Ejemplo n.º 1
0
def primer_example_alternate():
    g = ProvDocument(namespaces={
        'ex': 'http://example/',
        'dcterms': 'http://purl.org/dc/terms/',
        'foaf': 'http://xmlns.com/foaf/0.1/'
    })

    article = g.entity('ex:article', {'dcterms:title': "Crime rises in cities"})
    articleV1 = g.entity('ex:articleV1')
    articleV2 = g.entity('ex:articleV2')
    dataSet1 = g.entity('ex:dataSet1')
    dataSet2 = g.entity('ex:dataSet2')
    regionList = g.entity('ex:regionList')
    composition = g.entity('ex:composition')
    chart1 = g.entity('ex:chart1')
    chart2 = g.entity('ex:chart2')
    blogEntry = g.entity('ex:blogEntry')

    compile = g.activity('ex:compile')
    compile2 = g.activity('ex:compile2')
    compose = g.activity('ex:compose')
    correct = g.activity('ex:correct', '2012-03-31T09:21:00', '2012-04-01T15:21:00')
    illustrate = g.activity('ex:illustrate')

    compose.used(dataSet1, attributes={'prov:role': "ex:dataToCompose"})
    compose.used(regionList, attributes={'prov:role': "ex:regionsToAggregateBy"})
    composition.wasGeneratedBy(compose)

    illustrate.used(composition)
    chart1.wasGeneratedBy(illustrate)

    chart1.wasGeneratedBy(compile, '2012-03-02T10:30:00')

    derek = g.agent('ex:derek', {
        'prov:type': PROV['Person'], 'foaf:givenName': "Derek", 'foaf:mbox': "<mailto:[email protected]>"
    })
    compose.wasAssociatedWith(derek)
    illustrate.wasAssociatedWith(derek)

    chartgen = g.agent('ex:chartgen', {
        'prov:type': PROV["Organization"], 'foaf:name': "Chart Generators Inc"
    })
    derek.actedOnBehalfOf(chartgen, compose)
    chart1.wasAttributedTo(derek)

    dataSet2.wasGeneratedBy(correct)
    correct.used(dataSet1)
    dataSet2.wasDerivedFrom(dataSet1, attributes={'prov:type': PROV['Revision']})
    chart2.wasDerivedFrom(dataSet2)

    blogEntry.wasDerivedFrom(article, attributes={'prov:type': PROV['Quotation']})
    articleV1.specializationOf(article)
    articleV1.wasDerivedFrom(dataSet1)

    articleV2.specializationOf(article)
    articleV2.wasDerivedFrom(dataSet2)

    articleV2.alternateOf(articleV1)

    return g
Ejemplo n.º 2
0
def add_parents(graph: ProvDocument, package: CommitModelPackage) -> ProvDocument:
    """Add link between commit activities and their parents."""
    commit = package.commit
    for parent in package.parent_commits:
        graph.activity(*parent)
        graph.activity(*commit)
        graph.wasInformedBy(commit.id, parent.id)
    return graph
Ejemplo n.º 3
0
def add_commit(graph: ProvDocument, package: CommitModelPackage) -> ProvDocument:
    """Add commit activity, agents for author and committer, relations between agents and activity."""
    author, committer, commit = package.author, package.committer, package.commit
    graph.agent(*author)
    graph.agent(*committer)
    graph.activity(*commit)
    graph.wasAssociatedWith(commit.id, author.id)
    graph.wasAssociatedWith(commit.id, committer.id)
    return graph
Ejemplo n.º 4
0
def create_document():
    # Create a new provenance document
    document = ProvDocument()  # d1 is now an empty provenance document
    # Before asserting provenance statements, we need to have a way to refer to the "things"
    # we want to describe provenance (e.g. articles, data sets, people). For that purpose,
    # PROV uses qualified names to identify things, which essentially a shortened representation
    # of a URI in the form of prefix:localpart. Valid qualified names require their prefixes defined,
    # which we is going to do next.

    # Declaring namespaces for various prefixes used in the example
    document.add_namespace('now', 'http://www.provbook.org/nownews/')
    document.add_namespace('nowpeople',
                           'http://www.provbook.org/nownews/people/')
    document.add_namespace('bk', 'http://www.provbook.org/ns/#')

    # Entity: now:employment-article-v1.html
    e1 = document.entity('now:employment-article-v1.html')
    e1.add_attributes({'prov:value': 'Conteudo do HTML'})
    document.agent('nowpeople:Filipe')

    # Attributing the article to the agent
    document.wasAttributedTo(
        e1, 'nowpeople:Filipe_' + str(random.randint(1000, 1070000000)))

    # add more namespace declarations
    document.add_namespace('govftp',
                           'ftp://ftp.bls.gov/pub/special.requests/oes/')
    document.add_namespace('void', 'http://vocab.deri.ie/void#')

    # 'now:employment-article-v1.html' was derived from at dataset at govftp
    document.entity('govftp:oesm11st.zip', {
        'prov:label': 'employment-stats-2011',
        'prov:type': 'void:Dataset'
    })
    document.wasDerivedFrom('now:employment-article-v1.html',
                            'govftp:oesm11st.zip')

    # Adding an activity
    document.add_namespace('is', 'http://www.provbook.org/nownews/is/#')
    document.activity('is:writeArticle')
    # Usage and Generation
    document.used('is:writeArticle', 'govftp:oesm11st.zip')
    document.wasGeneratedBy('now:employment-article-v1.html',
                            'is:writeArticle')

    #print("Document prepared.")
    # What we have so far (in PROV-N)
    logging.debug(document.serialize(indent=2))
    # d1.serialize('article-prov.json') # write to file
    return document
Ejemplo n.º 5
0
def add_resource_creation(graph: ProvDocument, package: ResourceModelPackage) -> ProvDocument:
    """Add model for resource creation."""
    creator, creation, resource, resource_version = package.creation
    graph.activity(*creation)
    graph.entity(*resource)
    graph.entity(*resource_version)
    graph.agent(*creator)
    graph.wasAssociatedWith(creation.id, creator.id)
    graph.wasAttributedTo(resource.id, creator.id)
    graph.wasAttributedTo(resource_version.id, creator.id)
    graph.wasGeneratedBy(resource.id, creation.id)
    graph.wasGeneratedBy(resource_version.id, creation.id)
    graph.specializationOf(resource_version.id, resource.id)
    return graph
Ejemplo n.º 6
0
def get_esmvaltool_provenance():
    """Create an esmvaltool run activity."""
    provenance = ProvDocument()
    namespace = 'software'
    create_namespace(provenance, namespace)
    attributes = {}  # TODO: add dependencies with versions here
    activity = provenance.activity(namespace + ':esmvaltool==' + __version__,
                                   other_attributes=attributes)

    return activity
Ejemplo n.º 7
0
def _create_trial_info(document: provo.ProvDocument, trial: Trial, suffix=""):
    invalid_identifiers = ["."]
    identifier = trial.script
    for char in invalid_identifiers:
        identifier = identifier.replace(char, "_")

    document.agent("{}{}".format(identifier, suffix),
                   [(provo.PROV_TYPE, provo.PROV["SoftwareAgent"]),
                    ("codeHash", trial.code_hash),
                    ("script", trial.script),
                    ("id", trial.id)])

    document.activity("trial{}Execution".format(trial.id), trial.start, trial.finish,
                      [("nowCommand", trial.command),
                       ("parentId", trial.parent_id),
                       ("inheritedId", trial.inherited_id)])

    document.wasAssociatedWith("trial{}Execution".format(trial.id), "{}{}".format(identifier, suffix), None,
                               "trial{}ExecutionByScript".format(trial.id))
Ejemplo n.º 8
0
def job2prov(job):
    """
    Create ProvDocument based on job description
    :param job: UWS job
    :return: ProvDocument
    """

    # job.jdl.content = {
    #     'description': description,
    #     'parameters': parameters,
    #     'results': results,
    #     'executionduration': execdur,
    #     'quote': quote
    # }
    # parameters[pname] = {
    #     'type': p.get('type'),
    #     'required': p.get('required'),
    #     'default': p.get('default'),
    #     'description': list(p)[0].text,
    # }
    # results[r.get('value')] = {
    #     'mediaType': r.get('mediaType'),
    #     'default': r.get('default'),
    #     'description': list(r)[0].text,
    # }

    pdoc = ProvDocument()
    # Declaring namespaces for various prefixes used in the example
    pdoc.add_namespace('prov', 'http://www.w3.org/ns/prov#')
    pdoc.add_namespace('voprov', 'http://www.ivoa.net/ns/voprov#')
    pdoc.add_namespace('cta', 'http://www.cta-observatory.org#')
    pdoc.add_namespace('uwsdata', 'https://voparis-uws-test.obspm.fr/rest/' + job.jobname + '/' + job.jobid + '/')
    pdoc.add_namespace('ctajobs', 'http://www.cta-observatory.org#')
    # Adding an activity
    ctbin = pdoc.activity('ctajobs:' + job.jobname, job.start_time, job.end_time)
    # TODO: add job description, version, url, ...
    # Agent
    pdoc.agent('cta:consortium', other_attributes={'prov:type': "Organization"})
    pdoc.wasAssociatedWith(ctbin, 'cta:consortium')
    # Entities, in and out with relations
    e_in = []
    for pname, pdict in job.jdl.content['parameters'].iteritems():
        #if pname.startswith('in'):
        if any(x in pdict['type'] for x in ['file', 'xs:anyURI']):
            e_in.append(pdoc.entity('uwsdata:parameters/' + pname))
            # TODO: use publisher_did? add prov attributes, add voprov attributes?
            ctbin.used(e_in[-1])
    e_out = []
    for rname, rdict in job.jdl.content['results'].iteritems():
        e_out.append(pdoc.entity('uwsdata:results/' + rname))
        # TODO: use publisher_did? add prov attributes, add voprov attributes?
        e_out[-1].wasGeneratedBy(ctbin)
        for e in e_in:
            e_out[-1].wasDerivedFrom(e)
    return pdoc
Ejemplo n.º 9
0
def gen_prov_graph(file_path, option):
    '''
      generates prov graph from form json file
      option = "all": add attribues to nodes
    '''
    form_file = open(file_path, "r")
    json_info = form_file.read()
    form_file.close()
    sf_dict = json.loads(json_info)

    d1 = ProvDocument()
    d1.add_namespace('subm',
                     'http://www.enes.org/enes_entity/data_submsission')

    global_in_out = d1.entity("subm:" + "form_name_xx")

    print("workflow definition: ", sf_dict['workflow'])
    for [act_name, act] in sf_dict['workflow']:

        print("adding entities for workflow_step: ", act_name)
        entity_in_dict = sf_dict[act_name]['entity_in']
        entity_out_dict = sf_dict[act_name]['entity_out']
        agent_dict = sf_dict[act_name]['agent']
        activity_dict = sf_dict[act_name]['activity']

        # generate nodes
        in_node = d1.entity("subm:" + entity_in_dict['i_name'])
        out_node = d1.entity("subm:" + entity_out_dict['i_name'])
        agent = d1.agent("subm:" + agent_dict['i_name'])
        activity = d1.activity("subm:" + activity_dict['i_name'])

        #clean up and prefix dictionaries
        entity_in_dict = prefix_dict(entity_in_dict, 'subm')
        entity_out_dict = prefix_dict(entity_out_dict, 'subm')
        agent_dict = prefix_dict(agent_dict, 'subm')
        activity_dict = prefix_dict(activity_dict, 'subm')

        if option == "all":
            in_node.add_attributes(entity_in_dict)
            out_node.add_attributes(entity_out_dict)
            agent.add_attributes(agent_dict)
            activity.add_attributes(activity_dict)

        # connect nodes in graph
        d1.wasGeneratedBy(out_node, activity)
        d1.used(activity, in_node)
        d1.wasAssociatedWith(activity, agent)
        d1.wasDerivedFrom(in_node, out_node)
        d1.used(activity, global_in_out)
        d1.wasGeneratedBy(global_in_out, activity)

    return d1
Ejemplo n.º 10
0
def ctfToProv():
    d1 = ProvDocument()
    dummy = ProvDocument()
    ex = Namespace('ex', 'http://example/')  # namespaces do not need to be explicitly added to a document
    #data = event_field(os.path.join(trace_path,'../config.yaml'))
    counter = 0
    counter_1 = 0
    relationships = []
    entities = []
    activities = []
    producer_events = {}
    for event in trace_collection.events:
        dataset = {'ex:'+k:event[k] for k in event.field_list_with_scope(
            babeltrace.CTFScope.EVENT_FIELDS)}
        dataset.update({'ex:'+'timestamp':(event['timestamp']/1000000000)})
        #dataset.update({'ex:'+'name':event.name})

        e1 = d1.entity(ex['event'+str(counter)],dataset)
        entities.append(e1)
        producer_agent = d1.agent('ex:'+event['producer_id'])
        if event['producer_id'] not in producer_events:
                producer_events[event['producer_id']] = []
        else:
                pel = producer_events[events['producer_id']]
                d1.wasAssociatedWith(pel[len(pel)-1], e1)
                pel.append(e1)
        controller_agent = d1.agent('ex:'+event['controller_id'])
        activity = d1.activity('ex:'+event['activity']+str(counter_1))
        activities.append(activity)
        d1.wasGeneratedBy(e1, activity)
        # strings used to detect if the relationship already exists in the d1 document
        association_relationship = str(dummy.wasAssociatedWith(activity, producer_agent))
        used_relationship = str(dummy.used(controller_agent, producer_agent))

        # Add activity to producer agent if it has not been added before.
        d1.wasAssociatedWith(activity, producer_agent)
        # if association_relationship not in relationships:
        #     d1.wasAssociatedWith(activity, producer_agent)
        #     relationships.append(association_relationship)

        # Add producer agent to controller agent if it has not been added yet.
        if used_relationship not in relationships:
            d1.used(controller_agent, producer_agent)
            relationships.append(used_relationship)

        # Add temporal relationship between this event and the previous one.
#        if counter > 0:
#            d1.wasAssociatedWith(entities[counter - 1], e1)

        counter+=1
        counter_1 +=1
    return d1
Ejemplo n.º 11
0
def ctfToProv():
    d1 = ProvDocument()
    dummy = ProvDocument()
    ex = Namespace(
        'ex', 'http://example/'
    )  # namespaces do not need to be explicitly added to a document
    #data = event_field(os.path.join(trace_path,'../config.yaml'))
    counter = 0
    counter_1 = 0
    relationships = []
    entities = []
    activities = []
    for event in trace_collection.events:
        dataset = {
            'ex:' + k: event[k]
            for k in event.field_list_with_scope(
                babeltrace.CTFScope.EVENT_FIELDS)
        }
        dataset.update(
            {'ex:' + 'timestamp': (event['timestamp'] / 1000000000)})
        #dataset.update({'ex:'+'name':event.name})

        e1 = d1.entity(ex['event' + str(counter)], dataset)
        entities.append(e1)
        producer_agent = d1.agent('ex:' + event['producer_id'])
        controller_agent = d1.agent('ex:' + event['controller_id'])
        activity = d1.activity('ex:' + event['activity'] + str(counter_1))
        activities.append(activity)
        d1.wasGeneratedBy(e1, activity)
        # strings used to detect if the relationship already exists in the d1 document
        association_relationship = str(
            dummy.wasAssociatedWith(activity, producer_agent))
        used_relationship = str(dummy.used(controller_agent, producer_agent))

