbJmax = -18.
    ppgplot.pgbeg("ngalmhalo-radcut.ps/vcps", 1, 1)  #color port.
    ppgplot.pgpap(8., 1.25)
    ppgplot.pgpage
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(3)  #line width

    # 1st panel with symbols w/ stddev errorbars

    str1 = "R\dp\u < "
    str2 = " R\dv\u"
    x1 = .1
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .425
    y3 = .575
    y4 = .85
    xlabel = 14.25 - 14.
    ylabel = 1.14
    ppgplot.pgsvp(x1, x2, y3, y4)  #sets viewport
    g.cutonlbj(bbJmax)
    #print "within plotradcuts, after cutonlbj, len(g.x1) = ",len(g.x1)
    nr = 1.
    c.measurengalcontam(nv, nr, g)
    #print "nr = ",nr, " ave contam = ",N.average(c.contam)
    sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut)
    ppgplot.pgsch(.8)
    ppgplot.pgslw(3)
    #label="R\dp\u < "+str(nr)+"R\dv\u"
    label = str1 + str(nr) + str2
    ppgplot.pgtext(xlabel, ylabel, label)

    nr = .5
    ppgplot.pgsvp(x1, x2, y1, y2)  #sets viewport
    #ppgplot.pgpanl(1,1)
    c.measurengalcontam(nv, nr, g)
    #print "nr = ",nr, " ave contam = ",N.average(c.contam)
    sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut)
    label = str1 + str(nr) + str2
    ppgplot.pgsch(.8)
    ppgplot.pgslw(3)
    ppgplot.pgtext(xlabel, ylabel, label)

    ppgplot.pgend()
コード例 #14
0
ファイル: millenium.py プロジェクト: rfinn/pythonCode
def sub1plotngalmcl(x, y1, y2):
    schdef = 1.2
    slwdef = 4
    ppgplot.pgsch(schdef)
    xmin = -.5
    xmax = 1.
    ymin = 0.
    ymax = 60.
    #nbin=5
    ppgplot.pgslw(slwdef)  #line width
    ppgplot.pgswin(xmin, xmax, ymin, ymax)  #axes limits
    ppgplot.pgbox('bcnlst', 1.0, 0, 'bcvnst', 10., 2)  #tickmarks and labeling
    ppgplot.pgmtxt(
        'b', 2.5, 0.5, 0.5,
        "log\d10\u(10\u14\d M\dhalo\u/h\u-1\d M\d\(2281)\u)")  #xlabel
    ppgplot.pgmtxt('l', 2.1, 0.5, 0.5, "N\dgal\u")

    (xbin, ybin, ybinerr) = my.biniterr(x, y1, nbin)
    print y1
    print 'ybin for y1 = ', ybin

    xbin = N.log10(
        xbin) + 12. - 14.  #add back 10^12 Msun, then divide by 10^14
    ppgplot.pgsch(1.5)
    ppgplot.pgpt(xbin, ybin, 7)
    ppgplot.pgslw(3)
    ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.)
    #my.errory(xbin,ybin,ybinerr)
    (xbin, ybin, ybinerr) = my.biniterr(x, y2, nbin)
    print y2
    print 'ybin = ', ybin

    xbin = N.log10(
        xbin) + 12. - 14.  #add back 10^12 Msun, then divide by 10^14
    ppgplot.pgsch(1.75)
    ppgplot.pgpt(xbin, ybin, 17)
    ppgplot.pgsch(schdef)
    ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.)
    ppgplot.pgslw(slwdef)
コード例 #15
0
ファイル: millenium.py プロジェクト: rfinn/pythonCode
def linelabel(xlabel, ylabel, dx, ystep, dxl, dyl, label):  #draw key
    schdef = ppgplot.pgqch()
    ppgplot.pgsch(1.1)
    ppgplot.pgtext(xlabel, ylabel, label)
    ppgplot.pgsch(1.1)
    ylabel = ylabel - 2. * ystep
    xs = N.arange(xlabel, (xlabel + dx), .01)
    ys = ylabel * N.ones(len(xs), 'd')
    ppgplot.pgsls(1)
    ppgplot.pgline(xs, ys)
    ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Memb")
    ylabel = ylabel - ystep
    ys = ylabel * N.ones(len(xs), 'd')
    ppgplot.pgsls(4)
    ppgplot.pgline(xs, ys)
    ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Contam")
    ppgplot.pgsch(schdef)
    ppgplot.pgsls(1)
コード例 #16
0
ファイル: ediscslocal.py プロジェクト: rfinn/pythonCode
def plotsigo2all(sig, psig, o2b, file, nbin):
    #o2=N.zeros(len(o2b),'f')
    #for i in range(len(o2b)):
    #print i, sig[i], psig[i], o2b[i]
    #    if o2b[i] < 0:

    #        o2[i]=-1*o2b[i]
    #print "hey", o2[i]
    o2 = o2b
    psplot = file + ".ps"
    psplotinit(psplot)
    ppgplot.pgsch(0.7)
    (sigbin, o2bin) = my.binit(sig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgswin(-1., 3., -.5, 10.)
    ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0,
                  0.0)  #tickmarks and labeling
    ppgplot.pgsch(1.0)
    ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)")  #xlabel
    ppgplot.pgsch(1.2)
    ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW([OII]) (\(2078))')

    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width
    ppgplot.pgsci(2)
    ppgplot.pgpt(sigbin, o2bin, 17)
    #print 'dude2', sigbin, o2bin
    ppgplot.pgline(sigbin, o2bin)
    (sigbin, o2bin) = my.binit(psig, o2, nbin)
    #print 'dude', sigbin, o2bin
    sigbin = N.log10(sigbin)
    ppgplot.pgsci(4)
    ppgplot.pgpt(sigbin, o2bin, 21)
    ppgplot.pgline(sigbin, o2bin)
    ppgplot.pgsci(1)
    ppgplot.pgend()
コード例 #17
0
ファイル: Pgplot.py プロジェクト: lao19881213/presto_on_gpu
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \
             rangex2=None, rangey2=None, labx2=None, laby2=None, \
             logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \
             fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \
             panels=[1,1], device=ppgplot_device_):
    """
    prepplot(rangex, rangey, ...)
        Open a PGPLOT device for plotting.
            'rangex' and 'rangey' are sequence objects giving min and
                max values for each axis.
        The optional entries are:
            title:    graph title                 (default = None)   
            labx:     label for the x-axis        (default = None)   
            laby:     label for the y-axis        (default = None)   
            rangex2:  ranges for 2nd x-axis       (default = None)   
            rangey2:  ranges for 2nd y-axis       (default = None)   
            labx2:    label for the 2nd x-axis    (default = None)   
            laby2:    label for the 2nd y-axis    (default = None)   
            logx:     make the 1st x-axis log     (default = 0 (no))
            logy:     make the 1st y-axis log     (default = 0 (no))
            logx2:    make the 2nd x-axis log     (default = 0 (no))
            logy2:    make the 2nd y-axis log     (default = 0 (no))
            font:     PGPLOT font to use          (default = 1 (normal))
            fontsize: PGPLOT font size to use     (default = 1.0 (normal))
            id:       Show ID line on plot        (default = 0 (no)) 
            aspect:   Aspect ratio                (default = 1 (square))
            ticks:    Ticks point in or out       (default = 'in')   
            panels:   Number of subpanels [r,c]   (default = [1,1])
            device:   PGPLOT device to use        (default = '/XWIN')
        Note:  Many default values are defined in global variables
            with names like ppgplot_font_ or ppgplot_device_.
    """
    global ppgplot_dev_open_, ppgplot_dev_prep_
    # Check if we will use second X or Y axes
    # Note:  if using a 2nd X axis, the range should correspond
    #   to the minimum and maximum values of the 1st X axis.  If
    #   using a 2nd Y axis, the range should correspond to the
    #   scalerange() values of the 1st Y axis.
    if rangex2 is None:
        rangex2 = rangex
        otherxaxis = 0
    else:
        otherxaxis = 1
    if rangey2 is None:
        rangey2 = rangey
        otheryaxis = 0
    else:
        otheryaxis = 1
    # Open the plot device
    if (not ppgplot_dev_open_):
        ppgplot.pgopen(device)
        # Let the routines know that we already have a device open
        ppgplot_dev_open_ = 1
        # Set the aspect ratio
        ppgplot.pgpap(0.0, aspect)
        if (panels != [1, 1]):
            # Set the number of panels
            ppgplot.pgsubp(panels[0], panels[1])
            ppgplot.pgpage()
    # Choose the font
    ppgplot.pgscf(font)
    # Choose the font size
    ppgplot.pgsch(fontsize)
    # Choose the font size
    ppgplot.pgslw(ppgplot_linewidth_)
    # Plot the 2nd axis if needed first
    if otherxaxis or otheryaxis:
        ppgplot.pgvstd()
        ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1])
        # Decide how the axes will be drawn
        if ticks == 'in': env = "CMST"
        else: env = "CMSTI"
        if logx2: lxenv = 'L'
        else: lxenv = ''
        if logy2: lyenv = 'L'
        else: lyenv = ''
        if otherxaxis and otheryaxis:
            ppgplot.pgbox(env + lxenv, 0.0, 0, env + lyenv, 0.0, 0)
        elif otheryaxis:
            ppgplot.pgbox("", 0.0, 0, env + lyenv, 0.0, 0)
        else:
            ppgplot.pgbox(env + lxenv, 0.0, 0, "", 0.0, 0)
    # Now setup the primary axis
    ppgplot.pgvstd()
    ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1])
    # Decide how the axes will be drawn
    if ticks == 'in': env = "ST"
    else: env = "STI"
    if logx: lxenv = 'L'
    else: lxenv = ''
    if logy: lyenv = 'L'
    else: lyenv = ''
    if otherxaxis and otheryaxis:
        ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0)
    elif otheryaxis:
        ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0)
    elif otherxaxis:
        ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0)
    else:
        ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0)
    # Add labels
    if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title)
    ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx)
    ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby)
    if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2)
    if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2)
    # Add ID line if required
    if (id == 1): ppgplot.pgiden()
    # Let the routines know that we have already prepped the device
    ppgplot_dev_prep_ = 1
コード例 #18
0
def main():
    parser = OptionParser(usage)
    parser.add_option(
        "-x",
        "--xwin",
        action="store_true",
        dest="xwin",
        default=False,
        help="Don't make a postscript plot, just use an X-window")
    parser.add_option("-p",
                      "--noplot",
                      action="store_false",
                      dest="makeplot",
                      default=True,
                      help="Look for pulses but do not generate a plot")
    parser.add_option(
        "-m",
        "--maxwidth",
        type="float",
        dest="maxwidth",
        default=0.0,
        help="Set the max downsampling in sec (see below for default)")
    parser.add_option("-t",
                      "--threshold",
                      type="float",
                      dest="threshold",
                      default=5.0,
                      help="Set a different threshold SNR (default=5.0)")
    parser.add_option("-s",
                      "--start",
                      type="float",
                      dest="T_start",
                      default=0.0,
                      help="Only plot events occuring after this time (s)")
    parser.add_option("-e",
                      "--end",
                      type="float",
                      dest="T_end",
                      default=1e9,
                      help="Only plot events occuring before this time (s)")
    parser.add_option("-g",
                      "--glob",
                      type="string",
                      dest="globexp",
                      default=None,
                      help="Process the files from this glob expression")
    parser.add_option("-f",
                      "--fast",
                      action="store_true",
                      dest="fast",
                      default=False,
                      help="Use a faster method of de-trending (2x speedup)")
    (opts, args) = parser.parse_args()
    if len(args) == 0:
        if opts.globexp == None:
            print full_usage
            sys.exit(0)
        else:
            args = []
            for globexp in opts.globexp.split():
                args += glob.glob(globexp)
    useffts = True
    dosearch = True
    if opts.xwin:
        pgplot_device = "/XWIN"
    else:
        pgplot_device = ""

    fftlen = 8192  # Should be a power-of-two for best speed
    chunklen = 8000  # Must be at least max_downfact less than fftlen
    detrendlen = 1000  # length of a linear piecewise chunk of data for detrending
    blocks_per_chunk = chunklen / detrendlen
    overlap = (fftlen - chunklen) / 2
    worklen = chunklen + 2 * overlap  # currently it is fftlen...

    max_downfact = 30
    default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150]

    if args[0].endswith(".singlepulse"):
        filenmbase = args[0][:args[0].rfind(".singlepulse")]
        dosearch = False
    elif args[0].endswith(".dat"):
        filenmbase = args[0][:args[0].rfind(".dat")]
    else:
        filenmbase = args[0]

    # Don't do a search, just read results and plot
    if not dosearch:
        info, DMs, candlist, num_v_DMstr = \
              read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end)
        orig_N, orig_dt = int(info.N), info.dt
        obstime = orig_N * orig_dt
    else:
        DMs = []
        candlist = []
        num_v_DMstr = {}

        # Loop over the input files
        for filenm in args:
            if filenm.endswith(".dat"):
                filenmbase = filenm[:filenm.rfind(".dat")]
            else:
                filenmbase = filenm
            info = infodata.infodata(filenmbase + ".inf")
            DMstr = "%.2f" % info.DM
            DMs.append(info.DM)
            N, dt = int(info.N), info.dt
            obstime = N * dt
            # Choose the maximum width to search based on time instead
            # of bins.  This helps prevent increased S/N when the downsampling
            # changes as the DM gets larger.
            if opts.maxwidth > 0.0:
                downfacts = [
                    x for x in default_downfacts if x * dt <= opts.maxwidth
                ]
            else:
                downfacts = [x for x in default_downfacts if x <= max_downfact]
            if len(downfacts) == 0:
                downfacts = [default_downfacts[0]]
            if (filenm == args[0]):
                orig_N = N
                orig_dt = dt
                if useffts:
                    fftd_kerns = make_fftd_kerns(downfacts, fftlen)
            if info.breaks:
                offregions = zip([x[1] for x in info.onoff[:-1]],
                                 [x[0] for x in info.onoff[1:]])
            outfile = open(filenmbase + '.singlepulse', mode='w')

            # Compute the file length in detrendlens
            roundN = N / detrendlen * detrendlen
            numchunks = roundN / chunklen
            # Read in the file
            print 'Reading "%s"...' % filenm
            timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN)
            # Split the timeseries into chunks for detrending
            numblocks = roundN / detrendlen
            timeseries.shape = (numblocks, detrendlen)
            stds = Num.zeros(numblocks, dtype=Num.float64)
            # de-trend the data one chunk at a time
            print '  De-trending the data and computing statistics...'
            for ii, chunk in enumerate(timeseries):
                if opts.fast:  # use median removal instead of detrending (2x speedup)
                    tmpchunk = chunk.copy()
                    tmpchunk.sort()
                    med = tmpchunk[detrendlen / 2]
                    chunk -= med
                    tmpchunk -= med
                else:
                    # The detrend calls are the most expensive in the program
                    timeseries[ii] = scipy.signal.detrend(chunk, type='linear')
                    tmpchunk = timeseries[ii].copy()
                    tmpchunk.sort()
                # The following gets rid of (hopefully) most of the
                # outlying values (i.e. power dropouts and single pulses)
                # If you throw out 5% (2.5% at bottom and 2.5% at top)
                # of random gaussian deviates, the measured stdev is ~0.871
                # of the true stdev.  Thus the 1.0/0.871=1.148 correction below.
                # The following is roughly .std() since we already removed the median
                stds[ii] = Num.sqrt(
                    (tmpchunk[detrendlen / 40:-detrendlen / 40]**2.0).sum() /
                    (0.95 * detrendlen))
            stds *= 1.148
            # sort the standard deviations and separate those with
            # very low or very high values
            sort_stds = stds.copy()
            sort_stds.sort()
            # identify the differences with the larges values (this
            # will split off the chunks with very low and very high stds
            locut = (sort_stds[1:numblocks / 2 + 1] -
                     sort_stds[:numblocks / 2]).argmax() + 1
            hicut = (sort_stds[numblocks / 2 + 1:] -
                     sort_stds[numblocks / 2:-1]).argmax() + numblocks / 2 - 2
            std_stds = scipy.std(sort_stds[locut:hicut])
            median_stds = sort_stds[(locut + hicut) / 2]
            lo_std = median_stds - 4.0 * std_stds
            hi_std = median_stds + 4.0 * std_stds
            # Determine a list of "bad" chunks.  We will not search these.
            bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0]
            print "    pseudo-median block standard deviation = %.2f" % (
                median_stds)
            print "    identified %d bad blocks out of %d (i.e. %.2f%%)" % \
                  (len(bad_blocks), len(stds),
                   100.0*float(len(bad_blocks))/float(len(stds)))
            stds[bad_blocks] = median_stds
            print "  Now searching..."