        # Add activity to producer agent if it has not been added before.
        d1.wasAssociatedWith(activity, producer_agent)
        # if association_relationship not in relationships:
        #     d1.wasAssociatedWith(activity, producer_agent)
        #     relationships.append(association_relationship)

        # Add producer agent to controller agent if it has not been added yet.
        if used_relationship not in relationships:
            d1.used(controller_agent, producer_agent)
            relationships.append(used_relationship)

        # Add temporal relationship between this event and the previous one.
        if counter > 0:
            d1.wasAssociatedWith(entities[counter - 1], e1)

        counter += 1
        counter_1 += 1
    return d1
Ejemplo n.º 12
0
def add_event_chain(graph: ProvDocument, package: ResourceModelPackage) -> ProvDocument:
    """Add chain of events beginning at the creation event."""
    previous_event = previous_resource_version = None
    for chain_link in package.event_chain:
        user, event, resource, resource_version = chain_link
        graph.entity(*resource)
        graph.entity(*resource_version)
        graph.activity(*event)
        graph.agent(*user)
        graph.wasAssociatedWith(event.id, user.id)
        graph.wasAttributedTo(resource_version.id, user.id)
        graph.specializationOf(resource_version.id, resource.id)
        if previous_event is not None and previous_resource_version is not None:
            graph.entity(*previous_resource_version)
            graph.activity(*previous_event)
            graph.wasGeneratedBy(resource_version.id, event.id)
            graph.used(event.id, previous_resource_version.id)
            graph.wasDerivedFrom(resource_version.id, previous_resource_version.id)
            graph.wasInformedBy(event.id, previous_event.id)
        previous_event = event
        previous_resource_version = resource_version
    return graph
Ejemplo n.º 13
0
def get_task_provenance(task, recipe_entity):
    """Create a provenance activity describing a task."""
    provenance = ProvDocument()
    create_namespace(provenance, 'task')

    activity = provenance.activity('task:' + task.name)

    trigger = recipe_entity
    update_without_duplicating(provenance, recipe_entity.bundle)

    starter = ESMVALTOOL_PROVENANCE
    update_without_duplicating(provenance, starter.bundle)

    activity.wasStartedBy(trigger, starter)

    return activity
Ejemplo n.º 14
0
def transform_to_prov(context_model):
    from prov.model import ProvDocument
    from prov.dot import prov_to_dot

    doc = ProvDocument()
    doc.add_namespace('is', 'http://www.provbook.org/nownews/is/#')
    doc.add_namespace('void', 'http://vocab.deri.ie/void#')
    doc.add_namespace('nowpeople', 'http://www.provbook.org/nownews/people/')

    input_data = doc.entity("void:Inputdata")
    backend_agent = doc.agent("nowpeople:EODC")
    user_agent = doc.agent("nowpeople:OpenEO-User")
    doc.wasAttributedTo(input_data, backend_agent)

    process_details = context_model["process_details"]
    prev_key = input_data
    for key in process_details:

        key_entity = doc.entity("void:" + key + "_output")

        key_activity = doc.activity('is:' + key)

        doc.used(key_activity, prev_key)

        doc.wasDerivedFrom(key_entity, prev_key)
        doc.wasGeneratedBy(key_entity,
                           key_activity,
                           time=process_details[key]["timing"]["end"])

        doc.wasStartedBy(key_activity,
                         user_agent,
                         time=process_details[key]["timing"]["start"])

        prev_key = key_entity

    dot = prov_to_dot(doc)
    dot.write_png('output-prov.png')

    return doc
Ejemplo n.º 15
0
def release_tag_model(graph: ProvDocument, packages: ReleaseTagPackage):
    for package in packages:
        if package.release_package is not None:
            r_user, release, release_event, release_evidence, assets = package.release_package
            graph.agent(*r_user)
            graph.entity(*release)
            graph.activity(*release_event)
            graph.entity(*release_evidence)
            for asset in assets:
                graph.entity(*asset)
                graph.hadMember(asset.id, release.id)

            graph.hadMember(release_evidence.id, release.id)
            graph.wasGeneratedBy(release.id, release_event.id)
            graph.wasAttributedTo(release.id, r_user.id)
            graph.wasAssociatedWith(release_event.id, r_user.id)

        if package.tag_package is not None:
            t_user, tag, tag_event = package.tag_package
            graph.agent(*t_user)
            graph.entity(*tag)
            graph.activity(*tag_event)

            if package.release_package is not None:
                graph.hadMember(tag.id, release.id)
            graph.wasGeneratedBy(tag.id, tag_event.id)
            graph.wasAttributedTo(tag.id, t_user.id)
            graph.wasAssociatedWith(tag_event.id, t_user.id)

        if package.commit_package is not None:
            author, commit_event, _, commit, _ = package.commit_package
            graph.agent(*author)
            graph.activity(*commit_event)
            graph.entity(*commit)

            if package.tag_package is not None:
                graph.hadMember(commit.id, tag.id)
            graph.wasGeneratedBy(commit.id, commit_event.id)
            graph.wasAttributedTo(commit.id, author.id)
            graph.wasAssociatedWith(commit_event.id, author.id)
    return graph
Ejemplo n.º 16
0
 def document_2(self):
     d2 = ProvDocument()
     ns_ex = d2.add_namespace('ex', EX2_URI)
     d2.activity(ns_ex['a1'])
     return d2
Ejemplo n.º 17
0
def primer_example():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/prov-n/src/test/resources/prov/primer.pn
    #===========================================================================
    # document
    g = ProvDocument()

    #    prefix ex <http://example/>
    #    prefix dcterms <http://purl.org/dc/terms/>
    #    prefix foaf <http://xmlns.com/foaf/0.1/>
    ex = Namespace('ex', 'http://example/')  # namespaces do not need to be explicitly added to a document
    g.add_namespace("dcterms", "http://purl.org/dc/terms/")
    g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/")

    #    entity(ex:article, [dcterms:title="Crime rises in cities"])
    # first time the ex namespace was used, it is added to the document automatically
    g.entity(ex['article'], {'dcterms:title': "Crime rises in cities"})
    #    entity(ex:articleV1)
    g.entity(ex['articleV1'])
    #    entity(ex:articleV2)
    g.entity(ex['articleV2'])
    #    entity(ex:dataSet1)
    g.entity(ex['dataSet1'])
    #    entity(ex:dataSet2)
    g.entity(ex['dataSet2'])
    #    entity(ex:regionList)
    g.entity(ex['regionList'])
    #    entity(ex:composition)
    g.entity(ex['composition'])
    #    entity(ex:chart1)
    g.entity(ex['chart1'])
    #    entity(ex:chart2)
    g.entity(ex['chart2'])
    #    entity(ex:blogEntry)
    g.entity(ex['blogEntry'])

    #    activity(ex:compile)
    g.activity('ex:compile')  # since ex is registered, it can be used like this
    #    activity(ex:compile2)
    g.activity('ex:compile2')
    #    activity(ex:compose)
    g.activity('ex:compose')
    #    activity(ex:correct, 2012-03-31T09:21:00, 2012-04-01T15:21:00)
    g.activity('ex:correct', '2012-03-31T09:21:00', '2012-04-01T15:21:00')  # date time can be provided as strings
    #    activity(ex:illustrate)
    g.activity('ex:illustrate')

    #    used(ex:compose, ex:dataSet1, -,   [ prov:role = "ex:dataToCompose"])
    g.used('ex:compose', 'ex:dataSet1', other_attributes={'prov:role': "ex:dataToCompose"})
    #    used(ex:compose, ex:regionList, -, [ prov:role = "ex:regionsToAggregateBy"])
    g.used('ex:compose', 'ex:regionList', other_attributes={'prov:role': "ex:regionsToAggregateBy"})
    #    wasGeneratedBy(ex:composition, ex:compose, -)
    g.wasGeneratedBy('ex:composition', 'ex:compose')

    #    used(ex:illustrate, ex:composition, -)
    g.used('ex:illustrate', 'ex:composition')
    #    wasGeneratedBy(ex:chart1, ex:illustrate, -)
    g.wasGeneratedBy('ex:chart1', 'ex:illustrate')

    #    wasGeneratedBy(ex:chart1, ex:compile,  2012-03-02T10:30:00)
    g.wasGeneratedBy('ex:chart1', 'ex:compile', '2012-03-02T10:30:00')
    #    wasGeneratedBy(ex:chart2, ex:compile2, 2012-04-01T15:21:00)
    #
    #
    #    agent(ex:derek, [ prov:type="prov:Person", foaf:givenName = "Derek",
    #           foaf:mbox= "<mailto:[email protected]>"])
    g.agent('ex:derek', {
        'prov:type': PROV["Person"], 'foaf:givenName': "Derek", 'foaf:mbox': "<mailto:[email protected]>"
    })
    #    wasAssociatedWith(ex:compose, ex:derek, -)
    g.wasAssociatedWith('ex:compose', 'ex:derek')
    #    wasAssociatedWith(ex:illustrate, ex:derek, -)
    g.wasAssociatedWith('ex:illustrate', 'ex:derek')
    #
    #    agent(ex:chartgen, [ prov:type="prov:Organization",
    #           foaf:name = "Chart Generators Inc"])
    g.agent('ex:chartgen', {'prov:type': PROV["Organization"], 'foaf:name': "Chart Generators Inc"})
    #    actedOnBehalfOf(ex:derek, ex:chartgen, ex:compose)
    g.actedOnBehalfOf('ex:derek', 'ex:chartgen', 'ex:compose')
    #    wasAttributedTo(ex:chart1, ex:derek)
    g.wasAttributedTo('ex:chart1', 'ex:derek')

    #    wasGeneratedBy(ex:dataSet2, ex:correct, -)
    g.wasGeneratedBy('ex:dataSet2', 'ex:correct')
    #    used(ex:correct, ex:dataSet1, -)
    g.used('ex:correct', 'ex:dataSet1')
    #    wasDerivedFrom(ex:dataSet2, ex:dataSet1, [prov:type='prov:Revision'])
    g.wasDerivedFrom('ex:dataSet2', 'ex:dataSet1', other_attributes={'prov:type': PROV['Revision']})
    #    wasDerivedFrom(ex:chart2, ex:dataSet2)
    g.wasDerivedFrom('ex:chart2', 'ex:dataSet2')

    #    wasDerivedFrom(ex:blogEntry, ex:article, [prov:type='prov:Quotation'])
    g.wasDerivedFrom('ex:blogEntry', 'ex:article', other_attributes={'prov:type': PROV['Quotation']})
    #    specializationOf(ex:articleV1, ex:article)
    g.specializationOf('ex:articleV1', 'ex:article')
    #    wasDerivedFrom(ex:articleV1, ex:dataSet1)
    g.wasDerivedFrom('ex:articleV1', 'ex:dataSet1')

    #    specializationOf(ex:articleV2, ex:article)
    g.specializationOf('ex:articleV2', 'ex:article')
    #    wasDerivedFrom(ex:articleV2, ex:dataSet2)
    g.wasDerivedFrom('ex:articleV2', 'ex:dataSet2')

    #    alternateOf(ex:articleV2, ex:articleV1)
    g.alternateOf('ex:articleV2', 'ex:articleV1')

    # endDocument
    return g
Ejemplo n.º 18
0
 def document_2(self):
     d2 = ProvDocument()
     ns_ex = d2.add_namespace('ex', EX2_URI)
     d2.activity(ns_ex['a1'])
     return d2
Ejemplo n.º 19
0
def w3c_publication_1():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication1.prov-asn
    #===========================================================================
    # bundle
    #
    # prefix ex  <http://example.org/>
    #
    # prefix w3      <http://www.w3.org/>
    # prefix tr      <http://www.w3.org/TR/2011/>
    # prefix process <http://www.w3.org/2005/10/Process-20051014/tr.html#>
    # prefix email   <https://lists.w3.org/Archives/Member/w3c-archive/>
    # prefix chairs  <https://lists.w3.org/Archives/Member/chairs/>
    # prefix trans   <http://www.w3.org/2005/08/01-transitions.html#>
    # prefix rec54   <http://www.w3.org/2001/02pd/rec54#>
    #
    #
    #  entity(tr:WD-prov-dm-20111018, [ prov:type='rec54:WD' ])
    #  entity(tr:WD-prov-dm-20111215, [ prov:type='rec54:WD' ])
    #  entity(process:rec-advance,    [ prov:type='prov:Plan' ])
    #
    #
    #  entity(chairs:2011OctDec/0004, [ prov:type='trans:transreq' ])
    #  entity(email:2011Oct/0141,     [ prov:type='trans:pubreq' ])
    #  entity(email:2011Dec/0111,     [ prov:type='trans:pubreq' ])
    #
    #
    #  wasDerivedFrom(tr:WD-prov-dm-20111215, tr:WD-prov-dm-20111018)
    #
    #
    #  activity(ex:act1,-,-,[prov:type="publish"])
    #  activity(ex:act2,-,-,[prov:type="publish"])
    #
    #  wasGeneratedBy(tr:WD-prov-dm-20111018, ex:act1, -)
    #  wasGeneratedBy(tr:WD-prov-dm-20111215, ex:act2, -)
    #
    #  used(ex:act1, chairs:2011OctDec/0004, -)
    #  used(ex:act1, email:2011Oct/0141, -)
    #  used(ex:act2, email:2011Dec/0111, -)
    #
    #  agent(w3:Consortium, [ prov:type='prov:Organization' ])
    #
    #  wasAssociatedWith(ex:act1, w3:Consortium, process:rec-advance)
    #  wasAssociatedWith(ex:act2, w3:Consortium, process:rec-advance)
    #
    # endBundle
    #===========================================================================

    g = ProvDocument()
    g.add_namespace('ex', 'http://example.org/')
    g.add_namespace('w3', 'http://www.w3.org/')
    g.add_namespace('tr', 'http://www.w3.org/TR/2011/')
    g.add_namespace('process', 'http://www.w3.org/2005/10/Process-20051014/tr.html#')
    g.add_namespace('email', 'https://lists.w3.org/Archives/Member/w3c-archive/')
    g.add_namespace('chairs', 'https://lists.w3.org/Archives/Member/chairs/')
    g.add_namespace('trans', 'http://www.w3.org/2005/08/01-transitions.html#')
    g.add_namespace('rec54', 'http://www.w3.org/2001/02pd/rec54#')

    g.entity('tr:WD-prov-dm-20111018', {'prov:type': 'rec54:WD'})
    g.entity('tr:WD-prov-dm-20111215', {'prov:type': 'rec54:WD'})
    g.entity('process:rec-advance', {'prov:type': 'prov:Plan'})

    g.entity('chairs:2011OctDec/0004', {'prov:type': 'trans:transreq'})
    g.entity('email:2011Oct/0141', {'prov:type': 'trans:pubreq'})
    g.entity('email:2011Dec/0111', {'prov:type': 'trans:pubreq'})

    g.wasDerivedFrom('tr:WD-prov-dm-20111215', 'tr:WD-prov-dm-20111018')