            # Now normalize all of the data and reshape it to 1-D
            timeseries /= stds[:, Num.newaxis]
            timeseries.shape = (roundN, )
            # And set the data in the bad blocks to zeros
            # Even though we don't search these parts, it is important
            # because of the overlaps for the convolutions
            for bad_block in bad_blocks:
                loind, hiind = bad_block * detrendlen, (bad_block +
                                                        1) * detrendlen
                timeseries[loind:hiind] = 0.0
            # Convert to a set for faster lookups below
            bad_blocks = set(bad_blocks)

            # Step through the data
            dm_candlist = []
            for chunknum in range(numchunks):
                loind = chunknum * chunklen - overlap
                hiind = (chunknum + 1) * chunklen + overlap
                # Take care of beginning and end of file overlap issues
                if (chunknum == 0):  # Beginning of file
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[overlap:] = timeseries[loind + overlap:hiind]
                elif (chunknum == numchunks - 1):  # end of the timeseries
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[:-overlap] = timeseries[loind:hiind - overlap]
                else:
                    chunk = timeseries[loind:hiind]

                # Make a set with the current block numbers
                lowblock = blocks_per_chunk * chunknum
                currentblocks = set(Num.arange(blocks_per_chunk) + lowblock)
                localgoodblocks = Num.asarray(
                    list(currentblocks - bad_blocks)) - lowblock
                # Search this chunk if it is not all bad
                if len(localgoodblocks):
                    # This is the good part of the data (end effects removed)
                    goodchunk = chunk[overlap:-overlap]

                    # need to pass blocks/chunklen, localgoodblocks
                    # dm_candlist, dt, opts.threshold to cython routine

                    # Search non-downsampled data first
                    # NOTE:  these nonzero() calls are some of the most
                    #        expensive calls in the program.  Best bet would
                    #        probably be to simply iterate over the goodchunk
                    #        in C and append to the candlist there.
                    hibins = Num.flatnonzero(goodchunk > opts.threshold)
                    hivals = goodchunk[hibins]
                    hibins += chunknum * chunklen
                    hiblocks = hibins / detrendlen
                    # Add the candidates (which are sorted by bin)
                    for bin, val, block in zip(hibins, hivals, hiblocks):
                        if block not in bad_blocks:
                            time = bin * dt
                            dm_candlist.append(
                                candidate(info.DM, val, time, bin, 1))

                    # Prepare our data for the convolution
                    if useffts: fftd_chunk = rfft(chunk, -1)

                    # Now do the downsampling...
                    for ii, downfact in enumerate(downfacts):
                        if useffts:
                            # Note:  FFT convolution is faster for _all_ downfacts, even 2
                            goodchunk = fft_convolve(fftd_chunk,
                                                     fftd_kerns[ii], overlap,
                                                     -overlap)
                        else:
                            # The normalization of this kernel keeps the post-smoothing RMS = 1
                            kernel = Num.ones(downfact, dtype=Num.float32) / \
                                     Num.sqrt(downfact)
                            smoothed_chunk = scipy.signal.convolve(
                                chunk, kernel, 1)
                            goodchunk = smoothed_chunk[overlap:-overlap]
                        #hibins = Num.nonzero(goodchunk>opts.threshold)[0]
                        hibins = Num.flatnonzero(goodchunk > opts.threshold)
                        hivals = goodchunk[hibins]
                        hibins += chunknum * chunklen
                        hiblocks = hibins / detrendlen
                        hibins = hibins.tolist()
                        hivals = hivals.tolist()
                        # Now walk through the new candidates and remove those
                        # that are not the highest but are within downfact/2
                        # bins of a higher signal pulse
                        hibins, hivals = prune_related1(
                            hibins, hivals, downfact)
                        # Insert the new candidates into the candlist, but
                        # keep it sorted...
                        for bin, val, block in zip(hibins, hivals, hiblocks):
                            if block not in bad_blocks:
                                time = bin * dt
                                bisect.insort(
                                    dm_candlist,
                                    candidate(info.DM, val, time, bin,
                                              downfact))

            # Now walk through the dm_candlist and remove the ones that
            # are within the downsample proximity of a higher
            # signal-to-noise pulse
            dm_candlist = prune_related2(dm_candlist, downfacts)
            print "  Found %d pulse candidates" % len(dm_candlist)

            # Get rid of those near padding regions
            if info.breaks: prune_border_cases(dm_candlist, offregions)

            # Write the pulses to an ASCII output file
            if len(dm_candlist):
                #dm_candlist.sort(cmp_sigma)
                outfile.write(
                    "# DM      Sigma      Time (s)     Sample    Downfact\n")
                for cand in dm_candlist:
                    outfile.write(str(cand))
            outfile.close()

            # Add these candidates to the overall candidate list
            for cand in dm_candlist:
                candlist.append(cand)
            num_v_DMstr[DMstr] = len(dm_candlist)

    if (opts.makeplot):

        # Step through the candidates to make a SNR list
        DMs.sort()
        snrs = []
        for cand in candlist:
            snrs.append(cand.sigma)
        if snrs:
            maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3
        else:
            maxsnr = int(opts.threshold) + 3

        # Generate the SNR histogram
        snrs = Num.asarray(snrs)
        (num_v_snr, lo_snr, d_snr, num_out_of_range) = \
                    scipy.stats.histogram(snrs,
                                          int(maxsnr-opts.threshold+1),
                                          [opts.threshold, maxsnr])
        snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \
               + lo_snr + 0.5*d_snr
        num_v_snr = num_v_snr.astype(Num.float32)
        num_v_snr[num_v_snr == 0.0] = 0.001

        # Generate the DM histogram
        num_v_DM = Num.zeros(len(DMs))
        for ii, DM in enumerate(DMs):
            num_v_DM[ii] = num_v_DMstr["%.2f" % DM]
        DMs = Num.asarray(DMs)

        # open the plot device
        short_filenmbase = filenmbase[:filenmbase.find("_DM")]
        if opts.T_end > obstime:
            opts.T_end = obstime
        if pgplot_device:
            ppgplot.pgopen(pgplot_device)
        else:
            if (opts.T_start > 0.0 or opts.T_end < obstime):
                ppgplot.pgopen(short_filenmbase +
                               '_%.0f-%.0fs_singlepulse.ps/VPS' %
                               (opts.T_start, opts.T_end))
            else:
                ppgplot.pgopen(short_filenmbase + '_singlepulse.ps/VPS')
        ppgplot.pgpap(7.5, 1.0)  # Width in inches, aspect

        # plot the SNR histogram
        ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87)
        ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5),
                       Num.log10(2 * max(num_v_snr)))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1)

        # plot the DM histogram
        ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87)
        # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0
        ppgplot.pgswin(
            min(DMs) - 0.5,
            max(DMs) + 0.5, 0.0, 1.1 * max(num_v_DM + [1]))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(DMs, num_v_DM, 1)

        # plot the SNR vs DM plot
        ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87)
        ppgplot.pgswin(min(DMs) - 0.5, max(DMs) + 0.5, opts.threshold, maxsnr)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgsch(1.0)
        cand_ts = Num.zeros(len(candlist), dtype=Num.float32)
        cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32)
        cand_DMs = Num.zeros(len(candlist), dtype=Num.float32)
        for ii, cand in enumerate(candlist):
            cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \
                         cand.time, cand.sigma, cand.DM
        ppgplot.pgpt(cand_DMs, cand_SNRs, 20)

        # plot the DM vs Time plot
        ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52)
        ppgplot.pgswin(opts.T_start, opts.T_end,
                       min(DMs) - 0.5,
                       max(DMs) + 0.5)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
        # Circles are symbols 20-26 in increasing order
        snr_range = 12.0
        cand_symbols = (cand_SNRs - opts.threshold) / snr_range * 6.0 + 20.5
        cand_symbols = cand_symbols.astype(Num.int32)
        cand_symbols[cand_symbols > 26] = 26
        for ii in [26, 25, 24, 23, 22, 21, 20]:
            inds = Num.nonzero(cand_symbols == ii)[0]
            ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii)

        # Now fill the infomation area
        ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97)
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('T', 0.5, 0.0, 0.0,
                       "Single pulse results for '%s'" % short_filenmbase)
        ppgplot.pgsch(0.8)
        # first row
        ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\
                       info.object)
        ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):')
        ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA)
        ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f' % orig_N)
        # second row
        ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\
                       info.telescope)
        ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):')
        ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC)
        ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\
                       (orig_dt*1e6))
        # third row
        if info.instrument.find("pigot") >= 0:
            instrument = "Spigot"
        else:
            instrument = info.instrument
        ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s' % instrument)
        if (info.bary):
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0,
                           'MJD\dbary\u: %.12f' % info.epoch)
        else:
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0,
                           'MJD\dtopo\u: %.12f' % info.epoch)
        ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\
                       ((info.numchan/2-0.5)*info.chan_width+info.lofreq))
        ppgplot.pgiden()
        ppgplot.pgend()
コード例 #19
0
def main(options):

    global keepPlotting
    keepPlotting = True
    debug = options.debug
    inputMS = options.inms
    if inputMS == "":
        print "Error: You must specify a MS name."
        print '       Use "uvplot.py -h" to get help.'
        return

    if inputMS.endswith("/"):
        inputMS = inputMS[:-1]
    inputMSbasename = inputMS.split("/")[-1]
    if inputMSbasename == "":
        # The user has not specified the full path of the MS
        inputMSbasename = inputMS

    device = options.device
    if device == "?":
        ppgplot.pgldev()
        return
    xaxis = options.xaxis
    yaxis = options.yaxis
    column = options.column
    nx, ny = options.nxy.split(",")
    axlimits = options.axlimits.split(",")
    if len(axlimits) == 4:
        xmin, xmax, ymin, ymax = axlimits
    else:
        print "Error: You must specify four axis limits"
        return
    showFlags = options.flag
    flagCol = options.colflag
    showAutocorr = options.autocorr
    showStats = options.statistics
    timeslots = options.timeslots.split(",")
    if len(timeslots) != 2:
        print "Error: Timeslots format is start,end"
        return
    for i in range(len(timeslots)):
        timeslots[i] = int(timeslots[i])
    antToPlotSpl = options.antennas.split(",")
    antToPlot = []
    for i in range(len(antToPlotSpl)):
        tmpspl = antToPlotSpl[i].split("..")
        if len(tmpspl) == 1:
            antToPlot.append(int(antToPlotSpl[i]))
        elif len(tmpspl) == 2:
            for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1):
                antToPlot.append(j)
        else:
            print "Error: Could not understand antenna list."
            return
    polarizations = options.polar.split(",")
    for i in range(len(polarizations)):
        polarizations[i] = int(polarizations[i])

    convertStokes = options.stokes

    operation = options.operation
    if operation != "":
        operation = int(operation)
        if convertStokes:
            print "Error: Stokes conversion is not compatible with special operations"
            return

    channels = options.channels.split(",")
    if len(channels) != 2:
        print "Error: Channels format is start,end"
        return
    for i in range(len(channels)):
        channels[i] = int(channels[i])
    if channels[1] == -1:
        channels[1] = None  # last element even if there is only one
    else:
        channels[1] += 1
    queryMode = options.query
    doUnwrap = options.wrap

    if not queryMode:
        # open the graphics device, use the right number of panels
        ppgplot.pgbeg(device, int(nx), int(ny))
        # set the font size
        ppgplot.pgsch(1.5)
        ppgplot.pgvstd()

    # open the main table and print some info about the MS
    t = pt.table(inputMS, readonly=True, ack=False)
    firstTime = t.getcell("TIME", 0)
    lastTime = t.getcell("TIME", t.nrows() - 1)
    intTime = t.getcell("INTERVAL", 0)
    print "Integration time:\t%f sec" % (intTime)
    nTimeslots = (lastTime - firstTime) / intTime
    if timeslots[1] == -1:
        timeslots[1] = nTimeslots
    else:
        timeslots[1] += 1
    print "Number of timeslots:\t%d" % (nTimeslots)
    # open the antenna and spectral window subtables
    tant = pt.table(t.getkeyword("ANTENNA"), readonly=True, ack=False)
    tsp = pt.table(t.getkeyword("SPECTRAL_WINDOW"), readonly=True, ack=False)
    numChannels = len(tsp.getcell("CHAN_FREQ", 0))
    print "Number of channels:\t%d" % (numChannels)
    print "Reference frequency:\t%5.2f MHz" % (tsp.getcell("REF_FREQUENCY", 0) / 1.0e6)

    # Station names
    antList = tant.getcol("NAME")
    if len(antToPlot) == 1 and antToPlot[0] == -1:
        antToPlot = range(len(antList))
    print "Station list (only starred stations will be plotted):"
    for i in range(len(antList)):
        star = " "
        if i in antToPlot:
            star = "*"
        print "%s %2d\t%s" % (star, i, antList[i])

    # Bail if we're in query mode
    if queryMode:
        return

    # select by time from the beginning, and only use specified antennas
    tsel = t.query(
        "TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s"
        % (firstTime + timeslots[0] * intTime, firstTime + timeslots[1] * intTime, str(antToPlot), str(antToPlot))
    )

    # values to use for each polarization
    plotColors = [1, 2, 3, 4]
    labXPositions = [0.35, 0.45, 0.55, 0.65]
    labYPositions = [1.0, 1.0, 1.0, 1.0]
    if convertStokes:
        polLabels = ["I", "Q", "U", "V"]
    else:
        polLabels = ["XX", "XY", "YX", "YY"]

    # define nicely written axis labels
    axisLabels = {
        "time": "Time",
        "chan": "Channel",
        "freq": "Frequency [MHz]",
        "amp": "Visibility amplitude",
        "real": "Real part of visibility",
        "imag": "Imaginary part of visibility",
        "phase": "Visibility phase [radians]",
    }

    # Now we loop through the baselines
    ppgplot.pgpage()
    for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]):
        if not keepPlotting:
            return
        ant1 = tpart.getcell("ANTENNA1", 0)
        ant2 = tpart.getcell("ANTENNA2", 0)
        if ant1 not in antToPlot or ant2 not in antToPlot:
            continue
        if ant1 == ant2:
            if not showAutocorr:
                continue
        # Get the values to plot, strategy depends on axis type
        if xaxis == "time":
            xaxisvals = getXAxisVals(tpart, xaxis, channels)
            yaxisvals = getYAxisVals(
                tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes
            )
        else:
            xaxisvals = getXAxisVals(tsp, xaxis, channels)
            yaxisvals = getYAxisVals(
                tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1
            )
        if xaxisvals == None:  # This baseline must be empty, go to next one
            print "No good data on baseline %s - %s" % (antList[ant1], antList[ant2])
            continue

        if debug:
            print xaxisvals.shape
            print yaxisvals.shape
            for r in range(len(xaxisvals)):
                print "%s" % yaxisvals[r]
        if len(xaxisvals) != len(yaxisvals):  # something is wrong
            print "Error: X and Y axis types incompatible"
            return

        # Plot the data, each polarization in a different color
        ppgplot.pgsci(1)
        if xmin == "":
            minx = xaxisvals.min()
        else:
            minx = float(xmin)
        if xmax == "":
            maxx = xaxisvals.max()
        else:
            maxx = float(xmax)
        if ymin == "":
            miny = yaxisvals.min()
            if numpy.ma.getmaskarray(yaxisvals.min()):
                print "All data flagged on baseline %s - %s" % (antList[ant1], antList[ant2])
                continue
        else:
            miny = float(ymin)
        if ymax == "":
            maxy = yaxisvals.max()
        else:
            maxy = float(ymax)
        if minx == maxx:
            minx -= 1.0
            maxx += 1.0
        else:
            diffx = maxx - minx
            minx -= 0.02 * diffx
            maxx += 0.02 * diffx
        if miny == maxy:
            miny -= 1.0
            maxy += 1.0
        else:
            diffy = maxy - miny
            miny -= 0.02 * diffy
            maxy += 0.02 * diffy
        # ppgplot.pgpage()
        ppgplot.pgswin(minx, maxx, miny, maxy)
        if xaxis == "time":
            ppgplot.pgtbox("ZHOBCNST", 0.0, 0, "BCNST", 0.0, 0)
        else:
            ppgplot.pgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0)

        # ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2]))
        # ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename)

        ppgplot.pglab(
            axisLabels[xaxis],
            axisLabels[yaxis],
            inputMSbasename + "(" + getDataDescription(column) + "): %s - %s" % (antList[ant1], antList[ant2]),
        )

        if operation != 0:
            # some operations is defined
            if operation == 1:
                label = "XX-YY"
            elif operation == 2:
                label = "XY.YX*"
            else:
                print "Special operation not defined"
                return

            ppgplot.pgsci(plotColors[0])
            tmpvals = yaxisvals
            print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len(
                tmpvals[~tmpvals.mask]
            ), "points of " + label
            ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1)

            addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1])
        else:
            for j in polarizations:
                ppgplot.pgsci(plotColors[j])
                tmpvals = yaxisvals[:, j]
                if j == polarizations[0]:
                    print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len(
                        tmpvals[~tmpvals.mask]
                    ), "points per polarization"
                ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1)

                addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j])
        ppgplot.pgpage()

    # Close the PGPLOT device
    ppgplot.pgclos()
コード例 #20
0
            if m.sunalt > 0.0:
                ppgplot.pgscr(0, 0.0, 0.0, 0.4)
            elif m.sunalt > -6.0:
                ppgplot.pgscr(0, 0.0, 0.0, 0.3)
            elif m.sunalt > -12.0:
                ppgplot.pgscr(0, 0.0, 0.0, 0.2)
            elif m.sunalt > -18.0:
                ppgplot.pgscr(0, 0.0, 0.0, 0.1)
            else:
                ppgplot.pgscr(0, 0.0, 0.0, 0.0)
            ppgplot.pgsci(0)

            # Plot box
            ppgplot.pgrect(-1.5 * m.w, 1.5 * m.w, -m.w, m.w)
            ppgplot.pgsci(1)
            ppgplot.pgsch(1.0)
            ppgplot.pgbox("BC", 0., 0, "BC", 0., 0)
            ppgplot.pgpt1(0., 0., 2)

            # Plot field-of-view
            ppgplot.pgsfs(2)
            ppgplot.pgrect(-m.fw, m.fw, -m.fh, m.fh)
            ppgplot.pgsfs(1)

            # Top left string
            ppgplot.pgsch(0.8)
            text = "%s UTC; %s (%04d) [%+.4f\\u\\(2218)\\d, %+.4f\\u\\(2218)\\d, %.0fm]" % (
                m.t.isot, m.observer, m.site, m.lat, m.lon, m.elev)
            ppgplot.pgmtxt("T", 0.6, 0., 0., text)

            # Bottom string
コード例 #21
0
ファイル: ps.py プロジェクト: rfinn/pythonCode
def psplotinit(output):
    file=output+"/vcps"
    ppgplot.pgbeg(file,1,1)
    ppgplot.pgpap(8.,1.)
    ppgplot.pgsch(1.7) #font size
    ppgplot.pgslw(7)  #line width
コード例 #22
0
def main(options):

        global keepPlotting
        keepPlotting = True
        debug = options.debug
        inputMS = glob.glob(options.inms)
        if inputMS == '':
                print 'Error: You must specify a MS name.'
                print '       Use "uvplot.py -h" to get help.'
                return
        if options.inms.endswith('/'):
            options.inms = options.inms[:-1]
        inputMSbasename = options.inms.split('/')[-1]
        if inputMSbasename == '':
            # The user has not specified the full path of the MS
            inputMSbasename = options.inms
        
        device = options.device
        if device=='?':
                ppgplot.pgldev()
                return
        xaxis = options.xaxis
        if xaxis == 'ha':
            print 'Adding derived columns to allow plotting hour angle...'
            try:
                pt.addDerivedMSCal(inputMS)
            except:
                print 'Failed, trying to remove and add columns...'
                try:
                    pt.removeDerivedMSCal(inputMS)
                    pt.addDerivedMSCal(inputMS)
                except:
                    print 'That failed too... plotting HA seems to not be possible.'
                    return
        yaxis = options.yaxis
        column = options.column
        nx, ny = options.nxy.split(',')
        axlimits = options.axlimits.split(',')
        if len(axlimits) == 4:
                xmin,xmax,ymin,ymax = axlimits
        else:
                print 'Error: You must specify four axis limits'
                return
        showFlags = options.flag
        flagCol = options.colflag
        showAutocorr = options.autocorr
        showStats = options.statistics
        timeslots = options.timeslots.split(',')
        if len(timeslots) != 2:
                print 'Error: Timeslots format is start,end'
                return
        for i in range(len(timeslots)): timeslots[i] = int(timeslots[i])
        antToPlotSpl = options.antennas.split(',')
        antToPlot = []
        for i in range(len(antToPlotSpl)):
                tmpspl = antToPlotSpl[i].split('..')
                if len(tmpspl) == 1:
                        antToPlot.append(int(antToPlotSpl[i]))
                elif len(tmpspl) == 2:
                        for j in range(int(tmpspl[0]),int(tmpspl[1])+1):
                                antToPlot.append(j)
                else:
                        print 'Error: Could not understand antenna list.'
                        return
        polarizations = options.polar.split(',')
        for i in range(len(polarizations)):
                polarizations[i] = int(polarizations[i])
        
        convertStokes = options.stokes        
        
        operation = options.operation
        if operation != '':
            operation = int(operation)
            if convertStokes:
                print 'Error: Stokes conversion is not compatible with special operations'
                return
        
        channels = options.channels.split(',')
        if len(channels) != 2:
                print 'Error: Channels format is start,end'
                return
        for i in range(len(channels)): channels[i] = int(channels[i])
        if channels[1] == -1:
                channels[1] = None # last element even if there is only one
        else:
                channels[1] += 1
        queryMode = options.query
        doUnwrap = options.wrap


        if not queryMode:
                # open the graphics device, use the right number of panels
                ppgplot.pgbeg(device, int(nx), int(ny))
                # set the font size
                ppgplot.pgsch(1.5)
                ppgplot.pgvstd()

        # open the main table and print some info about the MS
        t = pt.table(inputMS, readonly=True, ack=False)
        firstTime = t.query(sortlist='TIME',columns='TIME',limit=1).getcell("TIME", 0)
        lastTime = t.query(sortlist='TIME',columns='TIME',offset=t.nrows()-1).getcell("TIME", 0)
        intTime = t.getcell("INTERVAL", 0)
        print 'Integration time:\t%f sec' % (intTime)
        nTimeslots = (lastTime - firstTime) / intTime
        if timeslots[1] == -1:
                timeslots[1] = nTimeslots
        else:
                timeslots[1] += 1
        print 'Number of timeslots:\t%d' % (nTimeslots)
        # open the antenna and spectral window subtables
        tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False)
        tsp = pt.table(t.getkeyword('SPECTRAL_WINDOW'), readonly=True, ack=False)
        numChannels = len(tsp.getcell('CHAN_FREQ',0))
        print 'Number of channels:\t%d' % (numChannels)
        print 'Reference frequency:\t%5.2f MHz' % (tsp.getcell('REF_FREQUENCY',0)/1.e6)

        # Station names
        antList = tant.getcol('NAME')
        if len(antToPlot)==1 and antToPlot[0]==-1:
                antToPlot = range(len(antList))
        print 'Station list (only starred stations will be plotted):'
        for i in range(len(antList)):
                star = ' '
                if i in antToPlot: star = '*'
                print '%s %2d\t%s' % (star, i, antList[i])

        # Bail if we're in query mode
        if queryMode:
                return

        # select by time from the beginning, and only use specified antennas
        tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[1]*intTime,str(antToPlot),str(antToPlot)))

        # values to use for each polarization
        plotColors = [1,2,3,4]
        labXPositions = [0.35,0.45,0.55,0.65]
        labYPositions = [1.0,1.0,1.0,1.0]
        if convertStokes:
                polLabels = ['I','Q','U','V']
        else:
                polLabels = ['XX','XY','YX','YY']

        # define nicely written axis labels
        axisLabels = {'time': 'Time',
                      'ha': 'Hour angle',
                      'chan': 'Channel',
                      'freq': 'Frequency [MHz]',
                      'amp': 'Visibility amplitude',
                      'real': 'Real part of visibility',
                      'imag': 'Imaginary part of visibility',
                      'phase': 'Visibility phase [radians]'}

        # Now we loop through the baselines
        ppgplot.pgpage()
        for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]):
                if not keepPlotting: return
                ant1 = tpart.getcell("ANTENNA1", 0)
                ant2 = tpart.getcell("ANTENNA2", 0)
                if ant1 not in antToPlot or ant2 not in antToPlot: continue
                if ant1 == ant2:
                        if not showAutocorr:
                                continue
                # Get the values to plot, strategy depends on axis type
                if xaxis == 'time' or xaxis == 'ha':
                        xaxisvals = getXAxisVals(tpart, xaxis, channels)
                        yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes)
                else:
                        xaxisvals = getXAxisVals(tsp, xaxis, channels)
                        yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1)
                if xaxisvals == None: # This baseline must be empty, go to next one
                        print 'No good data on baseline %s - %s' % (antList[ant1],antList[ant2])
                        continue
                    
                if debug:
                        print xaxisvals.shape
                        print yaxisvals.shape
                        for r in range(len(xaxisvals)):
                                print '%s'%yaxisvals[r]
                if len(xaxisvals) != len(yaxisvals): # something is wrong
                        print 'Error: X and Y axis types incompatible'
                        return

                # Plot the data, each polarization in a different color
                ppgplot.pgsci(1)
                if xmin == '':
                        minx = xaxisvals.min()
                else:
                        minx = float(xmin)
                if xmax == '':
                        maxx = xaxisvals.max()
                else:
                        maxx = float(xmax)
                if ymin == '':
                        miny = yaxisvals.min()
                        if numpy.ma.getmaskarray(yaxisvals.min()):
                                print 'All data flagged on baseline %s - %s' % (antList[ant1],antList[ant2])
                                continue
                else:
                        miny = float(ymin)
                if ymax == '':
                        maxy = yaxisvals.max()
                else:
                        maxy = float(ymax)
                if minx == maxx:
                        minx -= 1.0
                        maxx += 1.0
                else:
                        diffx = maxx - minx
                        minx -= 0.02*diffx
                        maxx += 0.02*diffx
                if miny == maxy:
                        miny -= 1.0
                        maxy += 1.0
                else:
                        diffy = maxy - miny
                        miny -= 0.02*diffy
                        maxy += 0.02*diffy
                #ppgplot.pgpage()
                ppgplot.pgswin(minx,maxx,miny,maxy)
                if xaxis == 'time' or xaxis == 'ha':
                        ppgplot.pgtbox('ZHOBCNST',0.0,0,'BCNST',0.0,0)
                else:
                        ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0)
                
                #ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2]))
                #ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename)
                
                ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], inputMSbasename + '(' + getDataDescription(column) + '): %s - %s'%(antList[ant1],antList[ant2]))
               
               
                if operation != 0:
                    # some operations is defined
                    if operation == 1:
                        label = 'XX-YY'
                    elif operation == 2:
                        label = 'XY.YX*'
                    else:
                        print 'Special operation not defined'
                        return
            
                    ppgplot.pgsci(plotColors[0])
                    tmpvals = yaxisvals
                    print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points of ' + label
                    ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1)
                            
                    addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1])
                else:
                    for j in polarizations:
                        ppgplot.pgsci(plotColors[j])
                        tmpvals = yaxisvals[:,j]
                        if j == polarizations[0]:
                                print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points per polarization'
                        ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1)
                        
                        addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j])
                ppgplot.pgpage()

        # Close the PGPLOT device
        ppgplot.pgclos()

        if xaxis=='ha':
            print 'Removing derived columns...'
            pt.removeDerivedMSCal(inputMS)
コード例 #23
0
ファイル: extract.py プロジェクト: zisi/stvid
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin, path,
                   results_path):
    # Read four frame
    ff = fourframe(fname)

    # Skip saturated frames
    if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95:
        return

    # Read satelite IDs
    try:
        f = open(fname + ".id")
    except OSError:
        print("Cannot open", fname + ".id")
    else:
        lines = f.readlines()
        f.close()

    tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0])

    # Parse identifications
    idents = [satid(line) for line in lines]

    # Identify unknowns
    for ident0 in idents:
        if ident0.catalog == "unidentified":
            for ident1 in idents:
                if ident1.catalog == "unidentified":
                    continue

                # Find matches
                p1 = inside_selection(ident1, ident0.t0, ident0.x0, ident0.y0)
                p2 = inside_selection(ident1, ident0.t1, ident0.x1, ident0.y1)

                # Match found
                if p1 and p2:
                    # Copy info
                    ident0.norad = ident1.norad
                    ident0.catalog = ident1.catalog
                    ident0.state = ident1.state
                    ident1.state = "remove"
                    break

    # Loop over identifications
    for ident in idents:
        # Skip superseded unknowns
        if ident.state == "remove":
            continue

        # Skip slow moving objects
        drdt = np.sqrt(ident.dxdt**2 + ident.dydt**2)
        if drdt < drdtmin:
            continue

        # Extract significant pixels along a track
        x, y, t, sig = ff.significant_pixels_along_track(
            trksig, ident.x0, ident.y0, ident.dxdt, ident.dydt, trkrmin)

        # Fit tracks
        if len(t) > ntrkmin:
            # Get times
            tmin = np.min(t)
            tmax = np.max(t)
            tmid = 0.5 * (tmax + tmin)
            mjd = ff.mjd + tmid / 86400.0

            # Skip if no variance in time
            if np.std(t - tmid) == 0.0:
                continue

            # Very simple polynomial fit; no weighting, no cleaning
            px = np.polyfit(t - tmid, x, 1)
            py = np.polyfit(t - tmid, y, 1)

            # Extract results
            x0, y0 = px[1], py[1]
            dxdt, dydt = px[0], py[0]
            xmin = x0 + dxdt * (tmin - tmid)
            ymin = y0 + dydt * (tmin - tmid)
            xmax = x0 + dxdt * (tmax - tmid)
            ymax = y0 + dydt * (tmax - tmid)

            cospar = get_cospar(ident.norad, ff.nfd)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            # Create diagnostic plot
            plot_header(fname.replace(".fits", "_%05d.png/png" % ident.norad),
                        ff, iod_line)

            ppg.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1,
                       ff.zmaxmax, ff.zmaxmin, tr)
            ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppg.pgstbg(1)

            ppg.pgsci(0)
            if ident.catalog.find("classfd.tle") > 0:
                ppg.pgsci(4)
            elif ident.catalog.find("inttles.tle") > 0:
                ppg.pgsci(3)

            ppg.pgpt(np.array([x0]), np.array([y0]), 4)
            ppg.pgmove(xmin, ymin)
            ppg.pgdraw(xmax, ymax)
            ppg.pgsch(0.65)
            ppg.pgtext(np.array([x0]), np.array([y0]), " %05d" % ident.norad)
            ppg.pgsch(1.0)
            ppg.pgsci(1)

            ppg.pgend()

            # Store results
            store_results(ident, fname, results_path, iod_line)

        elif ident.catalog.find("classfd.tle") > 0:
            # Track and stack
            t = np.linspace(0.0, ff.texp)
            x, y = ident.x0 + ident.dxdt * t, ident.y0 + ident.dydt * t
            c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny)

            # Skip if no points selected
            if np.sum(c) == 0:
                store_not_seen(ident, fname, results_path)
                continue

            # Compute track
            tmid = np.mean(t[c])
            mjd = ff.mjd + tmid / 86400.0
            xmid = ident.x0 + ident.dxdt * tmid
            ymid = ident.y0 + ident.dydt * tmid
            ztrk = ndimage.gaussian_filter(
                ff.track(ident.dxdt, ident.dydt, tmid), 1.0)
            vmin = np.mean(ztrk) - 2.0 * np.std(ztrk)
            vmax = np.mean(ztrk) + 6.0 * np.std(ztrk)

            # Select region
            xmin = int(xmid - 100)
            xmax = int(xmid + 100)
            ymin = int(ymid - 100)
            ymax = int(ymid + 100)
            if xmin < 0:
                xmin = 0
            if ymin < 0:
                ymin = 0
            if xmax > ff.nx:
                xmax = ff.nx - 1
            if ymax > ff.ny:
                ymax = ff.ny - 1

            # Find peak
            x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax])
            x0 += xmin
            y0 += ymin

            # Skip if peak is not significant
            if sigma < trksig:
                store_not_seen(ident, fname, results_path)
                continue

            # Skip if point is outside selection area
            if inside_selection(ident, tmid, x0, y0) is False:
                store_not_seen(ident, fname, results_path)
                continue

            # Format IOD line
            cospar = get_cospar(ident.norad, ff.nfd)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            # Create diagnostic plot
            pngfile = fname.replace(".fits", "_%05d.png" % ident.norad)
            plot_header(pngfile + "/png", ff, iod_line)

            ppg.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax,
                       vmin, tr)
            ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppg.pgstbg(1)

            plot_selection(ident, xmid, ymid)

            ppg.pgsci(0)
            if ident.catalog.find("classfd.tle") > 0:
                ppg.pgsci(4)
            elif ident.catalog.find("inttles.tle") > 0:
                ppg.pgsci(3)
            ppg.pgpt(np.array([ident.x0]), np.array([ident.y0]), 17)
            ppg.pgmove(ident.x0, ident.y0)
            ppg.pgdraw(ident.x1, ident.y1)
            ppg.pgpt(np.array([x0]), np.array([y0]), 4)
            ppg.pgsch(0.65)
            ppg.pgtext(np.array([ident.x0]), np.array([ident.y0]),
                       " %05d" % ident.norad)
            ppg.pgsch(1.0)
            ppg.pgsci(1)

            ppg.pgend()

            # Store results
            store_results(ident, fname, results_path, iod_line)
コード例 #24
0
psfile = str(filename)+".ps" # print ("psfile\n")
ppgplot.pgbegin(0,"psfile/VCPS", 1, 1)
# pgbegin(0,"psfile/PS", 1, 1)

# Plot Setting
####################################################################
ppgplot.pgpaper(8,1.25) # window/paper size (width(inch), aspect)

ppgplot.pgscf(2)   # characte font (1: normal, 2: roman, 3: italic, 4: script)
ppgplot.pgslw(3) # line width
ppgplot.pgsvp(0.15, 0.9, 0.53, 0.89) # viewport in the window (relative)
ppgplot.pglab("", "", "Local Time [hour]")
ppgplot.pgsvp(0.12, 0.9, 0.53, 0.88) # viewport in the window (relative)
ppgplot.pglabel("", "Airmass", "") # label settingoto s

ppgplot.pgsch(1.0) # character height (size)
ppgplot.pgslw(3) # line width
ppgplot.pgsvp(0.15, 0.9, 0.53, 0.88) # viewport in the window (relative)
ppgplot.pgswin(t_min, t_max, a_max, a_min) # MIN,MAX of coordinate

ppgplot.pgbox('BCTS', 0.0, 0, 'BCTSNV1', 0.1, 0) # coordinate settings
ppgplot.pgbox('0', 0.0, 0, 'BCTSMV1', 0.1, 0) # coordinate settings

# Put Header/ Axes Label
#####################################################################
#####################################################################
# READ USER INPUT
#####################################################################
year  =  sys.argv[2]#ARGV[1]
month =  sys.argv[3]#ARGV[2]
day   =  sys.argv[4]#ARGV[3]
コード例 #25
0
 print superPixel
 superMax = numpy.ma.max(superPixel)
 superMin = numpy.ma.min(superPixel)
 variance = numpy.ma.var(superPixel)
 numPixels = numpy.ma.count(superPixel)
 print (
     "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f"
     % (position[1], position[0], superMax, superMin, variance, variance / numPixels)
 )
 ppgplot.pgslct(spPreview["pgplotHandle"])
 boostedPreview = generalUtils.percentiles(superPixel, 20, 99)
 ppgplot.pggray(
     boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot["pgPlotTransform"]
 )
 ppgplot.pgsci(0)
 ppgplot.pgsch(5)
 ppgplot.pgtext(1, 2, "max: %d" % superMax)
 ppgplot.pgslct(imagePlot["pgplotHandle"])
 pointingObject = {"x": position[1], "y": position[0]}
 pointings.append(pointingObject)
 ppgplot.pgsfs(2)
 ppgplot.pgsci(5)
 ppgplot.pgcirc(position[1], position[0], radius)
 xpts = [startX, startX, startX + superPixelSize, startX + superPixelSize]
 ypts = [startY, startY + superPixelSize, startY + superPixelSize, startY]
 ppgplot.pgsfs(2)
 ppgplot.pgsci(4)
 ppgplot.pgpoly(xpts, ypts)
 tempBitmap = numpy.zeros(numpy.shape(imageCopy))
 tempBitmap = gridCircle(position[0], position[1], radius, tempBitmap)
 additionalMask = numpy.ma.make_mask(tempBitmap)
コード例 #26
0
	(xmin, ymin, xmax, ymax) = determineFullFrameSize(allWindows)
	fullFramexsize = xmax - xmin
	fullFrameysize = ymax - ymin
	