    g.activity('ex:act1', other_attributes={'prov:type': "publish"})
    g.activity('ex:act2', other_attributes={'prov:type': "publish"})

    g.wasGeneratedBy('tr:WD-prov-dm-20111018', 'ex:act1')
    g.wasGeneratedBy('tr:WD-prov-dm-20111215', 'ex:act2')

    g.used('ex:act1', 'chairs:2011OctDec/0004')
    g.used('ex:act1', 'email:2011Oct/0141')
    g.used('ex:act2', 'email:2011Dec/0111')

    g.agent('w3:Consortium', other_attributes={'prov:type': "Organization"})

    g.wasAssociatedWith('ex:act1', 'w3:Consortium', 'process:rec-advance')
    g.wasAssociatedWith('ex:act2', 'w3:Consortium', 'process:rec-advance')

    return g
Ejemplo n.º 20
0
def w3c_publication_2():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication2.prov-asn
    #===========================================================================
    # bundle
    #
    # prefix ex <http://example.org/>
    # prefix rec <http://example.org/record>
    #
    # prefix w3 <http://www.w3.org/TR/2011/>
    # prefix hg <http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/>
    #
    #
    # entity(hg:Overview.html, [ prov:type="file in hg" ])
    # entity(w3:WD-prov-dm-20111215, [ prov:type="html4" ])
    #
    #
    # activity(ex:rcp,-,-,[prov:type="copy directory"])
    #
    # wasGeneratedBy(rec:g; w3:WD-prov-dm-20111215, ex:rcp, -)
    #
    # entity(ex:req3, [ prov:type="http://www.w3.org/2005/08/01-transitions.html#pubreq" %% xsd:anyURI ])
    #
    # used(rec:u; ex:rcp,hg:Overview.html,-)
    # used(ex:rcp, ex:req3, -)
    #
    #
    # wasDerivedFrom(w3:WD-prov-dm-20111215, hg:Overview.html, ex:rcp, rec:g, rec:u)
    #
    # agent(ex:webmaster, [ prov:type='prov:Person' ])
    #
    # wasAssociatedWith(ex:rcp, ex:webmaster, -)
    #
    # endBundle
    #===========================================================================

    ex = Namespace('ex', 'http://example.org/')
    rec = Namespace('rec', 'http://example.org/record')
    w3 = Namespace('w3', 'http://www.w3.org/TR/2011/')
    hg = Namespace('hg', 'http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/')

    g = ProvDocument()

    g.entity(hg['Overview.html'], {'prov:type': "file in hg"})
    g.entity(w3['WD-prov-dm-20111215'], {'prov:type': "html4"})

    g.activity(ex['rcp'], None, None, {'prov:type': "copy directory"})

    g.wasGeneratedBy('w3:WD-prov-dm-20111215', 'ex:rcp', identifier=rec['g'])

    g.entity('ex:req3', {'prov:type': Identifier("http://www.w3.org/2005/08/01-transitions.html#pubreq")})

    g.used('ex:rcp', 'hg:Overview.html', identifier='rec:u')
    g.used('ex:rcp', 'ex:req3')

    g.wasDerivedFrom('w3:WD-prov-dm-20111215', 'hg:Overview.html', 'ex:rcp', 'rec:g', 'rec:u')

    g.agent('ex:webmaster', {'prov:type': "Person"})

    g.wasAssociatedWith('ex:rcp', 'ex:webmaster')

    return g
Ejemplo n.º 21
0
def primer_example_alternate():
    g = ProvDocument(
        namespaces={
            "ex": "http://example/",
            "dcterms": "http://purl.org/dc/terms/",
            "foaf": "http://xmlns.com/foaf/0.1/",
        })

    article = g.entity("ex:article",
                       {"dcterms:title": "Crime rises in cities"})
    articleV1 = g.entity("ex:articleV1")
    articleV2 = g.entity("ex:articleV2")
    dataSet1 = g.entity("ex:dataSet1")
    dataSet2 = g.entity("ex:dataSet2")
    regionList = g.entity("ex:regionList")
    composition = g.entity("ex:composition")
    chart1 = g.entity("ex:chart1")
    chart2 = g.entity("ex:chart2")
    blogEntry = g.entity("ex:blogEntry")

    compile = g.activity("ex:compile")
    compile2 = g.activity("ex:compile2")
    compose = g.activity("ex:compose")
    correct = g.activity("ex:correct", "2012-03-31T09:21:00",
                         "2012-04-01T15:21:00")
    illustrate = g.activity("ex:illustrate")

    compose.used(dataSet1, attributes={"prov:role": "ex:dataToCompose"})
    compose.used(regionList,
                 attributes={"prov:role": "ex:regionsToAggregateBy"})
    composition.wasGeneratedBy(compose)

    illustrate.used(composition)
    chart1.wasGeneratedBy(illustrate)

    chart1.wasGeneratedBy(compile, "2012-03-02T10:30:00")

    derek = g.agent(
        "ex:derek",
        {
            "prov:type": PROV["Person"],
            "foaf:givenName": "Derek",
            "foaf:mbox": "<mailto:[email protected]>",
        },
    )
    compose.wasAssociatedWith(derek)
    illustrate.wasAssociatedWith(derek)

    chartgen = g.agent(
        "ex:chartgen",
        {
            "prov:type": PROV["Organization"],
            "foaf:name": "Chart Generators Inc"
        },
    )
    derek.actedOnBehalfOf(chartgen, compose)
    chart1.wasAttributedTo(derek)

    dataSet2.wasGeneratedBy(correct)
    correct.used(dataSet1)
    dataSet2.wasDerivedFrom(dataSet1,
                            attributes={"prov:type": PROV["Revision"]})
    chart2.wasDerivedFrom(dataSet2)

    blogEntry.wasDerivedFrom(article,
                             attributes={"prov:type": PROV["Quotation"]})
    articleV1.specializationOf(article)
    articleV1.wasDerivedFrom(dataSet1)

    articleV2.specializationOf(article)
    articleV2.wasDerivedFrom(dataSet2)

    articleV2.alternateOf(articleV1)

    return g
Ejemplo n.º 22
0
def get_provenance_history(uuid, normalized_provenance_dict):
    prov_doc = ProvDocument()
    # The 'prov' prefix is build-in namespace, no need to redefine here
    prov_doc.add_namespace(HUBMAP_NAMESPACE, 'https://hubmapconsortium.org/')

    # A bit validation
    if 'relationships' not in normalized_provenance_dict:
        raise LookupError(
            f'Missing "relationships" key from the normalized_provenance_dict for Entity of uuid: {uuid}'
        )

    if 'nodes' not in normalized_provenance_dict:
        raise LookupError(
            f'Missing "nodes" key from the normalized_provenance_dict for Entity of uuid: {uuid}'
        )

    # Pack the nodes into a dictionary using the uuid as key
    nodes_dict = {}
    for node in normalized_provenance_dict['nodes']:
        nodes_dict[node['uuid']] = node

    # Loop through the relationships and build the provenance document
    for rel_dict in normalized_provenance_dict['relationships']:
        # (Activity) - [ACTIVITY_OUTPUT] -> (Entity)
        if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT':
            activity_uuid = rel_dict['fromNode']['uuid']
            entity_uuid = rel_dict['toNode']['uuid']
        # (Entity) - [ACTIVITY_INPUT] -> (Activity)
        elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT':
            entity_uuid = rel_dict['fromNode']['uuid']
            activity_uuid = rel_dict['toNode']['uuid']

        activity_node = nodes_dict[activity_uuid]
        entity_node = nodes_dict[entity_uuid]

        activity_uri = None
        entity_uri = None

        # Skip Lab nodes for agent and organization
        if entity_node['entity_type'] != 'Lab':
            # Get the agent information from the entity node
            agent_record = get_agent_record(entity_node)

            # Use 'created_by_user_sub' as agent ID if presents
            # Otherwise, fall back to use email by replacing @ and .
            created_by_user_sub_prov_key = f'{HUBMAP_NAMESPACE}:userUUID'
            created_by_user_email_prov_key = f'{HUBMAP_NAMESPACE}:userEmail'
            if created_by_user_sub_prov_key in agent_record:
                agent_id = agent_record[created_by_user_sub_prov_key]
            elif created_by_user_email_prov_key in agent_record:
                agent_id = str(
                    agent_record[created_by_user_email_prov_key]).replace(
                        '@', '-')
                agent_id = str(agent_id).replace('.', '-')
            else:
                msg = f"Both 'created_by_user_sub' and 'created_by_user_email' are missing form entity of uuid: {entity_node['uuid']}"
                logger.error(msg)
                raise LookupError(msg)

            # Build the agent uri
            agent_uri = build_uri(HUBMAP_NAMESPACE, 'agent', agent_id)

            # Only add the same agent once
            # Multiple entities can be associated to the same agent
            agent = prov_doc.get_record(agent_uri)
            if len(agent) == 0:
                doc_agent = prov_doc.agent(agent_uri, agent_record)
            else:
                doc_agent = agent[0]

            # Organization
            # Get the organization information from the entity node
            org_record = get_organization_record(entity_node)

            # Build the organization uri
            group_uuid_prov_key = f'{HUBMAP_NAMESPACE}:groupUUID'
            org_uri = build_uri(HUBMAP_NAMESPACE, 'organization',
                                org_record[group_uuid_prov_key])

            # Only add the same organization once
            # Multiple entities can be associated to different agents who are from the same organization
            org = prov_doc.get_record(org_uri)
            if len(org) == 0:
                doc_org = prov_doc.agent(org_uri, org_record)
            else:
                doc_org = org[0]

            # Build the activity uri
            activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities',
                                     activity_node['uuid'])

            # Register activity if not already registered
            activity = prov_doc.get_record(activity_uri)
            if len(activity) == 0:
                # Shared attributes to be added to the PROV document
                activity_attributes = {'prov:type': 'Activity'}

                # Convert the timestampt integer to datetime string
                # Note: in our case, prov:startTime is the same as prov:endTime
                activity_time = timestamp_to_datetime(
                    activity_node['created_timestamp'])

                # Add prefix to all other attributes
                for key in activity_node:
                    prov_key = f'{HUBMAP_NAMESPACE}:{key}'
                    # Use datetime string instead of timestamp integer
                    if key == 'created_timestamp':
                        activity_attributes[prov_key] = activity_time
                    else:
                        activity_attributes[prov_key] = activity_node[key]

                # Register activity
                doc_activity = prov_doc.activity(activity_uri, activity_time,
                                                 activity_time,
                                                 activity_attributes)

                # Relationship: the agent actedOnBehalfOf the org
                prov_doc.actedOnBehalfOf(doc_agent, doc_org, doc_activity)
            else:
                doc_activity = activity[0]

            # Build the entity uri
            entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities',
                                   entity_node['uuid'])

            # Register entity is not already registered
            if len(prov_doc.get_record(entity_uri)) == 0:
                # Shared attributes to be added to the PROV document
                entity_attributes = {'prov:type': 'Entity'}

                # Add prefix to all other attributes
                for key in entity_node:
                    # Entity property values can be list or dict, skip
                    # And list and dict are unhashable types when calling `prov_doc.entity()`
                    if not isinstance(entity_node[key], (list, dict)):
                        prov_key = f'{HUBMAP_NAMESPACE}:{key}'
                        # Use datetime string instead of timestamp integer
                        if key in [
                                'created_timestamp', 'last_modified_timestamp',
                                'published_timestamp'
                        ]:
                            entity_attributes[prov_key] = activity_time
                        else:
                            entity_attributes[prov_key] = entity_node[key]

                # Register entity
                prov_doc.entity(entity_uri, entity_attributes)

        # Build activity uri and entity uri if not already built
        # For the Lab nodes
        if activity_uri is None:
            activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities',
                                     activity_node['uuid'])

        if entity_uri is None:
            entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities',
                                   entity_node['uuid'])

        # The following relationships apply to all node including Lab entity nodes
        # (Activity) - [ACTIVITY_OUTPUT] -> (Entity)
        if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT':
            # Relationship: the entity wasGeneratedBy the activity
            prov_doc.wasGeneratedBy(entity_uri, activity_uri)
        # (Entity) - [ACTIVITY_INPUT] -> (Activity)
        elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT':
            # Relationship: the activity used the entity
            prov_doc.used(activity_uri, entity_uri)

    # Format into json string based on the PROV-JSON Serialization
    # https://www.w3.org/Submission/prov-json/
    serialized_json = prov_doc.serialize()

    return serialized_json
Ejemplo n.º 23
0
 def document_2(self):
     d2 = ProvDocument()
     ns_ex = d2.add_namespace("ex", EX2_URI)
     d2.activity(ns_ex["a1"])
     return d2
Ejemplo n.º 24
0
class Context(object):
    """
    Context is a singlton storing all
    of the run specific data.
    """
    def __init__(self):
        # Warning;
        # If new data is added with a site dimension the
        # clip exposure function may need to be updated
        # so the site data stays consistent.

        # --------------  These variables are saved ----
        #  If new variables are added the save functions
        # will need to be modified.

        # Latitude and longitude values of the exposure data
        # Has a site dimension
        self.exposure_lat = None
        self.exposure_long = None

        # Data with a site dimension
        # key - data name
        # value - A numpy array. First dimension is site. (0 axis)
        # Has a site dimension
        self.exposure_att = None

        # Data for aggregation across sites
        self.exposure_agg = None

        #
        # --------------  The above variables are saved ----

        # key - intensity measure
        # value - One instance of RealisedVulnerabilityCurves.  An att in this
        #         class has a site dimension.
        self.exposure_vuln_curves = None

        # A dictionary of the vulnerability sets.
        # Not associated with exposures.
        # key - vulnerability set ID
        # value - vulnerability set instance
        self.vulnerability_sets = {}

        # A dictionary with keys being vulnerability_set_ids and
        # value being the exposure attribute who's values are vulnerability
        # function ID's.
        self.vul_function_titles = {}

        # A `prov.ProvDocument` to manage provenance information, including
        # adding required namespaces
        self.prov = ProvDocument()
        self.prov.set_default_namespace("")
        self.prov.add_namespace('prov', 'http://www.w3.org/ns/prov#')
        self.prov.add_namespace('xsd', 'http://www.w3.org/2001/XMLSchema#')
        self.prov.add_namespace('foaf', 'http://xmlns.com/foaf/0.1/')
        self.prov.add_namespace('void', 'http://vocab.deri.ie/void#')
        self.prov.add_namespace('dcterms', 'http://purl.org/dc/terms/')

        commit, branch, dt = misc.get_git_commit()
        # Create the fundamental software agent that is this code:
        self.prov.agent(
            ":hazimp", {
                "prov:type": "prov:SoftwareAgent",
                "prov:Revision": commit,
                "prov:branch": branch,
                "prov:date": dt
            })
        self.prov.agent(f":{getpass.getuser()}", {"prov:type": "foaf:Person"})
        self.prov.actedOnBehalfOf(":hazimp", f":{getpass.getuser()}")
        self.provlabel = ''

    def set_prov_label(self, label, title="HazImp analysis"):
        """
        Set the qualified label for the provenance data
        """

        self.provlabel = f":{label}"
        self.prov.activity(f":{label}",
                           datetime.now().strftime(DATEFMT), None, {
                               "dcterms:title": title,
                               "prov:type": "void:Analysis"
                           })
        self.prov.wasAttributedTo(self.provlabel, ":hazimp")

    def get_site_shape(self):
        """
        Get the numpy shape of sites the context is storing.
        It is based on the shape of exposure_long.