	
	""" Set up the PGPLOT windows """
	xyPositionPlot = {}
	xyPositionPlot['pgplotHandle'] = ppgplot.pgopen('/xs')
	xyPositionPlot['yLimit'] = 1.0
	xyPositionPlot['numXYPanels'] = len(referenceApertures.sources)
	ppgplot.pgpap(6.18, 1.618)
	ppgplot.pgsubp(1, xyPositionPlot['numXYPanels'])
	ppgplot.pgsci(5)
	for panel in range(xyPositionPlot['numXYPanels']):
		currentSize = ppgplot.pgqch()
		ppgplot.pgsch(1)
		yLimit = xyPositionPlot['yLimit']
		ppgplot.pgenv(startFrame, startFrame + frameRange, -yLimit, yLimit, 0, -2)
		ppgplot.pgbox('A', 0.0, 0, 'BCG', 0.0, 0)
		ppgplot.pglab("", "%d"%panel, "")
		ppgplot.pgsch(currentSize)
	
	ppgplot.pgask(False)
	ppgplot.pgsci(1)
	
	
	if (arg.preview):		
		bitmapView = {}
		bitmapView['pgplotHandle'] = ppgplot.pgopen('/xs')
		ppgplot.pgpap(8, 1)
		
コード例 #27
0
ファイル: uvcov.py プロジェクト: tremou/scripts
def main(options):

    debug = options.debug
    MSlist = []
    device = options.device
    if device == '?':
        ppgplot.pgldev()
        return
    for inmspart in options.inms.split(','):
        for msname in glob.iglob(inmspart):
            MSlist.append(msname)
    if len(MSlist) == 0:
        print('Error: You must specify at least one MS name.')
        print('       Use "uvplot.py -h" to get help.')
        return
    if len(MSlist) > 1:
        print('WARNING: Antenna selection (other than all) may not work well')
        print('         when plotting more than one MS. Carefully inspect the')
        print('         listings of antenna numbers/names!')
    if options.title == '':
        plottitle = options.inms
    else:
        plottitle = options.title
    axlimits = options.axlimits.split(',')
    if len(axlimits) == 4:
        xmin, xmax, ymin, ymax = axlimits
    else:
        print('Error: You must specify four axis limits')
        return
    timeslots = options.timeslots.split(',')
    if len(timeslots) != 3:
        print('Error: Timeslots format is start,skip,end')
        return
    for i in range(len(timeslots)):
        timeslots[i] = int(timeslots[i])
        if timeslots[i] < 0:
            print('Error: timeslots values must not be negative')
            return
    doPlotColors = options.colors
    antToPlotSpl = options.antennas.split(',')
    antToPlot = []
    for i in range(len(antToPlotSpl)):
        tmpspl = antToPlotSpl[i].split('..')
        if len(tmpspl) == 1:
            antToPlot.append(int(antToPlotSpl[i]))
        elif len(tmpspl) == 2:
            for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1):
                antToPlot.append(j)
        else:
            print('Error: Could not understand antenna list.')
            return
    queryMode = options.query
    plotLambda = options.kilolambda

    badval = 0.0
    xaxisvals0 = numpy.array([])
    yaxisvals0 = numpy.array([])
    xaxisvals1 = numpy.array([])
    yaxisvals1 = numpy.array([])
    xaxisvals2 = numpy.array([])
    yaxisvals2 = numpy.array([])
    xaxisvals3 = numpy.array([])
    yaxisvals3 = numpy.array([])
    xaxisvals4 = numpy.array([])
    yaxisvals4 = numpy.array([])
    xaxisvals5 = numpy.array([])
    yaxisvals5 = numpy.array([])
    savex0 = numpy.array([])
    savey0 = numpy.array([])
    savex1 = numpy.array([])
    savey1 = numpy.array([])
    savex2 = numpy.array([])
    savey2 = numpy.array([])
    savex3 = numpy.array([])
    savey3 = numpy.array([])
    savex4 = numpy.array([])
    savey4 = numpy.array([])
    savex5 = numpy.array([])
    savey5 = numpy.array([])
    numPlotted = 0
    ptcolor = 0
    for inputMS in MSlist:
        # open the main table and print some info about the MS
        print('Getting info for', inputMS)
        t = pt.table(inputMS, readonly=True, ack=False)
        tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),
                         readonly=True,
                         ack=False)
        ref_freq = tfreq.getcol('REF_FREQUENCY', nrow=1)[0]
        ch_freq = tfreq.getcol('CHAN_FREQ', nrow=1)[0]
        print('Reference frequency:\t%f MHz' % (ref_freq / 1.e6))
        if options.wideband:
            ref_wavelength = 2.99792458e8 / ch_freq
        else:
            ref_wavelength = [2.99792458e8 / ref_freq]
        print('Reference wavelength:\t%f m' % (ref_wavelength[0]))
        if options.sameuv and numPlotted > 0:
            print('Assuming same uvw as first MS!')
            if plotLambda:
                for w in ref_wavelength:
                    xaxisvals0 = numpy.append(
                        xaxisvals0, [savex0 / w / 1000., -savex0 / w / 1000.])
                    yaxisvals0 = numpy.append(
                        yaxisvals0, [savey0 / w / 1000., -savey0 / w / 1000.])
                    xaxisvals1 = numpy.append(
                        xaxisvals1, [savex1 / w / 1000., -savex1 / w / 1000.])
                    yaxisvals1 = numpy.append(
                        yaxisvals1, [savey1 / w / 1000., -savey1 / w / 1000.])
                    xaxisvals2 = numpy.append(
                        xaxisvals2, [savex2 / w / 1000., -savex2 / w / 1000.])
                    yaxisvals2 = numpy.append(
                        yaxisvals2, [savey2 / w / 1000., -savey2 / w / 1000.])
                    xaxisvals3 = numpy.append(
                        xaxisvals3, [savex3 / w / 1000., -savex3 / w / 1000.])
                    yaxisvals3 = numpy.append(
                        yaxisvals3, [savey3 / w / 1000., -savey3 / w / 1000.])
                    xaxisvals4 = numpy.append(
                        xaxisvals4, [savex4 / w / 1000., -savex4 / w / 1000.])
                    yaxisvals4 = numpy.append(
                        yaxisvals4, [savey4 / w / 1000., -savey4 / w / 1000.])
                    xaxisvals5 = numpy.append(
                        xaxisvals5, [savex5 / w / 1000., -savex5 / w / 1000.])
                    yaxisvals5 = numpy.append(
                        yaxisvals5, [savey5 / w / 1000., -savey5 / w / 1000.])
            else:
                print(
                    'Plotting more than one MS with same uv, all in meters... do you want -k?'
                )
                xaxisvals0 = numpy.append(xaxisvals0, [savex0, -savex0])
                yaxisvals0 = numpy.append(yaxisvals0, [savey0, -savey0])
                xaxisvals1 = numpy.append(xaxisvals1, [savex1, -savex1])
                yaxisvals1 = numpy.append(yaxisvals1, [savey1, -savey1])
                xaxisvals2 = numpy.append(xaxisvals2, [savex2, -savex2])
                yaxisvals2 = numpy.append(yaxisvals2, [savey2, -savey2])
                xaxisvals3 = numpy.append(xaxisvals3, [savex3, -savex3])
                yaxisvals3 = numpy.append(yaxisvals3, [savey3, -savey3])
                xaxisvals4 = numpy.append(xaxisvals4, [savex4, -savex4])
                yaxisvals4 = numpy.append(yaxisvals4, [savey4, -savey4])
                xaxisvals5 = numpy.append(xaxisvals5, [savex5, -savex5])
                yaxisvals5 = numpy.append(yaxisvals5, [savey5, -savey5])
            continue

        firstTime = t.getcell("TIME", 0)
        lastTime = t.getcell("TIME", t.nrows() - 1)
        intTime = t.getcell("INTERVAL", 0)
        print('Integration time:\t%f sec' % (intTime))
        nTimeslots = (lastTime - firstTime) / intTime
        print('Number of timeslots:\t%d' % (nTimeslots))
        if timeslots[1] == 0:
            if nTimeslots >= 100:
                timeskip = int(nTimeslots / 100)
            else:
                timeskip = 1
        else:
            timeskip = int(timeslots[1])
        print('For each baseline, plotting one point every %d samples' %
              (timeskip))
        if timeslots[2] == 0:
            timeslots[2] = nTimeslots
# open the antenna subtable
        tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False)

        # Station names
        antList = tant.getcol('NAME')
        if len(antToPlot) == 1 and antToPlot[0] == -1:
            antToPlot = list(range(len(antList)))
        print('Station list (only starred stations will be plotted):')
        for i in range(len(antList)):
            star = ' '
            if i in antToPlot: star = '*'
            print('%s %2d\t%s' % (star, i, antList[i]))

# Bail if we're in query mode
        if queryMode:
            return

# select by time from the beginning, and only use specified antennas
        tsel = t.query(
            'TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' %
            (firstTime + timeslots[0] * intTime, firstTime +
             timeslots[2] * intTime, str(antToPlot), str(antToPlot)),
            columns='ANTENNA1,ANTENNA2,UVW')

        # Now we loop through the baselines
        i = 0
        nb = (len(antToPlot) * (len(antToPlot) - 1)) / 2
        sys.stdout.write('Reading uvw for %d baselines: %04d/%04d' %
                         (nb, i, nb))
        sys.stdout.flush()
        for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]):
            ant1 = tpart.getcell("ANTENNA1", 0)
            ant2 = tpart.getcell("ANTENNA2", 0)
            if ant1 not in antToPlot or ant2 not in antToPlot: continue
            if ant1 == ant2: continue
            i += 1
            sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d' % (i, nb))
            sys.stdout.flush()
            if doPlotColors:
                stNameStr = antList[ant1][0] + antList[ant2][0]
                if stNameStr == 'CC': ptcolor = 0
                elif stNameStr == 'RR': ptcolor = 1
                elif 'C' in stNameStr and 'R' in stNameStr: ptcolor = 2
                elif 'C' in stNameStr: ptcolor = 3
                elif 'R' in stNameStr: ptcolor = 4
                else: ptcolor = 5
            # Get the values to plot
            uvw = tpart.getcol('UVW', rowincr=timeskip)
            if numPlotted == 0:
                savex0 = numpy.append(savex0, [uvw[:, 0], -uvw[:, 0]])
                savey0 = numpy.append(savey0, [uvw[:, 1], -uvw[:, 1]])
                savex1 = numpy.append(savex1, [uvw[:, 0], -uvw[:, 0]])
                savey1 = numpy.append(savey1, [uvw[:, 1], -uvw[:, 1]])
                savex2 = numpy.append(savex2, [uvw[:, 0], -uvw[:, 0]])
                savey2 = numpy.append(savey2, [uvw[:, 1], -uvw[:, 1]])
                savex3 = numpy.append(savex3, [uvw[:, 0], -uvw[:, 0]])
                savey3 = numpy.append(savey3, [uvw[:, 1], -uvw[:, 1]])
                savex4 = numpy.append(savex4, [uvw[:, 0], -uvw[:, 0]])
                savey4 = numpy.append(savey4, [uvw[:, 1], -uvw[:, 1]])
                savex5 = numpy.append(savex5, [uvw[:, 0], -uvw[:, 0]])
                savey5 = numpy.append(savey5, [uvw[:, 1], -uvw[:, 1]])
            if plotLambda:
                for w in ref_wavelength:
                    if ptcolor == 0:
                        xaxisvals0 = numpy.append(
                            xaxisvals0,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals0 = numpy.append(
                            yaxisvals0,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
                    elif ptcolor == 1:
                        xaxisvals1 = numpy.append(
                            xaxisvals1,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals1 = numpy.append(
                            yaxisvals1,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
                    elif ptcolor == 2:
                        xaxisvals2 = numpy.append(
                            xaxisvals2,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals2 = numpy.append(
                            yaxisvals2,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
                    elif ptcolor == 3:
                        xaxisvals3 = numpy.append(
                            xaxisvals3,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals3 = numpy.append(
                            yaxisvals3,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
                    elif ptcolor == 4:
                        xaxisvals4 = numpy.append(
                            xaxisvals4,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals4 = numpy.append(
                            yaxisvals4,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
                    elif ptcolor == 5:
                        xaxisvals5 = numpy.append(
                            xaxisvals5,
                            [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.])
                        yaxisvals5 = numpy.append(
                            yaxisvals5,
                            [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.])
            else:
                if ptcolor == 0:
                    xaxisvals0 = numpy.append(xaxisvals0,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals0 = numpy.append(yaxisvals0,
                                              [uvw[:, 1], -uvw[:, 1]])
                elif ptcolor == 1:
                    xaxisvals1 = numpy.append(xaxisvals1,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals1 = numpy.append(yaxisvals1,
                                              [uvw[:, 1], -uvw[:, 1]])
                elif ptcolor == 2:
                    xaxisvals2 = numpy.append(xaxisvals2,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals2 = numpy.append(yaxisvals2,
                                              [uvw[:, 1], -uvw[:, 1]])
                elif ptcolor == 3:
                    xaxisvals3 = numpy.append(xaxisvals3,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals3 = numpy.append(yaxisvals3,
                                              [uvw[:, 1], -uvw[:, 1]])
                elif ptcolor == 4:
                    xaxisvals4 = numpy.append(xaxisvals4,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals4 = numpy.append(yaxisvals4,
                                              [uvw[:, 1], -uvw[:, 1]])
                elif ptcolor == 5:
                    xaxisvals5 = numpy.append(xaxisvals5,
                                              [uvw[:, 0], -uvw[:, 0]])
                    yaxisvals5 = numpy.append(yaxisvals5,
                                              [uvw[:, 1], -uvw[:, 1]])
            #if debug:
            #        print uvw.shape
            #	print xaxisvals.shape
            #	print yaxisvals.shape
            #else:
            #        sys.stdout.write('.')
            #        sys.stdout.flush()
        sys.stdout.write(' Done!\n')
        numPlotted += 1

    print('Plotting uv points ...')
    # open the graphics device, using only one panel
    ppgplot.pgbeg(device, 1, 1)
    # set the font size
    ppgplot.pgsch(1)
    ppgplot.pgvstd()

    xaxisvals = numpy.append(
        xaxisvals0,
        numpy.append(
            xaxisvals1,
            numpy.append(
                xaxisvals2,
                numpy.append(xaxisvals3, numpy.append(xaxisvals4,
                                                      xaxisvals5)))))
    yaxisvals = numpy.append(
        yaxisvals0,
        numpy.append(
            yaxisvals1,
            numpy.append(
                yaxisvals2,
                numpy.append(yaxisvals3, numpy.append(yaxisvals4,
                                                      yaxisvals5)))))
    tmpvals0 = numpy.sqrt(xaxisvals0**2 + yaxisvals0**2)
    tmpvals1 = numpy.sqrt(xaxisvals1**2 + yaxisvals1**2)
    tmpvals2 = numpy.sqrt(xaxisvals2**2 + yaxisvals2**2)
    tmpvals3 = numpy.sqrt(xaxisvals3**2 + yaxisvals3**2)
    tmpvals4 = numpy.sqrt(xaxisvals4**2 + yaxisvals4**2)
    tmpvals5 = numpy.sqrt(xaxisvals5**2 + yaxisvals5**2)
    # Plot the data
    if debug:
        print(xaxisvals0[tmpvals0 != badval])
        print(yaxisvals0[tmpvals0 != badval])
    ppgplot.pgsci(1)
    uvmax = max(xaxisvals.max(), yaxisvals.max())
    uvmin = min(xaxisvals.min(), yaxisvals.min())
    uvuplim = 0.02 * (uvmax - uvmin) + uvmax
    uvlolim = uvmin - 0.02 * (uvmax - uvmin)
    if xmin == '':
        minx = uvlolim
    else:
        minx = float(xmin)
    if xmax == '':
        maxx = uvuplim
    else:
        maxx = float(xmax)
    if ymin == '':
        miny = uvlolim
    else:
        miny = float(ymin)
    if ymax == '':
        maxy = uvuplim
    else:
        maxy = float(ymax)
    if minx == maxx:
        minx = -1.0
        maxx = 1.0
    if miny == maxy:
        miny = -1.0
        maxy = 1.0
    ppgplot.pgpage()
    ppgplot.pgswin(minx, maxx, miny, maxy)
    ppgplot.pgbox('BCNST', 0.0, 0, 'BCNST', 0.0, 0)
    if plotLambda:
        ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s' % (plottitle))
    else:
        ppgplot.pglab('u [m]', 'v [m]', '%s' % (plottitle))
    ppgplot.pgpt(xaxisvals0[tmpvals0 != badval],
                 yaxisvals0[tmpvals0 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.35, 0.5, 'C-C')
    ppgplot.pgsci(2)
    ppgplot.pgpt(xaxisvals1[tmpvals1 != badval],
                 yaxisvals1[tmpvals1 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.50, 0.5, 'R-R')
    ppgplot.pgsci(4)
    ppgplot.pgpt(xaxisvals2[tmpvals2 != badval],
                 yaxisvals2[tmpvals2 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'C-R')
    ppgplot.pgsci(3)
    ppgplot.pgpt(xaxisvals3[tmpvals3 != badval],
                 yaxisvals3[tmpvals3 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.55, 0.5, 'C-I')
    ppgplot.pgsci(5)
    ppgplot.pgpt(xaxisvals4[tmpvals4 != badval],
                 yaxisvals4[tmpvals4 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'R-I')
    ppgplot.pgsci(6)
    ppgplot.pgpt(xaxisvals5[tmpvals5 != badval],
                 yaxisvals5[tmpvals5 != badval], 1)
    #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.75, 0.5, 'I-I')

    # Close the PGPLOT device
    ppgplot.pgclos()
コード例 #28
0
ファイル: ps.py プロジェクト: rfinn/pythonCode
def mratiopg():
    ppgplot.pgbeg("maccratio.ps/vcps",1,1)  #color port.
    ppgplot.pgpap(8.,1.)
    ppgplot.pgpage
    ppgplot.pgsch(1.3) #font size
    ppgplot.pgslw(7)   #line width

    # 1st panel with symbols w/ stddev errorbars
    #ylabel="SFR (M\d\(2281) \u yr\u-1\d)"
    ylabel="L(H\ga) (10\u41\d  erg s\u-1\d)"
    xlabel="M\dr\u "
    x1=.15
    x2=.5
    x3=.5
    x4=.85
    y1=x1
    y2=x2
    y3=x3
    y4=x4
    emarker=18
    smarker=23
    xmin=N.log10(1.e14)
    xmax=N.log10(2.5e15)
    #ymin=-1.
    #ymax=3.
    ymin=0.
    ymax=25.
    ppgplot.pgsvp(x1,x4,y1,y4)  #sets viewport
    ppgplot.pgswin(xmin,xmax,ymin,ymax) #axes limits
    ppgplot.pgbox('blncst',1.,2,'bcvnst',2.,2)  #tickmarks and labeling


    for i in range(len(lz1lm.mass)):
	m=lz1lm.mass[i]
	l=lz1lm.maccret[i]
	h=hz1lm.maccret[i]
	r=h/l
	print i,m,l,h,r
    #print lz1lm.maccret
    #print hz1lm.maccret
    #print hz3lm.maccret
    r3lm=(hz3lm.maccret)/(lz3lm.maccret)
    r3hm=(hz3hm.maccret)/(lz3hm.maccret)
    #for i in range(len(r3)):
#	print i,lz3.sigma[i],hz3.sigma[i],lz3.mass[i],hz3.mass[i]
#	print i,lz01.sigma[i],hz01.sigma[i],lz01.mass[i],hz01.mass[i]
    r1lm=hz1lm.maccret/lz1lm.maccret
    r1hm=hz1hm.maccret/lz1hm.maccret
    #ra=N.array(hz01.maccret,'d')
    #rb=N.array(lz01.maccret,'d')
    #r01=ra/rb
    #for i in range(len(r01)):
	#print "ratio ",hz01.maccret[i],lz01.maccret[i],ra[i],rb[i],r01[i]
    ppgplot.pgsci(14)
    ppgplot.pgsls(1)
    ppgplot.pgline(N.log10(lz3lm.mass),r3lm)
    ppgplot.pgsls(2)
    ppgplot.pgline(N.log10(lz3hm.mass),r3hm)

    ppgplot.pgsci(1)
    ppgplot.pgsls(1)
    ppgplot.pgline(N.log10(lz1lm.mass),r1lm)
    ppgplot.pgsls(2)
    ppgplot.pgline(N.log10(lz1hm.mass),r1hm)

    xlabel='M\dcl\u (M\d\(2281)\u)'
    ylabel='M\dacc\u(z=0.75) / M\dacc\u(z=0.07)'

    ppgplot.pgsch(1.8)
    ppgplot.pgslw(7)
    ppgplot.pgmtxt('b',2.2,0.5,0.5,ylabel)    #xlabel
    ppgplot.pgmtxt('l',2.5,0.5,0.5,xlabel)

    ppgplot.pgend()
コード例 #29
0
ファイル: extract_tracks.py プロジェクト: rak183/sattools
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin):
    # Read four frame
    ff = fourframe(fname)

    # Skip saturated frames
    if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95:
        return

    # Read satelite IDs
    try:
        f = open(fname + ".id")
    except OSError:
        print("Cannot open", fname + ".id")
    else:
        lines = f.readlines()
        f.close()

    # ppgplot arrays
    tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0])
    heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0])
    heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0])
    heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0])
    heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0])

    # Loop over identifications
    for line in lines:
        # Decode
        id = satid(line)

        # Skip slow moving objects
        drdt = np.sqrt(id.dxdt**2 + id.dydt**2)
        if drdt < drdtmin:
            continue

        # Extract significant pixels
        x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt,
                                      trkrmin)

        # Fit tracks
        if len(t) > ntrkmin:
            # Get times
            tmin = np.min(t)
            tmax = np.max(t)
            tmid = 0.5 * (tmax + tmin)
            mjd = ff.mjd + tmid / 86400.0

            # Skip if no variance in time
            if np.std(t - tmid) == 0.0:
                continue

            # Very simple polynomial fit; no weighting, no cleaning
            px = np.polyfit(t - tmid, x, 1)
            py = np.polyfit(t - tmid, y, 1)

            # Extract results
            x0, y0 = px[1], py[1]
            dxdt, dydt = px[0], py[0]
            xmin = x0 + dxdt * (tmin - tmid)
            ymin = y0 + dydt * (tmin - tmid)
            xmax = x0 + dxdt * (tmax - tmid)
            ymax = y0 + dydt * (tmax - tmid)

            cospar = get_cospar(id.norad)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            print(iod_line)

            if id.catalog.find("classfd.tle") > 0:
                outfname = "classfd.dat"
            elif id.catalog.find("inttles.tle") > 0:
                outfname = "inttles.dat"
            else:
                outfname = "catalog.dat"

            f = open(outfname, "a")
            f.write("%s\n" % iod_line)
            f.close()

            # Plot
            ppgplot.pgopen(
                fname.replace(".fits", "") + "_%05d.png/png" % id.norad)
            #ppgplot.pgopen("/xs")
            ppgplot.pgpap(0.0, 1.0)
            ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8)

            ppgplot.pgsch(0.8)
            ppgplot.pgmtxt(
                "T", 6.0, 0.0, 0.0,
                "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
            if (3600.0 * ff.crres[0] < 1e-3
                ) | (3600.0 * ff.crres[1] < 1e-3) | (
                    ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0):
                ppgplot.pgsci(2)
            else:
                ppgplot.pgsci(1)
            ppgplot.pgmtxt(
                "T", 4.8, 0.0, 0.0,
                "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
                (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1],
                 3600.0 * ff.crres[1]))
            ppgplot.pgsci(1)
            ppgplot.pgmtxt(
                "T", 3.6, 0.0, 0.0,
                "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d"
                % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
            ppgplot.pgmtxt(
                "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
                (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax))
            ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

            ppgplot.pgsch(1.0)
            ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny)
            ppgplot.pglab("x (pix)", "y (pix)", " ")
            ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)

            ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1,
                           ff.vmax, ff.vmin, tr)
            ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppgplot.pgstbg(1)

            ppgplot.pgsci(0)
            if id.catalog.find("classfd.tle") > 0:
                ppgplot.pgsci(4)
            elif id.catalog.find("inttles.tle") > 0:
                ppgplot.pgsci(3)
            ppgplot.pgpt(np.array([x0]), np.array([y0]), 4)
            ppgplot.pgmove(xmin, ymin)
            ppgplot.pgdraw(xmax, ymax)
            ppgplot.pgsch(0.65)
            ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad)
            ppgplot.pgsch(1.0)
            ppgplot.pgsci(1)

            ppgplot.pgend()

        elif id.catalog.find("classfd.tle") > 0:
            # Track and stack
            t = np.linspace(0.0, ff.texp)
            x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t
            c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny)

            # Skip if no points selected
            if np.sum(c) == 0:
                continue

            # Compute track
            tmid = np.mean(t[c])
            mjd = ff.mjd + tmid / 86400.0
            xmid = id.x0 + id.dxdt * tmid
            ymid = id.y0 + id.dydt * tmid
            ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid),
                                           1.0)
            vmin = np.mean(ztrk) - 2.0 * np.std(ztrk)
            vmax = np.mean(ztrk) + 6.0 * np.std(ztrk)

            # Select region
            xmin = int(xmid - 100)
            xmax = int(xmid + 100)
            ymin = int(ymid - 100)
            ymax = int(ymid + 100)
            if xmin < 0: xmin = 0
            if ymin < 0: ymin = 0
            if xmax > ff.nx: xmax = ff.nx - 1
            if ymax > ff.ny: ymax = ff.ny - 1

            # Find peak
            x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax])
            x0 += xmin
            y0 += ymin

            # Skip if peak is not significant
            if sigma < trksig:
                continue

            # Skip if point is outside selection area
            if inside_selection(id, xmid, ymid, x0, y0) == False:
                continue

            # Format IOD line
            cospar = get_cospar(id.norad)
            obs = observation(ff, mjd, x0, y0)
            iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id,
                                              obs.nfd, obs.ra, obs.de)

            print(iod_line)

            if id.catalog.find("classfd.tle") > 0:
                outfname = "classfd.dat"
            elif id.catalog.find("inttles.tle") > 0:
                outfname = "inttles.dat"
            else:
                outfname = "catalog.dat"

            f = open(outfname, "a")
            f.write("%s\n" % iod_line)
            f.close()

            # Plot
            ppgplot.pgopen(
                fname.replace(".fits", "") + "_%05d.png/png" % id.norad)
            ppgplot.pgpap(0.0, 1.0)
            ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8)

            ppgplot.pgsch(0.8)
            ppgplot.pgmtxt(
                "T", 6.0, 0.0, 0.0,
                "UT Date: %.23s  COSPAR ID: %04d" % (ff.nfd, ff.site_id))
            ppgplot.pgmtxt(
                "T", 4.8, 0.0, 0.0,
                "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" %
                (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1],
                 3600.0 * ff.crres[1]))
            ppgplot.pgmtxt(
                "T", 3.6, 0.0, 0.0,
                "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d"
                % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy))
            ppgplot.pgmtxt(
                "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" %
                (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax))
            ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line)

            ppgplot.pgsch(1.0)
            ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny)
            ppgplot.pglab("x (pix)", "y (pix)", " ")
            ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5)

            ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1,
                           vmax, vmin, tr)
            ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0)
            ppgplot.pgstbg(1)

            plot_selection(id, xmid, ymid)

            ppgplot.pgsci(0)
            if id.catalog.find("classfd.tle") > 0:
                ppgplot.pgsci(4)
            elif id.catalog.find("inttles.tle") > 0:
                ppgplot.pgsci(3)
            ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17)
            ppgplot.pgmove(id.x0, id.y0)
            ppgplot.pgdraw(id.x1, id.y1)
            ppgplot.pgpt(np.array([x0]), np.array([y0]), 4)
            ppgplot.pgsch(0.65)
            ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]),
                           " %05d" % id.norad)
            ppgplot.pgsch(1.0)
            ppgplot.pgsci(1)

            ppgplot.pgend()
コード例 #30
0
ファイル: plotCatalinaData.py プロジェクト: rashley2712/utils
		if o.hasEphemeris:
			HJD = o.getColumn('HJD')
			mag = o.getColumn('mag')
			err = o.getColumn('err')
			phases = [o.ephemeris.getPhase(h) for h in HJD]
			extendPhases = copy.deepcopy(phases)
			for p in phases:
				extendPhases.append(p + 1.0)
			phases = extendPhases
			mag.extend(mag)
			err.extend(err)
			# print phases
			magMax = numpy.max(mag) + err[numpy.argmax(mag)]
			magMin = numpy.min(mag) - err[numpy.argmin(mag)]
			meanError = numpy.mean(err)
			if extraColumn: ppgplot.pgsch(1.8)
			ppgplot.pgsch(1.6)
			ppgplot.pgenv(0. ,2.0 , magMax + meanError*2, magMin - meanError*2, 0, 0)
			# ppgplot.pglab("Phase", "CRTS mag", "Phase plot: %s [%d]"%(o.id, len(phases)/2) )
			ppgplot.pglab("Phase", "CRTS mag", "WD%s"%o.id)
			ppgplot.pgtext(0.1, magMax + meanError*2 - 0.01, "%.2f d"%(o.ephemeris.Period))
			ppgplot.pgsch(1.0)
			ppgplot.pgpt(phases, mag)
			ppgplot.pgerrb(2, phases, mag, err, 0)
			ppgplot.pgerrb(4, phases, mag, err, 0)
			matplotlib.pyplot.xlabel("Phase", size = labelSize)
			matplotlib.pyplot.ylabel('CRTS magnitude', size = labelSize)
			matplotlib.pyplot.errorbar(phases, mag, color='k', yerr=err, fmt = '.', ecolor='0.75', capsize=0)

			if extraColumn:
				additionalData = o.getColumn(extraColumnName)
コード例 #31
0
ファイル: ratings_report.py プロジェクト: aarchiba/ratings
def plot_rating_sheet(rating):
    """
    Plot a fact sheet on the ratings in the database corresponding to 'rating'.
    'rating' is a dictionary of information from the MySQL database (as returned
    by 'get_all_rating_types()'.
    """
    plot_utils.beginplot("rating_report%s.ps" % currdatetime.strftime('%y%m%d'), vertical=True)
    ch0 = ppgplot.pgqch()
    ppgplot.pgsch(0.5)
    ch = ppgplot.pgqch()
    ppgplot.pgsch(0.75)
    ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 1 of 2" % (rating["name"], currdatetime.strftime('%c')))
    ppgplot.pgsch(ch)
    
    # Plot Histograms
    
    all_ratings = get_ratings(rating["rating_id"]) 
    range = xmin,xmax = np.min(all_ratings), np.max(all_ratings)
    ppgplot.pgsci(1)
    ppgplot.pgslw(1)
    
    #===== Total/Classified/Unclassified
    # Get data
    ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9)
    (tot_counts, tot_left_edges)=np.histogram(all_ratings, bins=NUMBINS, range=range)
    ppgplot.pgswin(xmin,xmax,0,np.max(tot_counts)*1.1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
    ppgplot.pgbin(tot_left_edges, tot_counts)
    (clsfd_counts, clsfd_left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3,4,5,6,7)), bins=NUMBINS, range=range)
    ppgplot.pgsci(3) # plot classified in green
    ppgplot.pgbin(tot_left_edges, clsfd_counts)
    unclsfd_counts = tot_counts-clsfd_counts
    ppgplot.pgsci(2) # plot unclassified in red
    ppgplot.pgbin(tot_left_edges, unclsfd_counts)
    ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgsch(0.75)
    ppgplot.pglab("","Counts","")

    #===== Class 1/2/3
    ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75)
    (counts, left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3)), bins=NUMBINS, range=range)
    ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
    ppgplot.pgsci(1) # plot in black
    ppgplot.pgbin(tot_left_edges, counts)
    ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgsch(0.75)
    ppgplot.pglab("","Class 1/2/3","")

    #===== RFI
    ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6)
    rfi_ratings = get_ratings(rating["rating_id"], human_classification=(4,))
    (counts, left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range)
    ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
    ppgplot.pgsci(1) # plot in black
    ppgplot.pgbin(tot_left_edges, counts)
    ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgsch(0.75)
    ppgplot.pglab("","RFI","")

    #===== Noise
    ppgplot.pgsvp(0.1, 0.9, 0.3, 0.45)
    noise_ratings = get_ratings(rating["rating_id"], human_classification=(5,))
    (counts, left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range)
    ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
    ppgplot.pgsci(1) # plot in black
    ppgplot.pgbin(tot_left_edges, counts)
    ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgsch(0.75)
    ppgplot.pglab("","Noise","")

    #===== Known/Harmonic
    ppgplot.pgsvp(0.1, 0.9, 0.15, 0.3)
    known_ratings = get_ratings(rating["rating_id"], human_classification=(6,7))
    (counts, left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range)
    ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5)
    ppgplot.pgsci(1) # plot in black
    ppgplot.pgbin(tot_left_edges, counts)
    ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgsch(0.75)
    ppgplot.pglab(rating["name"],"Known/Harmonic","")

    #===== Second page for differential histograms
    plot_utils.nextpage(vertical=True)
    ppgplot.pgsch(0.75)
    ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 2 of 2" % (rating["name"], currdatetime.strftime('%c')))
    
    #===== RFI - Known
    ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9)
    if rfi_ratings.size==0 or known_ratings.size==0:
        ppgplot.pgswin(0,1,0,1)
        ppgplot.pgbox("BC",0,0,"BC",0,0)
	ppgplot.pgsch(0.75)
        ppgplot.pglab("","RFI - Known","")
	ppgplot.pgsch(1.0)
	ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data")
    else:
        (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True)
        (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True)
        diff_counts = rfi_counts - known_counts
        ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1)
	ppgplot.pgsch(0.5)
        ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
        ppgplot.pgbin(tot_left_edges, diff_counts)
        ppgplot.pgsci(2) # set colour to red
        ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges))
        ppgplot.pgsci(1) # reset colour to black
	ppgplot.pgsch(0.75)
        ppgplot.pglab("","RFI - Known","")

    #===== RFI - Noise
    ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75)
    if noise_ratings.size==0 or rfi_ratings.size==0:
        ppgplot.pgswin(0,1,0,1)
        ppgplot.pgbox("BC",0,0,"BC",0,0)
	ppgplot.pgsch(0.75)
        ppgplot.pglab("","RFI - Noise","")
	ppgplot.pgsch(1.0)
	ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data")
    else:
        (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True)
        (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True)
        diff_counts = rfi_counts - noise_counts
        ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1)
	ppgplot.pgsch(0.5)
        ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5)
        ppgplot.pgbin(tot_left_edges, diff_counts)
        ppgplot.pgsci(2) # set colour to red
        ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges))
        ppgplot.pgsci(1) # reset colour to black
	ppgplot.pgsch(0.75)
        ppgplot.pglab("","RFI - Noise","")

    #===== Known - Noise
    ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6)
    if noise_ratings.size==0 or known_ratings.size==0:
        ppgplot.pgswin(0,1,0,1)
        ppgplot.pgbox("BC",0,0,"BC",0,0)
	# Y-axis label is taken care of outside of if/else (below)
	ppgplot.pgsch(1.0)
	ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data")
    else:
        (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True)
        (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True)
        diff_counts = known_counts - noise_counts
        ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1)
	ppgplot.pgsch(0.5)
        ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5)
        ppgplot.pgbin(tot_left_edges, diff_counts)
        ppgplot.pgsci(2) # set colour to red
        ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges))
        ppgplot.pgsci(1) # reset colour to black
    ppgplot.pgswin(xmin,xmax,0,1)
    ppgplot.pgsch(0.5)
    ppgplot.pgbox("NTS",0,5,"",0,0)
    ppgplot.pgsch(0.75)
    ppgplot.pglab(rating["name"],"Known - Noise","")
    
    ppgplot.pgsch(ch0) # reset character height
コード例 #32
0
ファイル: __init__.py プロジェクト: matthu7777/pythonmodules
def setmask(command, data, cdata):
    """
    Sets the mask on a dset and dumps a file containing the mask which can be applied
    to other dsets using 'appmask'. This is an interactive routine which will request
    input from the user and is better not used in batch processing. Repeated calls of
    this routine can be used to build complex masks. The masks are always applied in
    the original order so that you can mask then partially unmask for example. Note that
    whatever slot you choose to define the mask will always end up masked; if you don't
    want this you may want to make a copy.