        :return: The numpy shape of sites the context is storing.
        """
        if self.exposure_long is None:
            shape = (0)
        else:
            shape = self.exposure_long.shape
        return shape

    def clip_exposure(self, min_long, min_lat, max_long, max_lat):
        """ min_long, min_lat, max_long, max_lat
        Clip the exposure data so only the exposure values within
        the rectangle formed by  max_lat, min_lat, max_long and
        min_long are included.

        Note: This must be called before the exposure_vuln_curves
        are determined, since the curves have a site dimension.
        """
        assert self.exposure_vuln_curves is None

        bad_indexes = set()
        bad_indexes = bad_indexes.union(
            numpy.where(self.exposure_long < min_long)[0])
        bad_indexes = bad_indexes.union(
            numpy.where(self.exposure_long > max_long)[0])
        bad_indexes = bad_indexes.union(
            numpy.where(self.exposure_lat < min_lat)[0])
        bad_indexes = bad_indexes.union(
            numpy.where(self.exposure_lat > max_lat)[0])
        good_indexes = numpy.array(list(
            set(range(self.exposure_lat.size)).difference(bad_indexes)),
                                   dtype=int)

        if good_indexes.shape[0] == 0:
            self.exposure_lat = numpy.array([])
            self.exposure_long = numpy.array([])
        else:
            self.exposure_lat = self.exposure_lat[good_indexes]
            self.exposure_long = self.exposure_long[good_indexes]

        if isinstance(self.exposure_att, dict):
            for key in self.exposure_att:
                if good_indexes.shape[0] == 0:
                    exp_att = numpy.array([])
                else:
                    exp_att = self.exposure_att[key][good_indexes]
                self.exposure_att[key] = exp_att
        else:
            self.exposure_att = self.exposure_att.take(good_indexes)

    def save_exposure_atts(self, filename, use_parallel=True):
        """
        Save the exposure attributes, including latitude and longitude.
        The file type saved is based on the filename extension.
        Options
           '.npz': Save the arrays into a single file in uncompressed .npz
                   format.

        :param use_parallel: Set to True for parallel behaviour
        Which is only node 0 writing to file.
        :param filename: The file to be written.
        :return write_dict: The whole dictionary, returned for testing.
        """
        [filename, bucket_name, bucket_key] = \
            misc.create_temp_file_path_for_s3(filename)
        s1 = self.prov.entity(
            ":HazImp output file", {
                "prov:label": "Full HazImp output file",
                "prov:type": "void:Dataset",
                "prov:atLocation": os.path.basename(filename)
            })
        a1 = self.prov.activity(":SaveImpactData",
                                datetime.now().strftime(DATEFMT), None)
        self.prov.wasGeneratedBy(s1, a1)
        self.prov.wasInformedBy(a1, self.provlabel)
        write_dict = self.exposure_att.copy()
        write_dict[EX_LAT] = self.exposure_lat
        write_dict[EX_LONG] = self.exposure_long

        if use_parallel:
            assert misc.INTID in write_dict
            write_dict = parallel.gather_dict(write_dict,
                                              write_dict[misc.INTID])

        if parallel.STATE.rank == 0 or not use_parallel:
            if filename[-4:] == '.csv':
                save_csv(write_dict, filename)
            else:
                numpy.savez(filename, **write_dict)
            misc.upload_to_s3_if_applicable(filename, bucket_name, bucket_key)
            # The write_dict is returned for testing
            # When running in paralled this is a way of getting all
            # of the context info
            return write_dict

    def save_exposure_aggregation(self, filename, use_parallel=True):
        """
        Save the aggregated exposure attributes.
        The file type saved is based on the filename extension.
        Options
           '.npz': Save the arrays into a single file in uncompressed .npz
                   format.

        :param use_parallel: Set to True for parallel behaviour which
        is only node 0 writing to file.
        :param filename: The file to be written.
        :return write_dict: The whole dictionary, returned for testing.
        """
        write_dict = self.exposure_agg.copy()

        s1 = self.prov.entity(
            ":Aggregated HazImp output file", {
                "prov:label": "Aggregated HazImp output file",
                "prov:type": "void:Dataset",
                "prov:atLocation": os.path.basename(filename)
            })
        a1 = self.prov.activity(":SaveAggregatedImpactData",
                                datetime.now().strftime(DATEFMT), None)
        self.prov.wasGeneratedBy(s1, a1)
        self.prov.wasInformedBy(a1, self.prov.activity(":AggregateLoss"))

        if parallel.STATE.rank == 0 or not use_parallel:
            if filename[-4:] == '.csv':
                save_csv_agg(write_dict, filename)
            else:
                numpy.savez(filename, **write_dict)
            # The write_dict is returned for testing
            # When running in paralled this is a way of getting all
            # of the context info
            return write_dict

    def save_aggregation(self,
                         filename,
                         boundaries,
                         impactcode,
                         boundarycode,
                         categories,
                         use_parallel=True):
        """
        Save data aggregated to geospatial regions

        :param str filename: Destination filename
        :param bool use_parallel: True for parallel behaviout, which
                                  is only node 0 writing to file

        """
        LOGGER.info("Saving aggregated data")
        boundaries = misc.download_file_from_s3_if_needed(boundaries)
        [filename, bucket_name, bucket_key] = \
            misc.create_temp_file_path_for_s3(filename)
        write_dict = self.exposure_att.copy()
        dt = datetime.now().strftime(DATEFMT)
        atts = {
            "prov:type": "void:Dataset",
            "prov:atLocation": os.path.basename(boundaries),
            "prov:generatedAtTime": misc.get_file_mtime(boundaries),
            "void:boundary_code": boundarycode
        }
        bdyent = self.prov.entity(":Aggregation boundaries", atts)
        aggact = self.prov.activity(":AggregationByRegions", dt, None,
                                    {'prov:type': "Spatial aggregation"})
        aggatts = {
            "prov:type": "void:Dataset",
            "prov:atLocation": os.path.basename(filename),
            "prov:generatedAtTime": dt
        }
        aggfileent = self.prov.entity(":AggregationFile", aggatts)
        self.prov.used(aggact, bdyent)
        self.prov.wasInformedBy(aggact, self.provlabel)
        self.prov.wasGeneratedBy(aggfileent, aggact)
        if parallel.STATE.rank == 0 or not use_parallel:
            aggregate.choropleth(write_dict, boundaries, impactcode,
                                 boundarycode, filename, categories)
            misc.upload_to_s3_if_applicable(filename, bucket_name, bucket_key)
            if (bucket_name is not None and bucket_key is not None
                    and bucket_key.endswith('.shp')):
                [rootname, ext] = os.path.splitext(filename)
                base_bucket_key = bucket_key[:-len(ext)]
                misc.upload_to_s3_if_applicable(rootname + '.dbf', bucket_name,
                                                base_bucket_key + '.dbf')
                misc.upload_to_s3_if_applicable(rootname + '.shx', bucket_name,
                                                base_bucket_key + '.shx')
                misc.upload_to_s3_if_applicable(rootname + '.prj', bucket_name,
                                                base_bucket_key + '.prj')
                misc.upload_to_s3_if_applicable(rootname + '.cpg', bucket_name,
                                                base_bucket_key + '.cpg', True)
        else:
            pass

    def aggregate_loss(self, groupby=None, kwargs=None):
        """
        Aggregate data by the `groupby` attribute, using the `kwargs` to
        perform any arithmetic aggregation on fields (e.g. summation,
        mean, etc.)

        :param str groupby: A column in the `DataFrame` that corresponds to
        regions by which to aggregate data
        :param dict kwargs: A `dict` with keys of valid column names (from the
        `DataFrame`) and values being lists of aggregation functions to apply
        to the columns.

        For example::

        kwargs = {'REPLACEMENT_VALUE': ['mean', 'sum'],
                'structural_loss_ratio': ['mean', 'std']}


        See
        https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation
        for more guidance on using aggregation with `DataFrames`

        """
        LOGGER.info(f"Aggregating loss using {groupby} attribute")
        a1 = self.prov.activity(":AggregateLoss",
                                datetime.now().strftime(DATEFMT), None, {
                                    "prov:type": "Aggregation",
                                    "void:aggregator": repr(groupby)
                                })
        self.prov.wasInformedBy(a1, self.provlabel)
        self.exposure_agg = aggregate.aggregate_loss_atts(
            self.exposure_att, groupby, kwargs)

    def categorise(self, bins, labels, field_name):
        """
        Bin values into discrete intervals.

        :param list bins: Monotonically increasing array of bin edges,
                          including the rightmost edge, allowing for
                          non-uniform bin widths.
        :param labels: Specifies the labels for the returned
                       bins. Must be the same length as the resulting bins.
        :param str field_name: Name of the new column in the `exposure_att`
                                `DataFrame`
        """

        for intensity_key in self.exposure_vuln_curves:
            vc = self.exposure_vuln_curves[intensity_key]
            lct = vc.loss_category_type
        LOGGER.info(f"Categorising {lct} values into {len(labels)} categories")
        self.exposure_att[field_name] = pd.cut(self.exposure_att[lct],
                                               bins,
                                               right=False,
                                               labels=labels)

    def tabulate(self, file_name, index=None, columns=None, aggfunc=None):
        """
        Reshape data (produce a "pivot" table) based on column values. Uses
        unique values from specified `index` / `columns` to form axes of the
        resulting DataFrame, then writes to an Excel file. This function does
        not support data aggregation - multiple values will result in a
        MultiIndex in the columns.
        See
        https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html
        for further details.

        Parameters
        ----------
        file_name : destination for the pivot table
        index : column or list of columns
            Keys to group by on the pivot table index.  If an array is passed,
            it is being used as the same manner as column values.
        columns : column, or list of the columns
            Keys to group by on the pivot table column.  If an array is passed,
            it is being used as the same manner as column values.
        aggfunc : function, list of functions, dict, default numpy.mean
            If list of functions passed, the resulting pivot table will have
            hierarchical columns whose top level are the function names
            (inferred from the function objects themselves)
            If dict is passed, the key is column to aggregate and value
            is function or list of functions.
        """
        if index not in self.exposure_att.columns:
            LOGGER.error(f"Cannot tabulate data using {index} as index")
            LOGGER.error(f"{index} is not an attribute of the exposure data")
            return

        if columns not in self.exposure_att.columns:
            LOGGER.error(
                f"Required attribute(s) {columns} not in the exposure data")
            LOGGER.error(
                "Maybe you need to run a categorise job before this one?")
            return

        dt = datetime.now().strftime(DATEFMT)
        a1 = self.prov.activity(
            ":Tabulate", dt, None, {
                "prov:type": "Tabulation",
                "void:aggregator": repr(index),
                "void:attributes": repr(columns),
                "void:aggregation": repr(aggfunc)
            })
        tblatts = {
            "prov:type": "void:Dataset",
            "prov:atLocation": os.path.basename(file_name),
            "prov:generatedAtTime": dt
        }
        tblfileent = self.prov.entity(":TabulationFile", tblatts)

        self.pivot = self.exposure_att.pivot_table(index=index,
                                                   columns=columns,
                                                   aggfunc=aggfunc,
                                                   fill_value=0)
        try:
            self.pivot.to_excel(file_name)
        except TypeError as te:
            LOGGER.error(te)
            raise
        except KeyError as ke:
            LOGGER.error(ke)
            raise
        except ValueError as ve:
            LOGGER.error(f"Unable to save tabulated data to {file_name}")
            LOGGER.error(ve)
        else:
            self.prov.wasGeneratedBy(tblfileent, a1)
            self.prov.wasInformedBy(a1, self.provlabel)
Ejemplo n.º 25
0
def w3c_publication_2():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication2.prov-asn
    # ===========================================================================
    # bundle
    #
    # prefix ex <http://example.org/>
    # prefix rec <http://example.org/record>
    #
    # prefix w3 <http://www.w3.org/TR/2011/>
    # prefix hg <http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/>
    #
    #
    # entity(hg:Overview.html, [ prov:type="file in hg" ])
    # entity(w3:WD-prov-dm-20111215, [ prov:type="html4" ])
    #
    #
    # activity(ex:rcp,-,-,[prov:type="copy directory"])
    #
    # wasGeneratedBy(rec:g; w3:WD-prov-dm-20111215, ex:rcp, -)
    #
    # entity(ex:req3, [ prov:type="http://www.w3.org/2005/08/01-transitions.html#pubreq" %% xsd:anyURI ])
    #
    # used(rec:u; ex:rcp,hg:Overview.html,-)
    # used(ex:rcp, ex:req3, -)
    #
    #
    # wasDerivedFrom(w3:WD-prov-dm-20111215, hg:Overview.html, ex:rcp, rec:g, rec:u)
    #
    # agent(ex:webmaster, [ prov:type='prov:Person' ])
    #
    # wasAssociatedWith(ex:rcp, ex:webmaster, -)
    #
    # endBundle
    # ===========================================================================

    ex = Namespace("ex", "http://example.org/")
    rec = Namespace("rec", "http://example.org/record")
    w3 = Namespace("w3", "http://www.w3.org/TR/2011/")
    hg = Namespace(
        "hg",
        "http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/",
    )

    g = ProvDocument()

    g.entity(hg["Overview.html"], {"prov:type": "file in hg"})
    g.entity(w3["WD-prov-dm-20111215"], {"prov:type": "html4"})

    g.activity(ex["rcp"], None, None, {"prov:type": "copy directory"})

    g.wasGeneratedBy("w3:WD-prov-dm-20111215", "ex:rcp", identifier=rec["g"])

    g.entity(
        "ex:req3",
        {
            "prov:type":
            Identifier("http://www.w3.org/2005/08/01-transitions.html#pubreq")
        },
    )

    g.used("ex:rcp", "hg:Overview.html", identifier="rec:u")
    g.used("ex:rcp", "ex:req3")

    g.wasDerivedFrom("w3:WD-prov-dm-20111215", "hg:Overview.html", "ex:rcp",
                     "rec:g", "rec:u")

    g.agent("ex:webmaster", {"prov:type": "Person"})

    g.wasAssociatedWith("ex:rcp", "ex:webmaster")

    return g
Ejemplo n.º 26
0
class NIDMExporter():

    """
    Generic class to parse a result directory to extract the pieces of
    information to be stored in NIDM-Results and to generate a NIDM-Results
    export.
    """

    def __init__(self, version, out_dir, zipped=True):
        out_dirname = os.path.basename(out_dir)
        out_path = os.path.dirname(out_dir)

        # Create output path from output name
        self.zipped = zipped
        if not self.zipped:
            out_dirname = out_dirname+".nidm"
        else:
            out_dirname = out_dirname+".nidm.zip"
        out_dir = os.path.join(out_path, out_dirname)