    Interactive usage:

    setmask slot mfile append [device reset x1 x2 y1 y2] mask type

    Arguments:

    slot      -- an example slot to plot.
    mfile     -- mask file
    append    -- append to an old mask file if possible
    device    -- plot device, e.g. '/xs'
    reset     -- rest plot limits or not
    x1        -- left X plot limit
    x2        -- right X plot limit
    y1        -- bottom Y plot limit
    y2        -- top Y plot limit
    mask      -- mask 'M', or unmask 'U' or quit 'Q'.
    type      -- type of mask: 'X' masks using ranges in X

    Mask types:

    X  -- mask a range in X
    Y  -- mask a range in Y
    I  -- mask a range of pixel indices
    P  -- mask in 'phase', i.e. a range that repeats periodically.
    """

    import trm.dnl.mask as mask

    # generate arguments
    inpt = inp.Input(DINT_ENV, DINT_DEF, inp.clist(command))

    # register parameters
    inpt.register('slot',   inp.Input.LOCAL, inp.Input.PROMPT)
    inpt.register('mfile',  inp.Input.GLOBAL,  inp.Input.PROMPT)
    inpt.register('append', inp.Input.LOCAL,  inp.Input.PROMPT)
    inpt.register('device', inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('reset',  inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('x1',     inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('x2',     inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('y1',     inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('y2',     inp.Input.LOCAL,  inp.Input.HIDE)
    inpt.register('mask',   inp.Input.LOCAL,  inp.Input.PROMPT)
    inpt.register('type',   inp.Input.LOCAL,  inp.Input.PROMPT)

    # get inputs
    slots  = inpt.get_value('slot', 'slot to plot for mask definition', '1')
    slist  = interp_slots(slots, True, data, nfind=1)
    dset   = data[slist[0]]

    device = inpt.get_value('device', 'plot device', '/xs')

    # mask file
    mfile  = inpt.get_value('mfile',  'mask file to save results to', subs.Fname('mask','.msk', subs.Fname.NEW))
    append = inpt.get_value('append', 'add to an old mask file if possible', True)

    if append and mfile.exists():
        mptr  = open(mfile,'rb')
        gmask = pickle.load(mptr)
        gmask.app_mask(dset)
        mptr.close()
    else:
        gmask = mask.Gmask()

    # other parameters
    reset = inpt.get_value('reset',   'reset plot limits automatically?', True)

    # compute default limits
    (x1,x2,y1,y2) = dset.plimits()
    if (x2 - x1) < (x1+x2)/2./100.:
        xoff = x1
        x1   = 0.
        x2  -= xoff
    else:
        xoff = 0.
    yoff = 0.

    if reset:
        inpt.set_default('x1', x1)
        inpt.set_default('x2', x2)
        inpt.set_default('y1', y1)
        inpt.set_default('y2', y2)

    x1 = inpt.get_value('x1', 'left-hand limit of plot', x1)
    x2 = inpt.get_value('x2', 'right-hand limit of plot', x2)
    y1 = inpt.get_value('y1', 'bottom limit of plot', y1)
    y2 = inpt.get_value('y2', 'top limit of plot', y2)

    m_or_u    = inpt.get_value('mask', 'M(ask), U(nmask) or Q(uit)?', 'm', lvals=['m', 'M', 'u', 'U', 'q', 'Q'])
    if m_or_u.upper() == 'M':
        mtext = 'mask'
    else:
        mtext = 'unmask'

    mask_type = inpt.get_value('type', 'X, Y, P(hase), I(ndex) or Q(uit)?', 'x',
                               lvals=['x', 'X', 'y', 'Y', 'p', 'P', 'i', 'I', 'q', 'Q'])

    # initialise plot
    try:
        pg.pgopen(device)
        pg.pgsch(1.5)
        pg.pgscf(2)
        pg.pgslw(2)
        pg.pgsci(4)
        pg.pgenv(x1,x2,y1,y2,0,0)
        (xlabel,ylabel) = dset.plabel(xoff,yoff)
        pg.pgsci(2)
        pg.pglab(xlabel, ylabel, dset.title)

        # plot the dset
        dset.plot(xoff,yoff)

        x = (x1+x2)/2.
        y = (y1+y2)/2.

        # now define masks
        ch = 'X'
        while ch.upper() != 'Q':

            # go through mask options
            if mask_type.upper() == 'X':

                print('Set cursor at the one end of the X range, Q to quit')
                (xm1,y,ch) = pg.pgband(7,0,x,y)
                if ch.upper() != 'Q':
                    print('Set cursor at the other end of ' +
                          'the X range, Q to quit')
                    xm2,y,ch = pg.pgband(7,0,xm1,y)
                    if ch.upper() != 'Q':
                        if xm1 > xm2: xm1,xm2 = xm2,xm1
                        umask = mask.Xmask(xoff+xm1, xoff+xm2, m_or_u.upper() == 'M')

            elif mask_type.upper() == 'I':

                print('Place cursor near a point and click to ' +
                      mtext + ' it, Q to quit')
                x,y,ch = pg.pgband(7,0,x,y)
                if ch.upper() != 'Q':
                    xmm1,xmm2,ymm1,ymm2 = pg.pgqvp(2)
                    xscale  = (xmm2-xmm1)/(x2-x1)
                    yscale  = (ymm2-ymm1)/(y2-y1)

                    # only consider good data of opposite 'polarity' to the
                    # change we are making.
                    ok  = (dset.good == True) & \
                          (dset.mask == (m_or_u.upper() == 'M'))

                    if len(dset.x.dat[ok == True]):
                        # compute physical squared distance of cursor from
                        # points
                        sqdist  = npy.power(
                            xscale*(dset.x.dat[ok]-(xoff+x)),2) + \
                            npy.power(yscale*(dset.y.dat[ok]-(yoff+y)),2)

                        # select the index giving the minimum distance
                        indices = npy.arange(len(dset))[ok]
                        index   = indices[sqdist.min() == sqdist][0]
                        umask   = mask.Imask(index, m_or_u.upper() == 'M')
                    else:
                        print('There seem to be no data to ' + mtext +
                              '; data already ' + mtext + 'ed are ignored.')
                        umask = None

            if ch.upper() != 'Q' and umask is not None:
                gmask.append(umask)
                umask.app_mask(dset)

                print('overplotting data')
                # over-plot the dset
                dset.plot(xoff,yoff)

        pg.pgclos()
    except pg.ioerror, err:
        raise DintError(str(err))
コード例 #33
0
ファイル: Pgplot.py プロジェクト: bretonr/presto
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \
             rangex2=None, rangey2=None, labx2=None, laby2=None, \
             logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \
             fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \
             panels=[1,1], device=ppgplot_device_):
    """
    prepplot(rangex, rangey, ...)
        Open a PGPLOT device for plotting.
            'rangex' and 'rangey' are sequence objects giving min and
                max values for each axis.
        The optional entries are:
            title:    graph title                 (default = None)   
            labx:     label for the x-axis        (default = None)   
            laby:     label for the y-axis        (default = None)   
            rangex2:  ranges for 2nd x-axis       (default = None)   
            rangey2:  ranges for 2nd y-axis       (default = None)   
            labx2:    label for the 2nd x-axis    (default = None)   
            laby2:    label for the 2nd y-axis    (default = None)   
            logx:     make the 1st x-axis log     (default = 0 (no))
            logy:     make the 1st y-axis log     (default = 0 (no))
            logx2:    make the 2nd x-axis log     (default = 0 (no))
            logy2:    make the 2nd y-axis log     (default = 0 (no))
            font:     PGPLOT font to use          (default = 1 (normal))
            fontsize: PGPLOT font size to use     (default = 1.0 (normal))
            id:       Show ID line on plot        (default = 0 (no)) 
            aspect:   Aspect ratio                (default = 1 (square))
            ticks:    Ticks point in or out       (default = 'in')   
            panels:   Number of subpanels [r,c]   (default = [1,1])
            device:   PGPLOT device to use        (default = '/XWIN')
        Note:  Many default values are defined in global variables
            with names like ppgplot_font_ or ppgplot_device_.
    """
    global ppgplot_dev_open_, ppgplot_dev_prep_
    # Check if we will use second X or Y axes
    # Note:  if using a 2nd X axis, the range should correspond
    #   to the minimum and maximum values of the 1st X axis.  If
    #   using a 2nd Y axis, the range should correspond to the
    #   scalerange() values of the 1st Y axis.
    if rangex2 is None:
        rangex2=rangex
        otherxaxis=0
    else: otherxaxis=1
    if rangey2 is None:
        rangey2=rangey
        otheryaxis=0
    else: otheryaxis=1
    # Open the plot device
    if (not ppgplot_dev_open_):
        ppgplot.pgopen(device)
	# My little add-on to switch the background to white
	if device == '/XWIN':
	    reset_colors()
	if device == '/AQT':
	    ppgplot.pgsci(0)
        # Let the routines know that we already have a device open
        ppgplot_dev_open_ = 1
        # Set the aspect ratio
        ppgplot.pgpap(0.0, aspect)
        if (panels != [1,1]):
            # Set the number of panels
            ppgplot.pgsubp(panels[0], panels[1])
            ppgplot.pgpage()
    # Choose the font  
    ppgplot.pgscf(font)
    # Choose the font size
    ppgplot.pgsch(fontsize)
    # Choose the font size
    ppgplot.pgslw(ppgplot_linewidth_)
    # Plot the 2nd axis if needed first
    if otherxaxis or otheryaxis:
        ppgplot.pgvstd()
        ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1])
        # Decide how the axes will be drawn
        if ticks=='in': env = "CMST"
        else: env = "CMSTI"
        if logx2: lxenv='L'
        else: lxenv=''
        if logy2: lyenv='L'
        else: lyenv=''
        if otherxaxis and otheryaxis:
            ppgplot.pgbox(env+lxenv, 0.0, 0, env+lyenv, 0.0, 0)
        elif otheryaxis:
            ppgplot.pgbox("", 0.0, 0, env+lyenv, 0.0, 0)
        else:
            ppgplot.pgbox(env+lxenv, 0.0, 0, "", 0.0, 0)
    # Now setup the primary axis
    ppgplot.pgvstd()
    ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1])
    # Decide how the axes will be drawn
    if ticks=='in': env = "ST"
    else: env = "STI"
    if logx: lxenv='L'
    else: lxenv=''
    if logy: lyenv='L'
    else: lyenv=''
    if otherxaxis and otheryaxis:
        ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0)
    elif otheryaxis:
        ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0)
    elif otherxaxis:
        ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0)
    else:
        ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0)
    # My little add-on to switch the background to white
    if device == '/AQT' or device == '/XWIN':
	reset_colors()
    # Add labels
    if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title)
    ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx)
    ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby)
    if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2)
    if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2)
    # Add ID line if required
    if (id==1): ppgplot.pgiden()
    # Let the routines know that we have already prepped the device
    ppgplot_dev_prep_ = 1
コード例 #34
0
ファイル: ediscslocal.py プロジェクト: rfinn/pythonCode
def gotoit():
    nbin = 10
    #c=Cluster()
    #g=Galaxy()
    clusterfile = "clusters.spec.dat"
    print "reading in cluster file to get cluster parameters"
    c.creadfiles(clusterfile)
    print "got ", len(c.z), " clusters"
    c.convarray()
    c.Kcorr()

    go2 = []  #combined arrays containing all galaxies
    gsf = []  #combined arrays containing all galaxies
    gsig5 = []
    gsig10 = []
    gsig52r200 = []  #spec catalogs extended out to 2xR200
    gsig102r200 = []  #spec catalogs extended out to 2xR200
    gsig5phot = []
    gsig10phot = []
    sgo2 = []  #combined arrays containing all galaxies
    sgha = []  #combined arrays containing all galaxies
    sgsf = []  #combined arrays containing all galaxies
    sgsig5 = []
    sgsig10 = []
    sgsig52r200 = []  #spec catalogs extended out to 2xR200
    sgsig102r200 = []  #spec catalogs extended out to 2xR200
    sgsig5phot = []
    sgsig10phot = []

    if (mode < 1):
        c.getsdssphotcats()
        c.getsdssspeccats()

    gr = []  #list of median g-r colors
    psplotinit('summary.ps')
    x1 = .1
    x2 = .45
    x3 = .6
    x4 = .95
    y1 = .15
    y2 = .45
    y3 = .55
    y4 = .85
    ppgplot.pgsch(1.2)  #font size
    ppgplot.pgslw(2)
    #for i in range(len(c.z)):
    cl = [10]
    (xl, xu, yl, yu) = ppgplot.pgqvp(0)
    print "viewport = ", xl, xu, yl, yu
    complall = []
    for i in range(len(c.z)):
        #for i in cl:
        gname = "g" + str(i)
        gname = Galaxy()
        gspecfile = "abell" + str(c.id[i]) + ".spec.dat"
        gname.greadfiles(gspecfile, i)
        print "number of members = ", len(gname.z)
        if len(gname.z) < 10:
            print "less than 10 members", len(gname.z)
            continue
        gname.convarray()
        #gname.cullmembers()
        #gname.getmemb()#get members w/in R200
        #gr.append(N.average(gname.g-gname.r))

        gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat"
        gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i)
        print i, c.id[i], " getnearest, first call", len(gname.ra), len(
            gname.sra), sum(gname.smemb)
        #gname.getnearest(i)
        (gname.sig52r200, gname.sig102r200) = gname.getnearestgen(
            gname.ra, gname.dec, gname.sra, gname.sdec, i
        )  #measure distances from ra1, dec1 to members in catalog ra2, dec2
        sig52r200 = N.compress(gname.memb > 0, gname.sig52r200)
        gsig52r200[len(gsig5phot):] = sig52r200
        sig102r200 = N.compress(gname.memb > 0, gname.sig102r200)
        gsig102r200[len(gsig10phot):] = sig102r200

        gphotfile = "abell" + str(c.id[i]) + ".phot.dat"
        gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i])
        gname.getnearest(i)
        #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot)
        #print gspecfile, c.z[i],c.kcorr[i]
        (ds5, ds10) = gname.gwritefiles(gspecfile, i)
        o2 = N.compress(gname.memb > 0, gname.o2)
        go2[len(go2):] = o2
        sf = N.compress(gname.memb > 0, gname.sf)
        gsf[len(gsf):] = sf
        sig5 = N.compress(gname.memb > 0, gname.sig5)
        gsig5[len(gsig5):] = sig5
        sig10 = N.compress(gname.memb > 0, gname.sig10)
        gsig10[len(gsig10):] = sig10
        sig5phot = N.compress(gname.memb > 0, gname.sig5phot)
        gsig5phot[len(gsig5phot):] = sig5phot
        sig10phot = N.compress(gname.memb > 0, gname.sig10phot)
        gsig10phot[len(gsig10phot):] = sig10phot

        ds5 = N.array(ds5, 'f')
        ds10 = N.array(ds10, 'f')
        #print len(ds5),len(ds10)
        #ppgplot.pgsvp(xl,xu,yl,yu)
        ppgplot.pgsvp(0.1, .9, .08, .92)
        ppgplot.pgslw(7)
        label = 'Abell ' + str(
            c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i])
        ppgplot.pgtext(0., 1., label)
        ppgplot.pgslw(2)
        ppgplot.pgsvp(x1, x2, y1, y2)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-1., 3., -1., 3.)  #axes limits
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "\gS\d10\u(phot) (gal/Mpc\u2\d)")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)")

        x = N.arange(-5., 10., .1)
        y = x
        ppgplot.pgsls(1)  #dotted
        ppgplot.pgslw(4)  #line width
        ppgplot.pgline(x, y)
        x = N.log10(sig10phot)
        y = N.log10(sig10)
        ppgplot.pgsch(.7)
        ppgplot.pgpt(x, y, 17)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.5], 'f')
        ppgplot.pgpt(xp, yp, 17)
        ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot')
        ppgplot.pgsci(4)
        xp = N.array([-0.5], 'f')
        yp = N.array([2.2], 'f')
        ppgplot.pgpt(xp, yp, 21)
        ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot')

        y = N.log10(sig102r200)

        ppgplot.pgsch(.9)
        ppgplot.pgpt(x, y, 21)
        ppgplot.pgsch(1.2)
        ppgplot.pgslw(2)  #line width
        ppgplot.pgsci(1)

        #ppgplot.pgenv(-200.,200.,-1.,20.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1)
        #ppgplot.pgsci(4)
        #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("\gD\gS","Ngal",gspecfile)
        #ppgplot.pgpanl(1,2)
        g = N.compress(gname.memb > 0, gname.g)
        r = N.compress(gname.memb > 0, gname.r)
        V = N.compress(gname.memb > 0, gname.V)
        dmag = N.compress(gname.memb > 0, gname.dmagnearest)
        dnearest = N.compress(gname.memb > 0, gname.nearest)
        dz = N.compress(gname.memb > 0, gname.dz)
        #ppgplot.pgsvp(x3,x4,y1,y2)  #sets viewport
        #ppgplot.pgenv(-.5,3.,-1.,5.,0,0)
        #ppgplot.pgpt((g-V),(g-r),17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile)
        ppgplot.pgsvp(x1, x2, y3, y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(
            (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)),
            (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i]))
        ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0,
                      0.0)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec")

        #ppgplot.pglab("RA",'Dec',gspecfile)
        ppgplot.pgsfs(2)
        ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i])
        ppgplot.pgsls(4)
        ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i])
        ppgplot.pgsls(1)
        #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.))
        ppgplot.pgsci(2)
        ppgplot.pgpt(gname.ra, gname.dec, 17)
        ppgplot.pgsci(4)
        ppgplot.pgpt(gname.photra, gname.photdec, 21)
        ppgplot.pgsci(1)

        #calculate completeness w/in R200

        dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2)
        dphot = N.sqrt((gname.photra - c.ra[i])**2 +
                       (gname.photdec - c.dec[i])**2)
        nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot))
        nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec))
        s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % (
            str(c.id[i]), float(nspec / nphot), nspec, nphot)
        print s
        complall.append(float(nspec / nphot))
        ppgplot.pgsvp(x3, x4, y3, y4)  #sets viewport
        #ppgplot.pgsvp(x1,x2,y3,y4)  #sets viewport
        #ppgplot.pgbox("",0.0,0,"",0.0)
        ppgplot.pgswin(-0.005, .05, -1., 1.)
        ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5,
                       "Dist to nearest phot neighbor (deg)")  #xlabel
        ppgplot.pgsch(1.2)
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')
        ppgplot.pgsci(2)
        ppgplot.pgpt(dnearest, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        dm = N.compress(dnearest < 0.01, dmag)
        std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm))
        #ppgplot.pgslw(7)
        #label='Abell '+str(c.id[i])
        #ppgplot.pgtext(0.,1.,label)
        ppgplot.pgslw(2)
        label = '\gDM\dV\u(err) = ' + std
        ppgplot.pgsch(.9)
        ppgplot.pgtext(0., .8, label)
        #label = "z = %5.2f"%(c.z[i])
        #ppgplot.pgtext(0.,.8,label)
        ppgplot.pgsch(1.2)
        #ppgplot.pgsvp(x3,x4,y3,y4)  #sets viewport
        #ppgplot.pgenv(-.15,.15,-3.,3.,0,0)
        #ppgplot.pgsci(2)
        #ppgplot.pgpt(dz,dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile)
        ppgplot.pgsvp(x3, x4, y1, y2)  #sets viewport
        ppgplot.pgswin(-3., 3., -1., 1.)
        ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4)  #tickmarks and labeling
        ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs")  #xlabel
        ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)')

        ppgplot.pgsci(2)
        dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i]
        ppgplot.pgpt(dv, dmag, 17)
        ppgplot.pgsci(1)
        x = N.arange(-30., 30., 1.)
        y = 0 * x
        ppgplot.pgsci(1)
        ppgplot.pgsls(2)
        ppgplot.pgline(x, y)
        ppgplot.pgsls(1)
        ppgplot.pgsci(1)
        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(0.,3.5,-3.,3.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((g-r),dmag,17)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("g-r",'\gD Mag',gspecfile)

        #ppgplot.pgsvp(x1,x2,y1,y2)  #sets viewport
        #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0)
        #ppgplot.pgsci(4)
        #ppgplot.pgpt((V),dmag,17)
        #x=N.arange(-30.,30.,1.)
        #y=0*x
        #ppgplot.pgsci(1)
        #ppgplot.pgsls(2)
        #ppgplot.pgline(x,y)
        #ppgplot.pgsls(1)
        #ppgplot.pgsci(1)
        #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile)
        #ppgplot.pgpage()
        #ppgplot.pgpage()
        #combine galaxy data
        ppgplot.pgpage()

        (sssig5,
         sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra,
                                        gname.sdec,
                                        i)  #get spec-spec local density
        (spsig5,
         spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra,
                                        gname.photdec,
                                        i)  #get spec-phot local density

        o2 = N.compress(gname.smemb > 0, gname.so2)
        sgo2[len(sgo2):] = o2
        ha = N.compress(gname.smemb > 0, gname.sha)
        sgha[len(sgha):] = ha
        sf = N.compress(gname.smemb > 0, gname.ssf)
        sgsf[len(sgsf):] = sf
        sig5 = N.compress(gname.smemb > 0, sssig5)
        sgsig5[len(sgsig5):] = sig5
        sig10 = N.compress(gname.smemb > 0, sssig10)
        sgsig10[len(sgsig10):] = sig10
        sig5phot = N.compress(gname.smemb > 0, spsig5)
        sgsig5phot[len(sgsig5phot):] = sig5phot
        sig10phot = N.compress(gname.smemb > 0, spsig10)
        sgsig10phot[len(sgsig10phot):] = sig10phot

    #gr=N.array(gr,'f')
    #c.assigncolor(gr)

    #for i in range(len(c.z)):
    #    print c.id[i],c.z[i],c.r200[i],c.r200deg[i]

    print "Average Completeness w/in R200 = ", N.average(N.array(
        complall, 'f'))
    print "sig o2", len(gsig10), len(gsig10phot), len(go2)
    print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2)
    plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin)
    #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin)
    plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin)  #sf frac versus sigma
    plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin)  #sf frac versus sigma
    plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all',
                  nbin)  #sf frac versus sigma
    plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all',
                    nbin)  #sf frac versus sigma
    #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20)
    #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30)
    plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10)
    #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma
    #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma
    psplotinit('one2one.ps')
    ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0)
    ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)",
                  "\gS\d10\u(spec) (gal/Mpc\u2\d)", "")
    x = N.arange(-5., 10., .1)
    y = x
    ppgplot.pgsls(1)  #dotted
    ppgplot.pgslw(4)  #line width
    ppgplot.pgline(x, y)
    x = N.log10(gsig10phot)
    y = N.log10(gsig10)
    ppgplot.pgsch(.7)
    ppgplot.pgpt(x, y, 17)
    ppgplot.pgsch(1.)
    ppgplot.pgsci(1)
    ppgplot.pgend()
コード例 #35
0
ファイル: plotLCurveModel.py プロジェクト: rashley2712/utils
	ppgplot.pgsch(1.6)
	ppgplot.pgenv(0, 2, numpy.max(mag), numpy.min(mag), 0, 0)
	ppgplot.pglab("Phase", "PTF magnitude", "%s"%(arg.name))
	ppgplot.pgsch(1.0)
	ppgplot.pgpt(phases, mag)
	ppgplot.pgerrb(2, phases, mag, err, 0)
	ppgplot.pgerrb(4, phases, mag, err, 0)
	
	ppgplot.pgsci(2)
	model = modelledData.getColumn('mag')
	model.extend(model)
	ppgplot.pgsls(2)
	ppgplot.pgslw(7)
	ppgplot.pgline(phases, model)
	"""
	ppgplot.pgsch(1.6)
	ppgplot.pgenv(0, 2, 0, maxFlux, 0, 0)
	ppgplot.pglab("Phase", "PTF flux (mJy)", "%s"%(arg.name))
	ppgplot.pgsch(1.0)
	ppgplot.pgpt(phases, flux)
	ppgplot.pgerrb(2, phases, flux, flux_err, 0)
	ppgplot.pgerrb(4, phases, flux, flux_err, 0)
	
	ppgplot.pgsci(2)
	ppgplot.pgsls(2)
	ppgplot.pgslw(7)
	modelPhases = modelledData.getColumn('phase')
	temp = copy.deepcopy(modelPhases)
	for p in modelPhases: temp.append(p + 1.0)
	modelPhases = temp
	model = modelledData.getColumn('flux')
コード例 #36
0
def main():
    parser = OptionParser(usage)
    parser.add_option("-x", "--xwin", action="store_true", dest="xwin",
                      default=False, help="Don't make a postscript plot, just use an X-window")
    parser.add_option("-p", "--noplot", action="store_false", dest="makeplot",
                      default=True, help="Look for pulses but do not generate a plot")
    parser.add_option("-m", "--maxwidth", type="float", dest="maxwidth", default=0.0,
                      help="Set the max downsampling in sec (see below for default)")
    parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0,
                      help="Set a different threshold SNR (default=5.0)")
    parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0,
                      help="Only plot events occuring after this time (s)")
    parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9,
                      help="Only plot events occuring before this time (s)")
    parser.add_option("-g", "--glob", type="string", dest="globexp", default=None,
                      help="Process the files from this glob expression")
    parser.add_option("-f", "--fast", action="store_true", dest="fast",
                      default=False, help="Use a faster method of de-trending (2x speedup)")
    parser.add_option("-b", "--nobadblocks", action="store_false", dest="badblocks",
                      default=True, help="Don't check for bad-blocks (may save strong pulses)")
    parser.add_option("-d", "--detrendlen", type="int", dest="detrendfact", default=1,
                      help="Chunksize for detrending (pow-of-2 in 1000s)")
    (opts, args) = parser.parse_args()
    if len(args)==0:
        if opts.globexp==None:
            print full_usage
            sys.exit(0)
        else:
            args = []
            for globexp in opts.globexp.split():
                args += glob.glob(globexp)
    useffts = True
    dosearch = True
    if opts.xwin:
        pgplot_device = "/XWIN"
    else:
        pgplot_device = ""

    fftlen = 8192     # Should be a power-of-two for best speed
    chunklen = 8000   # Must be at least max_downfact less than fftlen
    assert(opts.detrendfact in [1,2,4,8,16,32])
    detrendlen = opts.detrendfact*1000
    if (detrendlen > chunklen):
        chunklen = detrendlen
        fftlen = int(next2_to_n(chunklen))
    blocks_per_chunk = chunklen / detrendlen
    overlap = (fftlen - chunklen)/2
    worklen = chunklen + 2*overlap  # currently it is fftlen...

    max_downfact = 30
    default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150, 220, 300]

    if args[0].endswith(".singlepulse"):
        filenmbase = args[0][:args[0].rfind(".singlepulse")]
        dosearch = False
    elif args[0].endswith(".dat"):
        filenmbase = args[0][:args[0].rfind(".dat")]
    else:
        filenmbase = args[0]

    # Don't do a search, just read results and plot
    if not dosearch:
        info, DMs, candlist, num_v_DMstr = \
              read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end)
        orig_N, orig_dt = int(info.N), info.dt
        obstime = orig_N * orig_dt
    else:
        DMs = []
        candlist = []
        num_v_DMstr = {}

        # Loop over the input files
        for filenm in args:
            if filenm.endswith(".dat"):
                filenmbase = filenm[:filenm.rfind(".dat")]
            else:
                filenmbase = filenm
            info = infodata.infodata(filenmbase+".inf")
            DMstr = "%.2f"%info.DM
            DMs.append(info.DM)
            N, dt = int(info.N), info.dt
            obstime = N * dt
            # Choose the maximum width to search based on time instead
            # of bins.  This helps prevent increased S/N when the downsampling
            # changes as the DM gets larger.
            if opts.maxwidth > 0.0:
                downfacts = [x for x in default_downfacts if x*dt <= opts.maxwidth]
            else:
                downfacts = [x for x in default_downfacts if x <= max_downfact]
            if len(downfacts) == 0:
                downfacts = [default_downfacts[0]]
            if (filenm == args[0]):
                orig_N = N
                orig_dt = dt

            if info.breaks:
                offregions = zip([x[1] for x in info.onoff[:-1]],
                                 [x[0] for x in info.onoff[1:]])

                # If last break spans to end of file, don't read it in (its just padding)
                if offregions[-1][1] == N - 1:
                    N = offregions[-1][0] + 1

            outfile = open(filenmbase+'.singlepulse', mode='w')

            # Compute the file length in detrendlens
            roundN = N/detrendlen * detrendlen
            numchunks = roundN / chunklen
            # Read in the file
            print 'Reading "%s"...'%filenm
            timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN)
            # Split the timeseries into chunks for detrending
            numblocks = roundN/detrendlen
            timeseries.shape = (numblocks, detrendlen)
            stds = Num.zeros(numblocks, dtype=Num.float64)
            # de-trend the data one chunk at a time
            print '  De-trending the data and computing statistics...'
            for ii, chunk in enumerate(timeseries):
                if opts.fast:  # use median removal instead of detrending (2x speedup)
                    tmpchunk = chunk.copy()
                    tmpchunk.sort()
                    med = tmpchunk[detrendlen/2]
                    chunk -= med
                    tmpchunk -= med
                else:
                    # The detrend calls are the most expensive in the program
                    timeseries[ii] = scipy.signal.detrend(chunk, type='linear')
                    tmpchunk = timeseries[ii].copy()
                    tmpchunk.sort()
                # The following gets rid of (hopefully) most of the 
                # outlying values (i.e. power dropouts and single pulses)
                # If you throw out 5% (2.5% at bottom and 2.5% at top)
                # of random gaussian deviates, the measured stdev is ~0.871
                # of the true stdev.  Thus the 1.0/0.871=1.148 correction below.
                # The following is roughly .std() since we already removed the median
                stds[ii] = Num.sqrt((tmpchunk[detrendlen/40:-detrendlen/40]**2.0).sum() /
                                    (0.95*detrendlen))
            stds *= 1.148
            # sort the standard deviations and separate those with
            # very low or very high values
            sort_stds = stds.copy()
            sort_stds.sort()
            # identify the differences with the larges values (this
            # will split off the chunks with very low and very high stds
            locut = (sort_stds[1:numblocks/2+1] -
                     sort_stds[:numblocks/2]).argmax() + 1
            hicut = (sort_stds[numblocks/2+1:] -
                     sort_stds[numblocks/2:-1]).argmax() + numblocks/2 - 2
            std_stds = scipy.std(sort_stds[locut:hicut])
            median_stds = sort_stds[(locut+hicut)/2]
            print "    pseudo-median block standard deviation = %.2f" % (median_stds)
            if (opts.badblocks):
                lo_std = median_stds - 4.0 * std_stds
                hi_std = median_stds + 4.0 * std_stds
                # Determine a list of "bad" chunks.  We will not search these.
                bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0]
                print "    identified %d bad blocks out of %d (i.e. %.2f%%)" % \
                      (len(bad_blocks), len(stds),
                       100.0*float(len(bad_blocks))/float(len(stds)))
                stds[bad_blocks] = median_stds
            else:
                bad_blocks = []
            print "  Now searching..."