        # Quit if output path already exists and user doesn't want to overwrite
        # it
        if os.path.exists(out_dir):
            msg = out_dir+" already exists, overwrite?"
            if not input("%s (y/N) " % msg).lower() == 'y':
                quit("Bye.")
            if os.path.isdir(out_dir):
                shutil.rmtree(out_dir)
            else:
                os.remove(out_dir)
        self.out_dir = out_dir

        if version == "dev":
            self.version = {'major': 10000, 'minor': 0, 'revision': 0,
                            'num': version}
        else:
            major, minor, revision = version.split(".")
            if "-rc" in revision:
                revision, rc = revision.split("-rc")
            else:
                rc = -1
            self.version = {'major': int(major), 'minor': int(minor),
                            'revision': int(revision), 'rc': int(rc),
                            'num': version}

        # Initialise prov document
        self.doc = ProvDocument()
        self._add_namespaces()

        # A temp directory that will contain the exported data
        self.export_dir = tempfile.mkdtemp(prefix="nidm-", dir=out_path)

        self.prepend_path = ''

    def parse(self):
        """
        Parse a result directory to extract the pieces information to be
        stored in NIDM-Results.
        """

        try:
            # Methods: find_software, find_model_fitting, find_contrasts and
            # find_inferences should be defined in the children classes and
            # return a list of NIDM Objects as specified in the objects module

            # Object of type Software describing the neuroimaging software
            # package used for the analysis
            self.software = self._find_software()

            # List of objects of type ModelFitting describing the
            # model fitting step in NIDM-Results (main activity: Model
            # Parameters Estimation)
            self.model_fittings = self._find_model_fitting()

            # Dictionary of (key, value) pairs where where key is a tuple
            # containing the identifier of a ModelParametersEstimation object
            # and a tuple of identifiers of ParameterEstimateMap objects and
            # value is an object of type Contrast describing the contrast
            # estimation step in NIDM-Results (main activity: Contrast
            # Estimation)
            self.contrasts = self._find_contrasts()

            # Inference activity and entities
            # Dictionary of (key, value) pairs where key is the identifier of a
            # ContrastEstimation object and value is an object of type
            # Inference describing the inference step in NIDM-Results (main
            # activity: Inference)
            self.inferences = self._find_inferences()
        except Exception:
            self.cleanup()
            raise

    def cleanup(self):
        if os.path.isdir(self.export_dir):
            shutil.rmtree(self.export_dir)

    def add_object(self, nidm_object, export_file=True):
        """
        Add a NIDMObject to a NIDM-Results export.
        """
        if not export_file:
            export_dir = None
        else:
            export_dir = self.export_dir

        if not isinstance(nidm_object, NIDMFile):
            nidm_object.export(self.version, export_dir)
        else:
            nidm_object.export(self.version, export_dir, self.prepend_path)
        # ProvDocument: add object to the bundle
        if nidm_object.prov_type == PROV['Activity']:
            self.bundle.activity(nidm_object.id,
                                 other_attributes=nidm_object.attributes)
        elif nidm_object.prov_type == PROV['Entity']:
            self.bundle.entity(nidm_object.id,
                               other_attributes=nidm_object.attributes)
        elif nidm_object.prov_type == PROV['Agent']:
            self.bundle.agent(nidm_object.id,
                              other_attributes=nidm_object.attributes)
        # self.bundle.update(nidm_object.p)

    def export(self):
        """
        Generate a NIDM-Results export.
        """
        try:
            if not os.path.isdir(self.export_dir):
                os.mkdir(self.export_dir)

            # Initialise main bundle
            self._create_bundle(self.version)

            self.add_object(self.software)

            # Add model fitting steps
            if not isinstance(self.model_fittings, list):
                self.model_fittings = list(self.model_fittings.values())

            for model_fitting in self.model_fittings:
                # Design Matrix
                # model_fitting.activity.used(model_fitting.design_matrix)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.design_matrix.id)
                self.add_object(model_fitting.design_matrix)
                # *** Export visualisation of the design matrix
                self.add_object(model_fitting.design_matrix.image)

                if model_fitting.design_matrix.image.file is not None:
                    self.add_object(model_fitting.design_matrix.image.file)

                if model_fitting.design_matrix.hrf_models is not None:
                    # drift model
                    self.add_object(model_fitting.design_matrix.drift_model)

                if self.version['major'] > 1 or \
                        (self.version['major'] == 1 and
                         self.version['minor'] >= 3):
                    # Machine
                    # model_fitting.data.wasAttributedTo(model_fitting.machine)
                    self.bundle.wasAttributedTo(model_fitting.data.id,
                                                model_fitting.machine.id)
                    self.add_object(model_fitting.machine)

                    # Imaged subject or group(s)
                    for sub in model_fitting.subjects:
                        self.add_object(sub)
                        # model_fitting.data.wasAttributedTo(sub)
                        self.bundle.wasAttributedTo(model_fitting.data.id,
                                                    sub.id)

                # Data
                # model_fitting.activity.used(model_fitting.data)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.data.id)
                self.add_object(model_fitting.data)

                # Error Model
                # model_fitting.activity.used(model_fitting.error_model)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.error_model.id)
                self.add_object(model_fitting.error_model)

                # Parameter Estimate Maps
                for param_estimate in model_fitting.param_estimates:
                    # param_estimate.wasGeneratedBy(model_fitting.activity)
                    self.bundle.wasGeneratedBy(param_estimate.id,
                                               model_fitting.activity.id)
                    self.add_object(param_estimate)
                    self.add_object(param_estimate.coord_space)
                    self.add_object(param_estimate.file)

                    if param_estimate.derfrom is not None:
                        self.bundle.wasDerivedFrom(param_estimate.id,
                                                   param_estimate.derfrom.id)
                        self.add_object(param_estimate.derfrom)
                        self.add_object(param_estimate.derfrom.file,
                                        export_file=False)

                # Residual Mean Squares Map
                # model_fitting.rms_map.wasGeneratedBy(model_fitting.activity)
                self.add_object(model_fitting.rms_map)
                self.bundle.wasGeneratedBy(model_fitting.rms_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.rms_map.coord_space)
                self.add_object(model_fitting.rms_map.file)
                if model_fitting.rms_map.derfrom is not None:
                    self.bundle.wasDerivedFrom(
                        model_fitting.rms_map.id,
                        model_fitting.rms_map.derfrom.id)
                    self.add_object(model_fitting.rms_map.derfrom)
                    self.add_object(model_fitting.rms_map.derfrom.file,
                                    export_file=False)

                # Resels per Voxel Map
                if model_fitting.rpv_map is not None:
                    self.add_object(model_fitting.rpv_map)
                    self.bundle.wasGeneratedBy(model_fitting.rpv_map.id,
                                               model_fitting.activity.id)
                    self.add_object(model_fitting.rpv_map.coord_space)
                    self.add_object(model_fitting.rpv_map.file)
                    if model_fitting.rpv_map.inf_id is not None:
                        self.bundle.used(model_fitting.rpv_map.inf_id,
                                         model_fitting.rpv_map.id)
                    if model_fitting.rpv_map.derfrom is not None:
                        self.bundle.wasDerivedFrom(
                            model_fitting.rpv_map.id,
                            model_fitting.rpv_map.derfrom.id)
                        self.add_object(model_fitting.rpv_map.derfrom)
                        self.add_object(model_fitting.rpv_map.derfrom.file,
                                        export_file=False)

                # Mask
                # model_fitting.mask_map.wasGeneratedBy(model_fitting.activity)
                self.bundle.wasGeneratedBy(model_fitting.mask_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.mask_map)
                if model_fitting.mask_map.derfrom is not None:
                    self.bundle.wasDerivedFrom(
                        model_fitting.mask_map.id,
                        model_fitting.mask_map.derfrom.id)
                    self.add_object(model_fitting.mask_map.derfrom)
                    self.add_object(model_fitting.mask_map.derfrom.file,
                                    export_file=False)

                # Create coordinate space export
                self.add_object(model_fitting.mask_map.coord_space)
                # Create "Mask map" entity
                self.add_object(model_fitting.mask_map.file)

                # Grand Mean map
                # model_fitting.grand_mean_map.wasGeneratedBy(model_fitting.activity)
                self.bundle.wasGeneratedBy(model_fitting.grand_mean_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.grand_mean_map)
                # Coordinate space entity
                self.add_object(model_fitting.grand_mean_map.coord_space)
                # Grand Mean Map entity
                self.add_object(model_fitting.grand_mean_map.file)

                # Model Parameters Estimation activity
                self.add_object(model_fitting.activity)
                self.bundle.wasAssociatedWith(model_fitting.activity.id,
                                              self.software.id)
                # model_fitting.activity.wasAssociatedWith(self.software)
                # self.add_object(model_fitting)

            # Add contrast estimation steps
            analysis_masks = dict()
            for (model_fitting_id, pe_ids), contrasts in list(
                    self.contrasts.items()):
                for contrast in contrasts:
                    model_fitting = self._get_model_fitting(model_fitting_id)
                    # for contrast in contrasts:
                    # contrast.estimation.used(model_fitting.rms_map)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.rms_map.id)
                    # contrast.estimation.used(model_fitting.mask_map)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.mask_map.id)
                    analysis_masks[contrast.estimation.id] = \
                        model_fitting.mask_map.id
                    self.bundle.used(contrast.estimation.id,
                                     contrast.weights.id)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.design_matrix.id)
                    # contrast.estimation.wasAssociatedWith(self.software)
                    self.bundle.wasAssociatedWith(contrast.estimation.id,
                                                  self.software.id)

                    for pe_id in pe_ids:
                        # contrast.estimation.used(pe_id)
                        self.bundle.used(contrast.estimation.id, pe_id)

                    # Create estimation activity
                    self.add_object(contrast.estimation)

                    # Create contrast weights
                    self.add_object(contrast.weights)

                    if contrast.contrast_map is not None:
                        # Create contrast Map
                        # contrast.contrast_map.wasGeneratedBy(contrast.estimation)
                        self.bundle.wasGeneratedBy(contrast.contrast_map.id,
                                                   contrast.estimation.id)
                        self.add_object(contrast.contrast_map)
                        self.add_object(contrast.contrast_map.coord_space)
                        # Copy contrast map in export directory
                        self.add_object(contrast.contrast_map.file)

                        if contrast.contrast_map.derfrom is not None:
                            self.bundle.wasDerivedFrom(
                                contrast.contrast_map.id,
                                contrast.contrast_map.derfrom.id)
                            self.add_object(contrast.contrast_map.derfrom)
                            self.add_object(contrast.contrast_map.derfrom.file,
                                            export_file=False)

                    # Create Std Err. Map (T-tests) or Explained Mean Sq. Map
                    # (F-tests)
                    # contrast.stderr_or_expl_mean_sq_map.wasGeneratedBy
                    # (contrast.estimation)
                    stderr_explmeansq_map = (
                        contrast.stderr_or_expl_mean_sq_map)
                    self.bundle.wasGeneratedBy(
                        stderr_explmeansq_map.id,
                        contrast.estimation.id)
                    self.add_object(stderr_explmeansq_map)
                    self.add_object(
                        stderr_explmeansq_map.coord_space)
                    if isinstance(stderr_explmeansq_map,
                                  ContrastStdErrMap) and \
                            stderr_explmeansq_map.contrast_var:
                        self.add_object(
                            stderr_explmeansq_map.contrast_var)
                        if stderr_explmeansq_map.var_coord_space:
                            self.add_object(
                                stderr_explmeansq_map.var_coord_space)
                        if stderr_explmeansq_map.contrast_var.coord_space:
                            self.add_object(
                                stderr_explmeansq_map.contrast_var.coord_space)
                        self.add_object(
                            stderr_explmeansq_map.contrast_var.file,
                            export_file=False)
                        self.bundle.wasDerivedFrom(
                            stderr_explmeansq_map.id,
                            stderr_explmeansq_map.contrast_var.id)
                    self.add_object(stderr_explmeansq_map.file)

                    # Create Statistic Map
                    # contrast.stat_map.wasGeneratedBy(contrast.estimation)
                    self.bundle.wasGeneratedBy(contrast.stat_map.id,
                                               contrast.estimation.id)
                    self.add_object(contrast.stat_map)
                    self.add_object(contrast.stat_map.coord_space)
                    # Copy Statistical map in export directory
                    self.add_object(contrast.stat_map.file)

                    if contrast.stat_map.derfrom is not None:
                        self.bundle.wasDerivedFrom(
                            contrast.stat_map.id,
                            contrast.stat_map.derfrom.id)
                        self.add_object(contrast.stat_map.derfrom)
                        self.add_object(contrast.stat_map.derfrom.file,
                                        export_file=False)

                    # Create Z Statistic Map
                    if contrast.z_stat_map:
                        # contrast.z_stat_map.wasGeneratedBy(contrast.estimation)
                        self.bundle.wasGeneratedBy(contrast.z_stat_map.id,
                                                   contrast.estimation.id)
                        self.add_object(contrast.z_stat_map)
                        self.add_object(contrast.z_stat_map.coord_space)
                        # Copy Statistical map in export directory
                        self.add_object(contrast.z_stat_map.file)

                    # self.add_object(contrast)

            # Add inference steps
            for contrast_id, inferences in list(self.inferences.items()):
                contrast = self._get_contrast(contrast_id)

                for inference in inferences:
                    if contrast.z_stat_map:
                        used_id = contrast.z_stat_map.id
                    else:
                        used_id = contrast.stat_map.id
                    # inference.inference_act.used(used_id)
                    self.bundle.used(inference.inference_act.id, used_id)
                    # inference.inference_act.wasAssociatedWith(self.software)
                    self.bundle.wasAssociatedWith(inference.inference_act.id,
                                                  self.software.id)

                    # self.add_object(inference)
                    # Excursion set
                    # inference.excursion_set.wasGeneratedBy(inference.inference_act)
                    self.bundle.wasGeneratedBy(inference.excursion_set.id,
                                               inference.inference_act.id)
                    self.add_object(inference.excursion_set)
                    self.add_object(inference.excursion_set.coord_space)
                    if inference.excursion_set.visu is not None:
                        self.add_object(inference.excursion_set.visu)
                        if inference.excursion_set.visu.file is not None:
                            self.add_object(inference.excursion_set.visu.file)
                    # Copy "Excursion set map" file in export directory
                    self.add_object(inference.excursion_set.file)
                    if inference.excursion_set.clust_map is not None:
                        self.add_object(inference.excursion_set.clust_map)
                        self.add_object(inference.excursion_set.clust_map.file)
                        self.add_object(
                            inference.excursion_set.clust_map.coord_space)

                    if inference.excursion_set.mip is not None:
                        self.add_object(inference.excursion_set.mip)
                        self.add_object(inference.excursion_set.mip.file)

                    # Height threshold
                    if inference.height_thresh.equiv_thresh is not None:
                        for equiv in inference.height_thresh.equiv_thresh:
                            self.add_object(equiv)
                    self.add_object(inference.height_thresh)

                    # Extent threshold
                    if inference.extent_thresh.equiv_thresh is not None:
                        for equiv in inference.extent_thresh.equiv_thresh:
                            self.add_object(equiv)
                    self.add_object(inference.extent_thresh)

                    # Display Mask (potentially more than 1)
                    if inference.disp_mask:
                        for mask in inference.disp_mask:
                            # inference.inference_act.used(mask)
                            self.bundle.used(inference.inference_act.id,
                                             mask.id)
                            self.add_object(mask)
                            # Create coordinate space entity
                            self.add_object(mask.coord_space)
                            # Create "Display Mask Map" entity
                            self.add_object(mask.file)

                            if mask.derfrom is not None:
                                self.bundle.wasDerivedFrom(mask.id,
                                                           mask.derfrom.id)
                                self.add_object(mask.derfrom)
                                self.add_object(mask.derfrom.file,
                                                export_file=False)

                    # Search Space
                    self.bundle.wasGeneratedBy(inference.search_space.id,
                                               inference.inference_act.id)
                    # inference.search_space.wasGeneratedBy(inference.inference_act)
                    self.add_object(inference.search_space)
                    self.add_object(inference.search_space.coord_space)
                    # Copy "Mask map" in export directory
                    self.add_object(inference.search_space.file)

                    # Peak Definition
                    if inference.peak_criteria:
                        # inference.inference_act.used(inference.peak_criteria)
                        self.bundle.used(inference.inference_act.id,
                                         inference.peak_criteria.id)
                        self.add_object(inference.peak_criteria)

                    # Cluster Definition
                    if inference.cluster_criteria:
                        # inference.inference_act.used(inference.cluster_criteria)
                        self.bundle.used(inference.inference_act.id,
                                         inference.cluster_criteria.id)
                        self.add_object(inference.cluster_criteria)

                    if inference.clusters:
                        # Clusters and peaks
                        for cluster in inference.clusters:
                            # cluster.wasDerivedFrom(inference.excursion_set)
                            self.bundle.wasDerivedFrom(
                                cluster.id, inference.excursion_set.id)
                            self.add_object(cluster)
                            for peak in cluster.peaks:
                                self.bundle.wasDerivedFrom(peak.id, cluster.id)
                                self.add_object(peak)
                                self.add_object(peak.coordinate)

                            if cluster.cog is not None:
                                self.bundle.wasDerivedFrom(cluster.cog.id,
                                                           cluster.id)
                                self.add_object(cluster.cog)
                                self.add_object(cluster.cog.coordinate)

                    # Inference activity
                    # inference.inference_act.wasAssociatedWith(inference.software_id)
                    # inference.inference_act.used(inference.height_thresh)
                    self.bundle.used(inference.inference_act.id,
                                     inference.height_thresh.id)
                    # inference.inference_act.used(inference.extent_thresh)
                    self.bundle.used(inference.inference_act.id,
                                     inference.extent_thresh.id)
                    self.bundle.used(inference.inference_act.id,
                                     analysis_masks[contrast.estimation.id])
                    self.add_object(inference.inference_act)

            # Write-out prov file
            self.save_prov_to_files()

            return self.out_dir
        except Exception:
            self.cleanup()
            raise

    def _get_model_fitting(self, mf_id):
        """
        Retreive model fitting with identifier 'mf_id' from the list of model
        fitting objects stored in self.model_fitting
        """
        for model_fitting in self.model_fittings:
            if model_fitting.activity.id == mf_id:
                return model_fitting

        raise Exception("Model fitting activity with id: " + str(mf_id) +
                        " not found.")

    def _get_contrast(self, con_id):
        """
        Retreive contrast with identifier 'con_id' from the list of contrast
        objects stored in self.contrasts
        """
        for contrasts in list(self.contrasts.values()):
            for contrast in contrasts:
                if contrast.estimation.id == con_id:
                    return contrast
        raise Exception("Contrast activity with id: " + str(con_id) +
                        " not found.")

    def _add_namespaces(self):
        """
        Add namespaces to NIDM document.
        """
        self.doc.add_namespace(NIDM)
        self.doc.add_namespace(NIIRI)
        self.doc.add_namespace(CRYPTO)
        self.doc.add_namespace(DCT)
        self.doc.add_namespace(DC)
        self.doc.add_namespace(NFO)
        self.doc.add_namespace(OBO)
        self.doc.add_namespace(SCR)
        self.doc.add_namespace(NIF)

    def _create_bundle(self, version):
        """
        Initialise NIDM-Results bundle.
        """
        # *** Bundle entity
        if not hasattr(self, 'bundle_ent'):
            self.bundle_ent = NIDMResultsBundle(nidm_version=version['num'])

        self.bundle = ProvBundle(identifier=self.bundle_ent.id)

        self.bundle_ent.export(self.version, self.export_dir)

        # # provn export
        # self.bundle = ProvBundle(identifier=bundle_id)

        self.doc.entity(self.bundle_ent.id,
                        other_attributes=self.bundle_ent.attributes)

        # *** NIDM-Results Export Activity
        if version['num'] not in ["1.0.0", "1.1.0"]:
            if not hasattr(self, 'export_act'):
                self.export_act = NIDMResultsExport()
            self.export_act.export(self.version, self.export_dir)
            # self.doc.update(self.export_act.p)
            self.doc.activity(self.export_act.id,
                              other_attributes=self.export_act.attributes)

        # *** bundle was Generated by NIDM-Results Export Activity
        if not hasattr(self, 'export_time'):
            self.export_time = str(datetime.datetime.now().time())

        if version['num'] in ["1.0.0", "1.1.0"]:
            self.doc.wasGeneratedBy(entity=self.bundle_ent.id,
                                    time=self.export_time)
        else:
            # provn
            self.doc.wasGeneratedBy(
                entity=self.bundle_ent.id, activity=self.export_act.id,
                time=self.export_time)

        # *** NIDM-Results Exporter (Software Agent)
        if version['num'] not in ["1.0.0", "1.1.0"]:
            if not hasattr(self, 'exporter'):
                self.exporter = self._get_exporter()
            self.exporter.export(self.version, self.export_dir)
            # self.doc.update(self.exporter.p)
            self.doc.agent(self.exporter.id,
                           other_attributes=self.exporter.attributes)

            self.doc.wasAssociatedWith(self.export_act.id, self.exporter.id)

    def _get_model_parameters_estimations(self, error_model):
        """
        Infer model estimation method from the 'error_model'. Return an object
        of type ModelParametersEstimation.
        """
        if error_model.dependance == NIDM_INDEPEDENT_ERROR:
            if error_model.variance_homo:
                estimation_method = STATO_OLS
            else:
                estimation_method = STATO_WLS
        else:
            estimation_method = STATO_GLS

        mpe = ModelParametersEstimation(estimation_method, self.software.id)

        return mpe

    def use_prefixes(self, ttl):
        prefix_file = os.path.join(os.path.dirname(__file__), 'prefixes.csv')
        context = dict()
        with open(prefix_file, encoding="ascii") as csvfile:
            reader = csv.reader(csvfile)
            next(reader, None)  # skip the headers
            for alphanum_id, prefix, uri in reader:
                if alphanum_id in ttl:
                    context[prefix] = uri
                    ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl
                    ttl = ttl.replace(alphanum_id, prefix + ":")
                    if uri in ttl:
                        ttl = ttl.replace(alphanum_id, prefix + ":")
                elif uri in ttl:
                    context[prefix] = uri
                    ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl
                    ttl = ttl.replace(alphanum_id, prefix + ":")
        return (ttl, context)

    def save_prov_to_files(self, showattributes=False):
        """
        Write-out provn serialisation to nidm.provn.
        """
        self.doc.add_bundle(self.bundle)
        # provn_file = os.path.join(self.export_dir, 'nidm.provn')
        # provn_fid = open(provn_file, 'w')
        # # FIXME None
        # # provn_fid.write(self.doc.get_provn(4).replace("None", "-"))
        # provn_fid.close()

        ttl_file = os.path.join(self.export_dir, 'nidm.ttl')
        ttl_txt = self.doc.serialize(format='rdf', rdf_format='turtle')
        ttl_txt, json_context = self.use_prefixes(ttl_txt)

        # Add namespaces to json-ld context
        for namespace in self.doc._namespaces.get_registered_namespaces():
            json_context[namespace._prefix] = namespace._uri
        for namespace in \
                list(self.doc._namespaces._default_namespaces.values()):
            json_context[namespace._prefix] = namespace._uri
        json_context["xsd"] = "http://www.w3.org/2000/01/rdf-schema#"

        # Work-around to issue with INF value in rdflib (reported in
        # https://github.com/RDFLib/rdflib/pull/655)
        ttl_txt = ttl_txt.replace(' inf ', ' "INF"^^xsd:float ')
        with open(ttl_file, 'w') as ttl_fid:
            ttl_fid.write(ttl_txt)

        # print(json_context)
        jsonld_file = os.path.join(self.export_dir, 'nidm.json')
        jsonld_txt = self.doc.serialize(format='rdf', rdf_format='json-ld',
                                        context=json_context)
        with open(jsonld_file, 'w') as jsonld_fid:
            jsonld_fid.write(jsonld_txt)

        # provjsonld_file = os.path.join(self.export_dir, 'nidm.provjsonld')
        # provjsonld_txt = self.doc.serialize(format='jsonld')
        # with open(provjsonld_file, 'w') as provjsonld_fid:
        #     provjsonld_fid.write(provjsonld_txt)

        # provn_file = os.path.join(self.export_dir, 'nidm.provn')
        # provn_txt = self.doc.serialize(format='provn')
        # with open(provn_file, 'w') as provn_fid:
        #     provn_fid.write(provn_txt)

        # Post-processing
        if not self.zipped:
            # Just rename temp directory to output_path
            os.rename(self.export_dir, self.out_dir)
        else:
            # Create a zip file that contains the content of the temp directory
            os.chdir(self.export_dir)
            zf = zipfile.ZipFile(os.path.join("..", self.out_dir), mode='w')
            try:
                for root, dirnames, filenames in os.walk("."):
                    for filename in filenames:
                        zf.write(os.path.join(filename))
            finally:
                zf.close()
                # Need to move up before deleting the folder
                os.chdir("..")
                shutil.rmtree(os.path.join("..", self.export_dir))
Ejemplo n.º 27
0
    def useGenDependency(self, aDO, usedList, genList, throughActivity):

        aID = throughActivity.id

        # create provlet
        d1 = ProvDocument()  # d1 is now an empty provenance document
        d1.add_namespace("dt", "http://cs.ncl.ac.uk/dtsim/")

        usedEntities = []
        for aRO in usedList:
            usedEntities.append(d1.entity(DTns + aRO.id))

        genEntities = []
        for aRO1 in genList:
            genEntities.append(d1.entity(DTns + aRO1.id))

        a = d1.activity(DTns + aID)
        ag1 = d1.agent(DTns + str(aDO.id))

        d1.wasAssociatedWith(a, ag1)
        for ue in usedEntities:
            d1.used(a, ue)

        for gene in genEntities:
            d1.wasAttributedTo(gene, ag1)
            d1.wasGeneratedBy(gene, a)

        # associate this provlet to each generated RO
        for aRO1 in genList:
            aRO1.provlet = d1

        print "event {n}: DO {do}: {ro1} <- wgby <- {act} <- used {ro}".format(
            n=currentReuseCount, do=aDO.id, ro1=aRO1.id, act=aID, ro=aRO.id
        )

        for genRO in genList:
            for uRO in usedList:
                # update upstream pointer
                genRO.upstream.append(
                    (uRO, throughActivity)
                )  # dep on aRO through activity aID   FIXME URGENTLY!!!  not designed for M-M

        for uRO in usedList:
            for genRO in genList:
                # update downstream
                uRO.downstream.append((genRO, throughActivity))  # aR1 is downstream from aR1 through activity aID

        # update global graph
        globalUsedEntities = []
        for aRO in usedList:
            globalUsedEntities.append(pGlobal.entity(DTns + aRO.id))

        globalGenEntities = []
        for aR1 in genList:
            globalGenEntities.append(pGlobal.entity(DTns + aR1.id))

        a = pGlobal.activity(DTns + aID)
        ag1 = pGlobal.agent(DTns + str(aDO.id))

        pGlobal.wasAssociatedWith(a, ag1)
        for ue in globalUsedEntities:
            pGlobal.used(a, ue)

        for gene in globalGenEntities:
            pGlobal.wasAttributedTo(gene, ag1)
            pGlobal.wasGeneratedBy(gene, a)

        # trigger credit recomputation
        # each used RO needs its credit updated with aRO1.credit for each generated aRO1 through activity aID
        aCreditManager.addGenerationCredit(usedList, genList, throughActivity)

        # 		self.notify(d1)
        return d1
Ejemplo n.º 28
0
from prov.model import ProvDocument
from provdbconnector import ProvApi
from provdbconnector.db_adapters.in_memory import SimpleInMemoryAdapter

prov_api = ProvApi(adapter=SimpleInMemoryAdapter, auth_info=None)

# create the prov document
prov_document = ProvDocument()
prov_document.add_namespace("ex", "http://example.com")

prov_document.agent("ex:Bob")
prov_document.activity("ex:Alice")

prov_document.association("ex:Alice", "ex:Bob")
# create bundle
b1 = prov_document.bundle("ex:bundle1")
b1.agent("ex:Yoda")

b2 = prov_document.bundle("ex:bundle2")
b2.agent("ex:Jabba the Hutt")

document_id = prov_api.create_document(prov_document)

print(prov_api.get_document_as_provn(document_id))