            # Now normalize all of the data and reshape it to 1-D
            timeseries /= stds[:,Num.newaxis]
            timeseries.shape = (roundN,)
            # And set the data in the bad blocks to zeros
            # Even though we don't search these parts, it is important
            # because of the overlaps for the convolutions
            for bad_block in bad_blocks:
                loind, hiind = bad_block*detrendlen, (bad_block+1)*detrendlen
                timeseries[loind:hiind] = 0.0
            # Convert to a set for faster lookups below
            bad_blocks = set(bad_blocks)

            # Step through the data
            dm_candlist = []
            for chunknum in xrange(numchunks):
                loind = chunknum*chunklen-overlap
                hiind = (chunknum+1)*chunklen+overlap
                # Take care of beginning and end of file overlap issues
                if (chunknum==0): # Beginning of file
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[overlap:] = timeseries[loind+overlap:hiind]
                elif (chunknum==numchunks-1): # end of the timeseries
                    chunk = Num.zeros(worklen, dtype=Num.float32)
                    chunk[:-overlap] = timeseries[loind:hiind-overlap]
                else:
                    chunk = timeseries[loind:hiind]

                # Make a set with the current block numbers
                lowblock = blocks_per_chunk * chunknum
                currentblocks = set(Num.arange(blocks_per_chunk) + lowblock)
                localgoodblocks = Num.asarray(list(currentblocks -
                                                   bad_blocks)) - lowblock
                # Search this chunk if it is not all bad
                if len(localgoodblocks):
                    # This is the good part of the data (end effects removed)
                    goodchunk = chunk[overlap:-overlap]

                    # need to pass blocks/chunklen, localgoodblocks
                    # dm_candlist, dt, opts.threshold to cython routine

                    # Search non-downsampled data first
                    # NOTE:  these nonzero() calls are some of the most
                    #        expensive calls in the program.  Best bet would 
                    #        probably be to simply iterate over the goodchunk
                    #        in C and append to the candlist there.
                    hibins = Num.flatnonzero(goodchunk>opts.threshold)
                    hivals = goodchunk[hibins]
                    hibins += chunknum * chunklen
                    hiblocks = hibins/detrendlen
                    # Add the candidates (which are sorted by bin)
                    for bin, val, block in zip(hibins, hivals, hiblocks):
                        if block not in bad_blocks:
                            time = bin * dt
                            dm_candlist.append(candidate(info.DM, val, time, bin, 1))

                    # Now do the downsampling...
                    for downfact in downfacts:
                        if useffts: 
                            # Note:  FFT convolution is faster for _all_ downfacts, even 2
                            chunk2 = Num.concatenate((Num.zeros(1000), chunk, Num.zeros(1000)))
                            goodchunk = Num.convolve(chunk2, Num.ones(downfact), mode='same') / Num.sqrt(downfact)
                            goodchunk = goodchunk[overlap:-overlap]
                            #O qualcosa di simile, altrimenti non so perche' trova piu' candidati! Controllare!
                        else:
                            # The normalization of this kernel keeps the post-smoothing RMS = 1
                            kernel = Num.ones(downfact, dtype=Num.float32) / \
                                     Num.sqrt(downfact)
                            smoothed_chunk = scipy.signal.convolve(chunk, kernel, 1)
                            goodchunk = smoothed_chunk[overlap:-overlap]
                        #hibins = Num.nonzero(goodchunk>opts.threshold)[0]
                        hibins = Num.flatnonzero(goodchunk>opts.threshold)
                        hivals = goodchunk[hibins]
                        hibins += chunknum * chunklen
                        hiblocks = hibins/detrendlen
                        hibins = hibins.tolist()
                        hivals = hivals.tolist()
                        # Now walk through the new candidates and remove those
                        # that are not the highest but are within downfact/2
                        # bins of a higher signal pulse
                        hibins, hivals = prune_related1(hibins, hivals, downfact)
                        # Insert the new candidates into the candlist, but
                        # keep it sorted...
                        for bin, val, block in zip(hibins, hivals, hiblocks):
                            if block not in bad_blocks:
                                time = bin * dt
                                bisect.insort(dm_candlist,
                                              candidate(info.DM, val, time, bin, downfact))

            # Now walk through the dm_candlist and remove the ones that
            # are within the downsample proximity of a higher
            # signal-to-noise pulse
            dm_candlist = prune_related2(dm_candlist, downfacts)
            print "  Found %d pulse candidates"%len(dm_candlist)
            
            # Get rid of those near padding regions
            if info.breaks: prune_border_cases(dm_candlist, offregions)

            # Write the pulses to an ASCII output file
            if len(dm_candlist):
                #dm_candlist.sort(cmp_sigma)
                outfile.write("# DM      Sigma      Time (s)     Sample    Downfact\n")
                for cand in dm_candlist:
                    outfile.write(str(cand))
            outfile.close()

            # Add these candidates to the overall candidate list
            for cand in dm_candlist:
                candlist.append(cand)
            num_v_DMstr[DMstr] = len(dm_candlist)

    if (opts.makeplot):

        # Step through the candidates to make a SNR list
        DMs.sort()
        snrs = []
        for cand in candlist:
            if not Num.isinf(cand.sigma):
                snrs.append(cand.sigma)
        if snrs:
            maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3
        else:
            maxsnr = int(opts.threshold) + 3

        # Generate the SNR histogram
        snrs = Num.asarray(snrs)
        (num_v_snr, lo_snr, d_snr, num_out_of_range) = \
                    scipy.stats.histogram(snrs,
                                          int(maxsnr-opts.threshold+1),
                                          [opts.threshold, maxsnr])
        snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \
               + lo_snr + 0.5*d_snr
        num_v_snr = num_v_snr.astype(Num.float32)
        num_v_snr[num_v_snr==0.0] = 0.001

        # Generate the DM histogram
        num_v_DM = Num.zeros(len(DMs))
        for ii, DM in enumerate(DMs):
            num_v_DM[ii] = num_v_DMstr["%.2f"%DM]
        DMs = Num.asarray(DMs)

        # open the plot device
        short_filenmbase = filenmbase[:filenmbase.find("_DM")]
        if opts.T_end > obstime:
            opts.T_end = obstime
        if pgplot_device:
            ppgplot.pgopen(pgplot_device)
        else:
            if (opts.T_start > 0.0 or opts.T_end < obstime):
                ppgplot.pgopen(short_filenmbase+'_%.0f-%.0fs_singlepulse.ps/VPS'%
                               (opts.T_start, opts.T_end))
            else:
                ppgplot.pgopen(short_filenmbase+'_singlepulse.ps/VPS')
        ppgplot.pgpap(7.5, 1.0)  # Width in inches, aspect

        # plot the SNR histogram
        ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87)
        ppgplot.pgswin(opts.threshold, maxsnr,
                       Num.log10(0.5), Num.log10(2*max(num_v_snr)))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1)

        # plot the DM histogram
        ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87)
        # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0
        ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, 0.0, 1.1*max(num_v_DM+[1]))
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses")
        ppgplot.pgsch(1.0)
        ppgplot.pgbin(DMs, num_v_DM, 1)

        # plot the SNR vs DM plot 
        ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87)
        ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, opts.threshold, maxsnr)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise")
        ppgplot.pgsch(1.0)
        cand_ts = Num.zeros(len(candlist), dtype=Num.float32)
        cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32)
        cand_DMs = Num.zeros(len(candlist), dtype=Num.float32)
        for ii, cand in enumerate(candlist):
            cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \
                         cand.time, cand.sigma, cand.DM
        ppgplot.pgpt(cand_DMs, cand_SNRs, 20)

        # plot the DM vs Time plot
        ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52)
        ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs)-0.5, max(DMs)+0.5)
        ppgplot.pgsch(0.8)
        ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0)
        ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)")
        ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)")
        # Circles are symbols 20-26 in increasing order
        snr_range = 12.0
        cand_symbols = (cand_SNRs-opts.threshold)/snr_range * 6.0 + 20.5
        cand_symbols = cand_symbols.astype(Num.int32)
        cand_symbols[cand_symbols>26] = 26
        for ii in [26, 25, 24, 23, 22, 21, 20]:
            inds = Num.nonzero(cand_symbols==ii)[0]
            ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii)

        # Now fill the infomation area
        ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97)
        ppgplot.pgsch(1.0)
        ppgplot.pgmtxt('T', 0.5, 0.0, 0.0,
                       "Single pulse results for '%s'"%short_filenmbase)
        ppgplot.pgsch(0.8)
        # first row
        ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\
                       info.object)
        ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):')
        ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA)
        ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f'%orig_N)
        # second row
        ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\
                       info.telescope)
        ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):')
        ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC)
        ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\
                       (orig_dt*1e6))
        # third row
        if info.instrument.find("pigot") >= 0:
            instrument = "Spigot"
        else:
            instrument = info.instrument
        ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s'%instrument)
        if (info.bary):
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f'%info.epoch)
        else:
            ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f'%info.epoch)
        ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\
                       ((info.numchan/2-0.5)*info.chan_width+info.lofreq))
        ppgplot.pgiden()
        ppgplot.pgend()
コード例 #37
0
 print superPixel
 superMax = numpy.ma.max(superPixel)
 superMin = numpy.ma.min(superPixel)
 variance = numpy.ma.var(superPixel)
 numPixels = numpy.ma.count(superPixel)
 print(
     "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f"
     % (position[1], position[0], superMax, superMin, variance,
        variance / numPixels))
 ppgplot.pgslct(spPreview['pgplotHandle'])
 boostedPreview = generalUtils.percentiles(superPixel, 20, 99)
 ppgplot.pggray(boostedPreview, 0, superPixelSize - 1, 0,
                superPixelSize - 1, 0, 255,
                imagePlot['pgPlotTransform'])
 ppgplot.pgsci(0)
 ppgplot.pgsch(5)
 ppgplot.pgtext(1, 2, "max: %d" % superMax)
 ppgplot.pgslct(imagePlot['pgplotHandle'])
 pointingObject = {'x': position[1], 'y': position[0]}
 pointings.append(pointingObject)
 ppgplot.pgsfs(2)
 ppgplot.pgsci(5)
 ppgplot.pgcirc(position[1], position[0], radius)
 xpts = [
     startX, startX, startX + superPixelSize,
     startX + superPixelSize
 ]
 ypts = [
     startY, startY + superPixelSize, startY + superPixelSize,
     startY
 ]
コード例 #38
0
def main(options):

	debug = options.debug
        MSlist = []
        for inmspart in options.inms.split(','):
                for msname in glob.iglob(inmspart):
	                MSlist.append(msname)
	if len(MSlist) == 0:
		print 'Error: You must specify at least one MS name.'
		print '       Use "uvplot.py -h" to get help.'
		return
        if len(MSlist) > 1:
                print 'WARNING: Antenna selection (other than all) may not work well'
                print '         when plotting more than one MS. Carefully inspect the'
                print '         listings of antenna numbers/names!'
	device = options.device
	if device=='?':
		ppgplot.pgldev()
		return
        if options.title == '':
                plottitle = options.inms
        else:
                plottitle = options.title
	axlimits = options.axlimits.split(',')
	if len(axlimits) == 4:
		xmin,xmax,ymin,ymax = axlimits
	else:
		print 'Error: You must specify four axis limits'
		return
	timeslots = options.timeslots.split(',')
	if len(timeslots) != 3:
		print 'Error: Timeslots format is start,skip,end'
		return
	for i in range(len(timeslots)):
		timeslots[i] = int(timeslots[i])
		if timeslots[i] < 0:
			print 'Error: timeslots values must not be negative'
			return
        antToPlotSpl = options.antennas.split(',')
        antToPlot = []
        for i in range(len(antToPlotSpl)):
                tmpspl = antToPlotSpl[i].split('..')
                if len(tmpspl) == 1:
                        antToPlot.append(int(antToPlotSpl[i]))
                elif len(tmpspl) == 2:
                        for j in range(int(tmpspl[0]),int(tmpspl[1])+1):
                                antToPlot.append(j)
                else:
                        print 'Error: Could not understand antenna list.'
                        return
	queryMode = options.query
        plotLambda = options.kilolambda

        badval = 0.0
        xaxisvals = numpy.array([])
        yaxisvals = numpy.array([])
        savex = numpy.array([])
        savey = numpy.array([])
        numPlotted = 0
        for inputMS in MSlist:
	        # open the main table and print some info about the MS
                print 'Getting info for', inputMS
	        t = pt.table(inputMS, readonly=True, ack=False)
                tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),readonly=True,ack=False)
                ref_freq = tfreq.getcol('REF_FREQUENCY',nrow=1)[0]
                ch_freq = tfreq.getcol('CHAN_FREQ',nrow=1)[0]
                print 'Reference frequency:\t%f MHz' % (ref_freq/1.e6)
                if options.wideband:
                        ref_wavelength = 2.99792458e8/ch_freq
                else:
                        ref_wavelength = [2.99792458e8/ref_freq]
                print 'Reference wavelength:\t%f m' % (ref_wavelength[0])
                if options.sameuv and numPlotted > 0:
                        print 'Assuming same uvw as first MS!'
                        if plotLambda:
                                for w in ref_wavelength:
                                        xaxisvals = numpy.append(xaxisvals,[savex/w/1000.,-savex/w/1000.])
                                        yaxisvals = numpy.append(yaxisvals,[savey/w/1000.,-savey/w/1000.])
                        else:
                                print 'Plotting more than one MS with same uv, all in meters... do you want -k?'
                                xaxisvals = numpy.append(xaxisvals,[savex,-savex])
                                yaxisvals = numpy.append(yaxisvals,[savey,-savey])
                        continue
                        
	        firstTime = t.getcell("TIME", 0)
	        lastTime = t.getcell("TIME", t.nrows()-1)
	        intTime = t.getcell("INTERVAL", 0)
	        print 'Integration time:\t%f sec' % (intTime)
	        nTimeslots = (lastTime - firstTime) / intTime
	        print 'Number of timeslots:\t%d' % (nTimeslots)
                if timeslots[1] == 0:
                        if nTimeslots >= 100:
                                timeskip = int(nTimeslots/100)
                        else:
                                timeskip = 1
                else:
                        timeskip = int(timeslots[1])
                print 'For each baseline, plotting one point every %d samples' % (timeskip)
       	        if timeslots[2] == 0:
        		timeslots[2] = nTimeslots
        	# open the antenna subtable
        	tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False)
        
        	# Station names
        	antList = tant.getcol('NAME')
                if len(antToPlot)==1 and antToPlot[0]==-1:
                        antToPlot = range(len(antList))
        	print 'Station list (only starred stations will be plotted):'
        	for i in range(len(antList)):
                        star = ' '
                        if i in antToPlot: star = '*'
        		print '%s %2d\t%s' % (star, i, antList[i])
        
        	# Bail if we're in query mode
        	if queryMode:
        		return
        
        	# select by time from the beginning, and only use specified antennas
        	tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[2]*intTime,str(antToPlot),str(antToPlot)), columns='ANTENNA1,ANTENNA2,UVW')

        	# Now we loop through the baselines
                i = 0
                nb = (len(antToPlot)*(len(antToPlot)-1))/2
                sys.stdout.write('Reading uvw for %d baselines: %04d/%04d'%(nb,i,nb))
                sys.stdout.flush()
	        for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]):
        		ant1 = tpart.getcell("ANTENNA1", 0)
        		ant2 = tpart.getcell("ANTENNA2", 0)
                        if ant1 not in antToPlot or ant2 not in antToPlot: continue
        		if ant1 == ant2: continue
                        i += 1
                        sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d'%(i,nb))
                        sys.stdout.flush()
        		# Get the values to plot
                        uvw = tpart.getcol('UVW', rowincr=timeskip)
                        if numPlotted == 0:
                                savex = numpy.append(savex,[uvw[:,0],-uvw[:,0]])
                                savey = numpy.append(savey,[uvw[:,1],-uvw[:,1]])
                        if plotLambda:
                                for w in ref_wavelength:
                                        xaxisvals = numpy.append(xaxisvals,[uvw[:,0]/w/1000.,-uvw[:,0]/w/1000.])
                                        yaxisvals = numpy.append(yaxisvals,[uvw[:,1]/w/1000.,-uvw[:,1]/w/1000.])
                        else:
                                xaxisvals = numpy.append(xaxisvals,[uvw[:,0],-uvw[:,0]])
                                yaxisvals = numpy.append(yaxisvals,[uvw[:,1],-uvw[:,1]])
        		#if debug:
                        #        print uvw.shape
        		#	print xaxisvals.shape
        		#	print yaxisvals.shape
                        #else:
                        #        sys.stdout.write('.')
                        #        sys.stdout.flush()
                sys.stdout.write(' Done!\n')
                numPlotted += 1

        print 'Plotting uv points ...'
	# open the graphics device, using only one panel
	ppgplot.pgbeg(device, 1, 1)
	# set the font size
	ppgplot.pgsch(1)
	ppgplot.pgvstd()

	# Plot the data
        if debug:
                print xaxisvals
        xaxisvals = numpy.array(xaxisvals)
        yaxisvals = numpy.array(yaxisvals)
        tmpvals = numpy.sqrt(xaxisvals**2+yaxisvals**2)
	ppgplot.pgsci(1)
        uvmax = max(xaxisvals.max(),yaxisvals.max())
        uvmin = min(xaxisvals.min(),yaxisvals.min())
        uvuplim = 0.02*(uvmax-uvmin)+uvmax
        uvlolim = uvmin-0.02*(uvmax-uvmin)
	if xmin == '':
		minx = uvlolim
	else:
		minx = float(xmin)
	if xmax == '':
		maxx = uvuplim
	else:
		maxx = float(xmax)
	if ymin == '':
		miny = uvlolim
	else:
		miny = float(ymin)
	if ymax == '':
		maxy = uvuplim
	else:
		maxy = float(ymax)
	if minx == maxx:
		minx = -1.0
		maxx = 1.0
	if miny == maxy:
		miny = -1.0
		maxy = 1.0
        ppgplot.pgpage()
	ppgplot.pgswin(minx,maxx,miny,maxy)
        ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0)
        if plotLambda:
	        ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s'%(plottitle))
        else:
	        ppgplot.pglab('u [m]', 'v [m]', '%s'%(plottitle))
	ppgplot.pgpt(xaxisvals[tmpvals!=badval], yaxisvals[tmpvals!=badval], 1)

	# Close the PGPLOT device
	ppgplot.pgclos()
コード例 #39
0
#os.system("sex j+n.fits,cnc105jalign2.fits \n")
#os.system("sex j+n.fits,ncc105jalign3.fits \n")
os.system("sex ncc105jalign3.fits \n")
#os.system("sex c1054j2cna.fits \n")
im1 = Catalog()
im1.readcat()
#os.system("sex cnc105jalign2.fits,c1054j2cna.fits \n")
#os.system("sex j+n.fits,c1054j2cna.fits \n")
#os.system("sex c1054j2cna.fits,gediscsj.fits -MAG_ZEROPOINT 23.88\n")
#os.system("sex ncc105jalign3.fits,gediscsj.fits -MAG_ZEROPOINT 22.84\n")
os.system("sex ncc105jalign3.fits,ngdim20_mp.fits\n")
im2 = Catalog()
im2.readcat()

ppgplot.pgbeg("all.ps/vcps", 2, 2)
ppgplot.pgsch(2.)  #font size
ppgplot.pgslw(4)  #line width

xysimple(im1.magauto, im2.magauto, "magauto mask", "magauto")
ppgplot.pgpage
y = im1.magauto - im2.magauto
ave = N.average(y)
std = scipy.stats.std(y)
print "Ave diff in mag auto = ", ave, "+/-", std
xysimple(im1.magauto, y, "magauto mask", "magauto mask - magauto")
ppgplot.pgpage
y = im1.magiso - im2.magiso
ave = N.average(y)
std = scipy.stats.std(y)
print "Ave diff in iso mags = ", ave, "+/-", std
xysimple(im1.magiso, y, "magiso mask", "magiso mask - magiso")