# Output:
#
# document
#   prefix ex <http://example.com>
#
#   agent(ex:Bob)
Ejemplo n.º 29
0
def w3c_publication_1():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication1.prov-asn
    #===========================================================================
    # bundle
    #
    # prefix ex  <http://example.org/>
    #
    # prefix w3      <http://www.w3.org/>
    # prefix tr      <http://www.w3.org/TR/2011/>
    # prefix process <http://www.w3.org/2005/10/Process-20051014/tr.html#>
    # prefix email   <https://lists.w3.org/Archives/Member/w3c-archive/>
    # prefix chairs  <https://lists.w3.org/Archives/Member/chairs/>
    # prefix trans   <http://www.w3.org/2005/08/01-transitions.html#>
    # prefix rec54   <http://www.w3.org/2001/02pd/rec54#>
    #
    #
    #  entity(tr:WD-prov-dm-20111018, [ prov:type='rec54:WD' ])
    #  entity(tr:WD-prov-dm-20111215, [ prov:type='rec54:WD' ])
    #  entity(process:rec-advance,    [ prov:type='prov:Plan' ])
    #
    #
    #  entity(chairs:2011OctDec/0004, [ prov:type='trans:transreq' ])
    #  entity(email:2011Oct/0141,     [ prov:type='trans:pubreq' ])
    #  entity(email:2011Dec/0111,     [ prov:type='trans:pubreq' ])
    #
    #
    #  wasDerivedFrom(tr:WD-prov-dm-20111215, tr:WD-prov-dm-20111018)
    #
    #
    #  activity(ex:act1,-,-,[prov:type="publish"])
    #  activity(ex:act2,-,-,[prov:type="publish"])
    #
    #  wasGeneratedBy(tr:WD-prov-dm-20111018, ex:act1, -)
    #  wasGeneratedBy(tr:WD-prov-dm-20111215, ex:act2, -)
    #
    #  used(ex:act1, chairs:2011OctDec/0004, -)
    #  used(ex:act1, email:2011Oct/0141, -)
    #  used(ex:act2, email:2011Dec/0111, -)
    #
    #  agent(w3:Consortium, [ prov:type='prov:Organization' ])
    #
    #  wasAssociatedWith(ex:act1, w3:Consortium, process:rec-advance)
    #  wasAssociatedWith(ex:act2, w3:Consortium, process:rec-advance)
    #
    # endBundle
    #===========================================================================

    g = ProvDocument()
    g.add_namespace('ex', 'http://example.org/')
    g.add_namespace('w3', 'http://www.w3.org/')
    g.add_namespace('tr', 'http://www.w3.org/TR/2011/')
    g.add_namespace('process',
                    'http://www.w3.org/2005/10/Process-20051014/tr.html#')
    g.add_namespace('email',
                    'https://lists.w3.org/Archives/Member/w3c-archive/')
    g.add_namespace('chairs', 'https://lists.w3.org/Archives/Member/chairs/')
    g.add_namespace('trans', 'http://www.w3.org/2005/08/01-transitions.html#')
    g.add_namespace('rec54', 'http://www.w3.org/2001/02pd/rec54#')

    g.entity('tr:WD-prov-dm-20111018', {'prov:type': 'rec54:WD'})
    g.entity('tr:WD-prov-dm-20111215', {'prov:type': 'rec54:WD'})
    g.entity('process:rec-advance', {'prov:type': 'prov:Plan'})

    g.entity('chairs:2011OctDec/0004', {'prov:type': 'trans:transreq'})
    g.entity('email:2011Oct/0141', {'prov:type': 'trans:pubreq'})
    g.entity('email:2011Dec/0111', {'prov:type': 'trans:pubreq'})

    g.wasDerivedFrom('tr:WD-prov-dm-20111215', 'tr:WD-prov-dm-20111018')

    g.activity('ex:act1', other_attributes={'prov:type': "publish"})
    g.activity('ex:act2', other_attributes={'prov:type': "publish"})

    g.wasGeneratedBy('tr:WD-prov-dm-20111018', 'ex:act1')
    g.wasGeneratedBy('tr:WD-prov-dm-20111215', 'ex:act2')

    g.used('ex:act1', 'chairs:2011OctDec/0004')
    g.used('ex:act1', 'email:2011Oct/0141')
    g.used('ex:act2', 'email:2011Dec/0111')

    g.agent('w3:Consortium', other_attributes={'prov:type': "Organization"})

    g.wasAssociatedWith('ex:act1', 'w3:Consortium', 'process:rec-advance')
    g.wasAssociatedWith('ex:act2', 'w3:Consortium', 'process:rec-advance')

    return g
def example():

    g = ProvDocument()
    # Local namespace
    # Doesnt exist yet so we are creating it
    ap = Namespace('aip', 'https://araport.org/provenance/')
    # Dublin Core
    g.add_namespace("dcterms", "http://purl.org/dc/terms/")
    # FOAF
    g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/")

    # Add sponsors and contributors as Agents
    # ap['matthew_vaughn']
    # aip:matthew_vaughn
    # https://araport.org/provenance/:matthew_vaughn
    # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way
    me = g.agent(ap['matthew_vaughn'], {
        'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>"
    })
    # Hard coded for now
    walter = g.agent(ap['walter_moreira'], {
        'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>"
    })
    utexas = g.agent(ap['university_of_texas'], {
        'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin"
    })

    # Set delegation to our host University
    # We may have trouble doing this for other users since we don't always capture their host instituion
    g.actedOnBehalfOf(walter, utexas)
    g.actedOnBehalfOf(me, utexas)

    # Include the ADAMA platform as an Agent and set attribution
    # dcterms:title and dcterms:description are hardcoded
    # dcterms:language is hard-coded
    # dcterms:source is the URI of the public git source repository for ADAMA
    # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated
    adama_platform = g.agent(ap['adama_platform'], {'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" })
    g.wasGeneratedBy(adama_platform, walter)

    # Include the ADAMA microservice as an Agent and set attribution+delegation
    # dcterms:title and dcterms:description are inherited from the service's metadata
    # dcterms:language is hard-coded
    # dcterms:identifier is the deployment URI for the service
    # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy
    #
    # The name for each microservice should be unique. We've decided to
    # use the combination of namespace, service name, and version
    microservice_name = 'mwvaughn/bar_annotation_v1.0.0'
    adama_microservice = g.agent(ap[microservice_name], {'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source':"https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" })

    # the microservice was generated by me on date X (don't use now, use when the service was updated)
    g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now())
    # The microservice used the platform now
    g.used(adama_microservice, adama_platform, datetime.datetime.now())

    # Sources
    #
    # Define BAR
    # Agents
    nick = g.agent(ap['nicholas_provart'], {
        'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "*****@*****.**"
    })
    utoronto = g.agent(ap['university_of_toronto'], {
        'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier':"http://www.utoronto.ca/"
    })
    g.actedOnBehalfOf(nick, utoronto)

    # Entity
    # All fields derived from Sources.yml
    # dcterms:title and dcterms:description come straight from the YAML
    # dcterms:identifier - URI pointing to the source's canonical URI representation
    # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
    # optional - dcterms:updated: date the source was published or last updated
    # optional - dcterms:license: Simple string or URI to license. Validate URI if provided?
    datasource1 = g.entity(ap['datasource1'], {'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language':"en-US", 'dcterms:identifier':"http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated':"2015-04-17T09:44:56", 'dcterms:license':"Creative Commons 3.0" })
    # Set up attribution to Nick
    g.wasAttributedTo(datasource1, nick)

    # Define TAIR
    # Agents
    # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
    eva = g.agent(ap['eva_huala'], {
        'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala"
    })
    phoenix = g.agent(ap['phoenix_bioinformatics'], {
        'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics"
    })
    g.actedOnBehalfOf(eva, phoenix)

    # Entity
    # All fields derived from Sources.yml
    # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it?
    datasource2 = g.entity(ap['datasource2'], {'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language':"en-US", 'dcterms:identifier':"https://www.arabidopsis.org/", 'dcterms:citation':"The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090"})
    g.wasAttributedTo(datasource2, eva)

    # In Sources.yml, these two sources are nested. Define that relationship here
    # There are other types of relationships but we will just use derived from for simplicity in this prototype
    g.wasDerivedFrom(ap['datasource1'], ap['datasource2'])

    # Depending on which ADAMA microservice type we are using, define an activity
    # Eventually, break these into more atomic actions in a chain
    action1 = g.activity(ap['do_query'], datetime.datetime.now())
    # action1 = g.activity(ap['do_map'], datetime.datetime.now())
    # action1 = g.activity(ap['do_generic'], datetime.datetime.now())
    # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now())
    # Future... Support for ADAMA-native microservices
    # action1 = g.activity(ap['generate'], datetime.datetime.now())

    # Define current ADAMA response as an Entity
    # This is what's being returned to the user and is thus the subject of the PROV record
    # May be able to add more attributes to it but this is the minimum
    response = g.entity(ap['adama_response'])

    # Response is generated by the process_query action
    # Time-stamp it!
    g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now())
    # The process_query used the microservice
    g.used(ap['do_query'], adama_microservice, datetime.datetime.now())
    # The microservice used datasource1
    g.used(adama_microservice, datasource1, datetime.datetime.now())

    # Print prov_n
    print(g.get_provn())
    # Print prov-json
    print(g.serialize())
    # Write out as a pretty picture
    graph = prov.dot.prov_to_dot(g)
    graph.write_png('Sources.png')
Ejemplo n.º 31
0
def provlist2provdoc(provlist, default_ns=DEFAULT_NS):
    """ Convert a list of provenance dictionaries to a provdoc W3C PROV compatible"""
    pdoc = ProvDocument()
    pdoc.set_default_namespace("param:")
    pdoc.add_namespace(default_ns, default_ns + ":")
    pdoc.add_namespace("voprov", "voprov:")
    records = {}
    sess_id = ""
    for provdict in provlist:
        if "session_id" in provdict:
            sess_id = str(provdict.pop("session_id"))
            sess_qid = default_ns + ":" + sess_id
            if sess_id in records:
                sess = records[sess_qid]
            else:
                sess = pdoc.entity(sess_qid)
                records[sess_qid] = sess
            sess.add_attributes({
                "prov:label":
                "LogProvSession",
                "prov:type":
                "LogProvSession",
                "prov:generatedAtTime":
                provdict.pop("startTime"),
                #'configFile': provdict.pop('configFile'),
                'module':
                str(provdict.pop('module')),
                'class':
                str(provdict.pop('class')),
                'system':
                str(provdict.pop('system'))[:50],
                'definitions':
                str(provdict.pop('definitions'))[:50],
            })
        # activity
        if "activity_id" in provdict:
            act_id = default_ns + ":" + "_".join(
                [sess_id,
                 str(provdict.pop("activity_id")).replace("-", "")])
            if act_id in records:
                act = records[act_id]
            else:
                act = pdoc.activity(act_id)
                records[act_id] = act
            # activity name
            if "name" in provdict:
                act.add_attributes({"prov:label": provdict.pop("name")})
            # activity start
            if "startTime" in provdict:
                act.set_time(startTime=datetime.datetime.fromisoformat(
                    provdict.pop("startTime")))
            # activity end
            if "endTime" in provdict:
                act.set_time(endTime=datetime.datetime.fromisoformat(
                    provdict.pop("endTime")))
            # in session?
            # if "in_session" in provdict:
            #     sess_qid = default_ns + ":" + str(provdict.pop("in_session"])
            #     pdoc.wasInfluencedBy(
            #         act_id, sess_id
            #     )  # , other_attributes={'prov:type': "Context"})
            # activity configuration
            if "agent_name" in provdict:
                agent_id = str(provdict.pop("agent_name"))
                if ":" not in agent_id:
                    agent_id = default_ns + ":" + agent_id
                else:
                    new_ns = agent_id.split(":").pop(0)
                    pdoc.add_namespace(new_ns, new_ns + ":")
                if agent_id in records:
                    agent = records[agent_id]
                else:
                    agent = pdoc.agent(agent_id)
                    records[agent_id] = agent
                act.wasAssociatedWith(agent,
                                      attributes={"prov:role": "Operator"})
            if "parameters" in provdict:
                params_record = provdict.pop("parameters")
                params = {k: str(params_record[k]) for k in params_record}
                # par_id = act_id + "_parameters"
                # par = pdoc.entity(par_id, other_attributes=params)
                # par.add_attributes({"prov:type": "Parameters"})
                # par.add_attributes({"prov:label": "WasConfiguredBy"})
                # act.used(par, attributes={"prov:type": "Setup"})
                for name, value in params.items():
                    value_short = str(value)[:20]
                    if len(value_short) == 20:
                        value_short += "..."
                    par = pdoc.entity(act_id + "_" + name)
                    par.add_attributes(
                        {"prov:label": name + " = " + value_short})
                    par.add_attributes({"prov:type": "voprov:Parameter"})
                    par.add_attributes({"voprov:name": name})
                    par.add_attributes({"prov:value": value_short})
                    act.used(par, attributes={"prov:type": "Setup"})
            # usage
            if "used_id" in provdict:
                ent_id = str(provdict.pop("used_id"))
                if ":" not in ent_id:
                    ent_id = default_ns + ":" + "_".join([sess_id, ent_id])
                else:
                    new_ns = ent_id.split(":").pop(0)
                    pdoc.add_namespace(new_ns, new_ns + ":")
                if ent_id in records:
                    ent = records[ent_id]
                else:
                    ent = pdoc.entity(ent_id)
                    records[ent_id] = ent
                rol = provdict.pop("used_role", None)
                # if rol:
                #     ent.add_attributes({'prov:label': rol})
                act.used(ent, attributes={"prov:role": rol})
            # generation
            if "generated_id" in provdict:
                ent_id = str(provdict.pop("generated_id"))
                if ":" not in ent_id:
                    ent_id = default_ns + ":" + "_".join([sess_id, ent_id])
                else:
                    new_ns = ent_id.split(":").pop(0)
                    pdoc.add_namespace(new_ns, new_ns + ":")
                if ent_id in records:
                    ent = records[ent_id]
                else:
                    ent = pdoc.entity(ent_id)
                    records[ent_id] = ent
                rol = provdict.pop("generated_role", None)
                # if rol:
                #     ent.add_attributes({'prov:label': rol})
                ent.wasGeneratedBy(act, attributes={"prov:role": rol})
            for k, v in provdict.items():
                act.add_attributes({k: str(v)})
        # entity
        if "entity_id" in provdict:
            ent_id = str(provdict.pop("entity_id"))
            label = ""
            if ":" not in ent_id:
                ent_id = default_ns + ":" + "_".join([sess_id, ent_id])
            else:
                new_ns = ent_id.split(":").pop(0)
                pdoc.add_namespace(new_ns, new_ns + ":")
            if ent_id in records:
                ent = records[ent_id]
            else:
                ent = pdoc.entity(ent_id)
                records[ent_id] = ent
            if "name" in provdict:
                label = provdict.pop("name")
                ent.add_attributes({"voprov:name": label})
            if "entity_description" in provdict:
                label = provdict.pop("entity_description")
                ent.add_attributes({"voprov:entity_description": label})
            if "type" in provdict:
                ent.add_attributes({"prov:type": provdict.pop("type")})
            if "value" in provdict:
                value_short = str(provdict.pop("value"))[:20]
                if len(value_short) == 20:
                    value_short += "..."
                ent.add_attributes({"prov:value": value_short})
            if "location" in provdict:
                location = str(provdict.pop("location"))
                ent.add_attributes({"prov:location": location})
                if label:
                    label = label + " in " + location
            if label:
                ent.add_attributes({"prov:label": label})
            if "generated_time" in provdict:
                ent.add_attributes({
                    "prov:generatedAtTime":
                    str(provdict.pop("generated_time"))
                })
            # member
            if "member_id" in provdict:
                mem_id = str(provdict.pop("member_id"))
                if ":" not in mem_id:
                    mem_id = default_ns + ":" + "_".join([sess_id, mem_id])
                else:
                    new_ns = mem_id.split(":").pop(0)
                    pdoc.add_namespace(new_ns, new_ns + ":")
                if mem_id in records:
                    mem = records[mem_id]
                else:
                    mem = pdoc.entity(mem_id)
                    records[mem_id] = mem
                ent.hadMember(mem)
            if "progenitor_id" in provdict:
                progen_id = str(provdict.pop("progenitor_id"))
                if ":" not in progen_id:
                    progen_id = default_ns + ":" + "_".join(
                        [sess_id, progen_id])
                else:
                    new_ns = progen_id.split(":").pop(0)
                    pdoc.add_namespace(new_ns, new_ns + ":")
                if progen_id in records:
                    progen = records[progen_id]
                else:
                    progen = pdoc.entity(progen_id)
                    records[progen_id] = progen
                ent.wasDerivedFrom(progen)
            for k, v in provdict.items():
                ent.add_attributes({k: str(v)})
        # agent
    return pdoc
Ejemplo n.º 32
0
class Provenance(object):
    def __init__(self, output_dir):
        self.output_dir = output_dir
        self.doc = None
        self.workflow = None

    def start(self, workflow=False):
        from daops import __version__ as daops_version
        from housemartin import __version__ as housemartin_version

        self.doc = ProvDocument()
        # Declaring namespaces for various prefixes
        self.doc.set_default_namespace(uri="http://purl.org/roocs/prov#")
        self.doc.add_namespace("prov", uri="http://www.w3.org/ns/prov#")
        self.doc.add_namespace(
            "provone", uri="http://purl.dataone.org/provone/2015/01/15/ontology#"
        )
        self.doc.add_namespace("dcterms", uri="http://purl.org/dc/terms/")
        # Define entities
        project_cds = self.doc.agent(
            ":copernicus_CDS",
            {
                "prov:type": "prov:Organization",
                "dcterms:title": "Copernicus Climate Data Store",
            },
        )
        self.sw_housemartin = self.doc.agent(
            ":housemartin",
            {
                "prov:type": "prov:SoftwareAgent",
                "dcterms:source": f"https://github.com/cedadev/housemartin/releases/tag/v{housemartin_version}",
            },
        )
        self.doc.wasAttributedTo(self.sw_housemartin, project_cds)
        self.sw_daops = self.doc.agent(
            ":daops",
            {
                "prov:type": "prov:SoftwareAgent",
                "dcterms:source": f"https://github.com/roocs/daops/releases/tag/v{daops_version}",
            },
        )
        # workflow
        if workflow is True:
            self.workflow = self.doc.entity(
                ":workflow", {"prov:type": "provone:Workflow"}
            )
            orchestrate = self.doc.activity(
                ":orchestrate",
                other_attributes={
                    "prov:startedAtTime": "2020-11-26T09:15:00",
                    "prov:endedAtTime": "2020-11-26T09:30:00",
                },
            )
            self.doc.wasAssociatedWith(
                orchestrate, agent=self.sw_housemartin, plan=self.workflow
            )

    def add_operator(self, operator, parameters, collection, output):
        op = self.doc.activity(
            f":{operator}",
            other_attributes={
                ":time": parameters.get("time"),
                ":apply_fixes": parameters.get("apply_fixes"),
            },
        )
        # input data
        ds_in = os.path.basename(collection[0])
        # ds_in_attrs = {
        #     'prov:type': 'provone:Data',
        #     'prov:value': f'{ds_in}',
        # }
        op_in = self.doc.entity(f":{ds_in}")
        # operator started by daops
        if self.workflow:
            self.doc.wasAssociatedWith(op, agent=self.sw_daops, plan=self.workflow)
        else:
            self.doc.start(op, starter=self.sw_daops, trigger=self.sw_housemartin)
        # Generated output file

        ds_out = os.path.basename(output[0])
        # ds_out_attrs = {
        #     'prov:type': 'provone:Data',
        #     'prov:value': f'{ds_out}',
        # }
        op_out = self.doc.entity(f":{ds_out}")
        self.doc.wasDerivedFrom(op_out, op_in, activity=op)

    def write_json(self):
        outfile = os.path.join(self.output_dir, "provenance.json")
        self.doc.serialize(outfile, format="json")
        return outfile

    def write_png(self):
        outfile = os.path.join(self.output_dir, "provenance.png")
        figure = prov_to_dot(self.doc)
        figure.write_png(outfile)
        return outfile
Ejemplo n.º 33
0
class LogProv():
    def __init__(self, log_dic):
        self._prov_doc = ProvDocument()
        vre_namespace = self._prov_doc.add_namespace(
            'vre', 'https://www.vre4eic.eu/log#')
        prov_namespace = self._prov_doc.add_namespace(
            'prov', 'http://www.w3.org/ns/prov#')
        if ('request_url_username' in log_dic
                and log_dic['request_url_username']):
            remote_host = self._prov_doc.agent(
                vre_namespace['ag1'], {
                    prov_namespace['type']: PROV["SoftwareAgent"],
                    vre_namespace['hasIP']: log_dic['remote_host'],
                    vre_namespace['hasUsername']:
                    log_dic['request_url_username']
                })
        else:
            remote_host = self._prov_doc.agent(
                vre_namespace['ag1'], {
                    prov_namespace['type']: PROV["SoftwareAgent"],
                    vre_namespace['hasIP']: log_dic['remote_host']
                })

        if ('request_url_hostname' in log_dic
                and log_dic['request_url_hostname']):
            request_hostname = self._prov_doc.agent(
                vre_namespace['ag2'], {
                    prov_namespace['type']: PROV["SoftwareAgent"],
                    vre_namespace['hasIP']: log_dic['remote_host']
                })

        request_entity = self._prov_doc.entity(
            vre_namespace['en1'], {
                vre_namespace['status']: log_dic['status'],
                vre_namespace['responseBytes']: log_dic['response_bytes_clf']
            })

        received_activity = self._prov_doc.activity(
            vre_namespace['ac1'],
            other_attributes={
                vre_namespace['requestURL']: log_dic['request_url'],
                vre_namespace['requestMethod']: log_dic['request_method'],
                vre_namespace['httpVersion']: log_dic['request_http_ver']
            })
        self._prov_doc.generation(remote_host,
                                  activity=received_activity,
                                  time=log_dic['time_received_tz_isoformat'])
        self._prov_doc.wasAttributedTo(request_entity, received_activity)
        self._prov_doc.wasAssociatedWith(received_activity, remote_host)

    @property
    def prov_doc(self):
        return self._prov_doc

    @prov_doc.setter
    def prov_doc(self, value):
        self._prov_doc = value

    @prov_doc.deleter
    def prov_doc(self):
        del self._prov_doc
Ejemplo n.º 34
0
def w3c_publication_1():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication1.prov-asn
    # ===========================================================================
    # bundle
    #
    # prefix ex  <http://example.org/>
    #
    # prefix w3      <http://www.w3.org/>
    # prefix tr      <http://www.w3.org/TR/2011/>
    # prefix process <http://www.w3.org/2005/10/Process-20051014/tr.html#>
    # prefix email   <https://lists.w3.org/Archives/Member/w3c-archive/>
    # prefix chairs  <https://lists.w3.org/Archives/Member/chairs/>
    # prefix trans   <http://www.w3.org/2005/08/01-transitions.html#>
    # prefix rec54   <http://www.w3.org/2001/02pd/rec54#>
    #
    #
    #  entity(tr:WD-prov-dm-20111018, [ prov:type='rec54:WD' ])
    #  entity(tr:WD-prov-dm-20111215, [ prov:type='rec54:WD' ])
    #  entity(process:rec-advance,    [ prov:type='prov:Plan' ])
    #
    #
    #  entity(chairs:2011OctDec/0004, [ prov:type='trans:transreq' ])
    #  entity(email:2011Oct/0141,     [ prov:type='trans:pubreq' ])
    #  entity(email:2011Dec/0111,     [ prov:type='trans:pubreq' ])
    #
    #
    #  wasDerivedFrom(tr:WD-prov-dm-20111215, tr:WD-prov-dm-20111018)
    #
    #
    #  activity(ex:act1,-,-,[prov:type="publish"])
    #  activity(ex:act2,-,-,[prov:type="publish"])
    #
    #  wasGeneratedBy(tr:WD-prov-dm-20111018, ex:act1, -)
    #  wasGeneratedBy(tr:WD-prov-dm-20111215, ex:act2, -)
    #
    #  used(ex:act1, chairs:2011OctDec/0004, -)
    #  used(ex:act1, email:2011Oct/0141, -)
    #  used(ex:act2, email:2011Dec/0111, -)
    #
    #  agent(w3:Consortium, [ prov:type='prov:Organization' ])
    #
    #  wasAssociatedWith(ex:act1, w3:Consortium, process:rec-advance)
    #  wasAssociatedWith(ex:act2, w3:Consortium, process:rec-advance)
    #
    # endBundle
    # ===========================================================================

    g = ProvDocument()
    g.add_namespace("ex", "http://example.org/")
    g.add_namespace("w3", "http://www.w3.org/")
    g.add_namespace("tr", "http://www.w3.org/TR/2011/")
    g.add_namespace("process",
                    "http://www.w3.org/2005/10/Process-20051014/tr.html#")
    g.add_namespace("email",
                    "https://lists.w3.org/Archives/Member/w3c-archive/")
    g.add_namespace("chairs", "https://lists.w3.org/Archives/Member/chairs/")
    g.add_namespace("trans", "http://www.w3.org/2005/08/01-transitions.html#")
    g.add_namespace("rec54", "http://www.w3.org/2001/02pd/rec54#")

    g.entity("tr:WD-prov-dm-20111018", {"prov:type": "rec54:WD"})
    g.entity("tr:WD-prov-dm-20111215", {"prov:type": "rec54:WD"})
    g.entity("process:rec-advance", {"prov:type": "prov:Plan"})

    g.entity("chairs:2011OctDec/0004", {"prov:type": "trans:transreq"})
    g.entity("email:2011Oct/0141", {"prov:type": "trans:pubreq"})
    g.entity("email:2011Dec/0111", {"prov:type": "trans:pubreq"})

    g.wasDerivedFrom("tr:WD-prov-dm-20111215", "tr:WD-prov-dm-20111018")

    g.activity("ex:act1", other_attributes={"prov:type": "publish"})
    g.activity("ex:act2", other_attributes={"prov:type": "publish"})

    g.wasGeneratedBy("tr:WD-prov-dm-20111018", "ex:act1")
    g.wasGeneratedBy("tr:WD-prov-dm-20111215", "ex:act2")

    g.used("ex:act1", "chairs:2011OctDec/0004")
    g.used("ex:act1", "email:2011Oct/0141")
    g.used("ex:act2", "email:2011Dec/0111")

    g.agent("w3:Consortium", other_attributes={"prov:type": "Organization"})

    g.wasAssociatedWith("ex:act1", "w3:Consortium", "process:rec-advance")
    g.wasAssociatedWith("ex:act2", "w3:Consortium", "process:rec-advance")

    return g
def example():

    g = ProvDocument()
    # Local namespace
    # Doesnt exist yet so we are creating it
    ap = Namespace('aip', 'https://araport.org/provenance/')
    # Dublin Core
    g.add_namespace("dcterms", "http://purl.org/dc/terms/")
    # FOAF
    g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/")

    # Add sponsors and contributors as Agents
    # ap['matthew_vaughn']
    # aip:matthew_vaughn
    # https://araport.org/provenance/:matthew_vaughn
    # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way
    me = g.agent(
        ap['matthew_vaughn'], {
            'prov:type': PROV["Person"],
            'foaf:givenName': "Matthew Vaughn",
            'foaf:mbox': "<mailto:[email protected]>"
        })
    # Hard coded for now
    walter = g.agent(
        ap['walter_moreira'], {
            'prov:type': PROV["Person"],
            'foaf:givenName': "Walter Moreira",
            'foaf:mbox': "<mailto:[email protected]>"
        })
    utexas = g.agent(
        ap['university_of_texas'], {
            'prov:type': PROV["Organization"],
            'foaf:givenName': "University of Texas at Austin"
        })

    # Set delegation to our host University
    # We may have trouble doing this for other users since we don't always capture their host instituion
    g.actedOnBehalfOf(walter, utexas)
    g.actedOnBehalfOf(me, utexas)

    # Include the ADAMA platform as an Agent and set attribution
    # dcterms:title and dcterms:description are hardcoded
    # dcterms:language is hard-coded
    # dcterms:source is the URI of the public git source repository for ADAMA
    # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated
    adama_platform = g.agent(
        ap['adama_platform'], {
            'dcterms:title': "ADAMA",
            'dcterms:description': "Araport Data and Microservices API",
            'dcterms:language': "en-US",
            'dcterms:identifier': "https://api.araport.org/community/v0.3/",
            'dcterms:updated': "2015-04-17T09:44:56"
        })
    g.wasGeneratedBy(adama_platform, walter)

    # Include the ADAMA microservice as an Agent and set attribution+delegation
    # dcterms:title and dcterms:description are inherited from the service's metadata
    # dcterms:language is hard-coded
    # dcterms:identifier is the deployment URI for the service
    # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy
    #
    # The name for each microservice should be unique. We've decided to
    # use the combination of namespace, service name, and version
    microservice_name = 'mwvaughn/bar_annotation_v1.0.0'
    adama_microservice = g.agent(
        ap[microservice_name], {
            'dcterms:title':
            "BAR Annotation Service",
            'dcterms:description':
            "Returns annotation from locus ID",
            'dcterms:language':
            "en-US",
            'dcterms:identifier':
            "https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0",
            'dcterms:source':
            "https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample"
        })

    # the microservice was generated by me on date X (don't use now, use when the service was updated)
    g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now())
    # The microservice used the platform now
    g.used(adama_microservice, adama_platform, datetime.datetime.now())

    # Sources
    #
    # Define BAR
    # Agents
    nick = g.agent(
        ap['nicholas_provart'], {
            'prov:type': PROV["Person"],
            'foaf:givenName': "Nicholas Provart",
            'foaf:mbox': "*****@*****.**"
        })
    utoronto = g.agent(
        ap['university_of_toronto'], {
            'prov:type': PROV["Organization"],
            'foaf:givenName': "University of Toronto",
            'dcterms:identifier': "http://www.utoronto.ca/"
        })
    g.actedOnBehalfOf(nick, utoronto)

    # Entity
    # All fields derived from Sources.yml
    # dcterms:title and dcterms:description come straight from the YAML
    # dcterms:identifier - URI pointing to the source's canonical URI representation
    # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
    # optional - dcterms:updated: date the source was published or last updated
    # optional - dcterms:license: Simple string or URI to license. Validate URI if provided?
    datasource1 = g.entity(
        ap['datasource1'], {
            'dcterms:title': "BAR Arabidopsis AGI -> Annotation",
            'dcterms:description': "Most recent annotation for given AGI",
            'dcterms:language': "en-US",
            'dcterms:identifier':
            "http://bar.utoronto.ca/webservices/agiToAnnot.php",
            'dcterms:updated': "2015-04-17T09:44:56",
            'dcterms:license': "Creative Commons 3.0"
        })
    # Set up attribution to Nick
    g.wasAttributedTo(datasource1, nick)

    # Define TAIR
    # Agents
    # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
    eva = g.agent(ap['eva_huala'], {
        'prov:type': PROV["Person"],
        'foaf:givenName': "Eva Huala"
    })
    phoenix = g.agent(
        ap['phoenix_bioinformatics'], {
            'prov:type': PROV["Organization"],
            'foaf:givenName': "Phoenix Bioinformatics"
        })
    g.actedOnBehalfOf(eva, phoenix)

    # Entity
    # All fields derived from Sources.yml
    # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it?
    datasource2 = g.entity(
        ap['datasource2'], {
            'dcterms:title':
            "TAIR",
            'dcterms:description':
            "The Arabidopsis Information Resource",
            'dcterms:language':
            "en-US",
            'dcterms:identifier':
            "https://www.arabidopsis.org/",
            'dcterms:citation':
            "The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090"
        })
    g.wasAttributedTo(datasource2, eva)

    # In Sources.yml, these two sources are nested. Define that relationship here
    # There are other types of relationships but we will just use derived from for simplicity in this prototype
    g.wasDerivedFrom(ap['datasource1'], ap['datasource2'])

    # Depending on which ADAMA microservice type we are using, define an activity
    # Eventually, break these into more atomic actions in a chain
    action1 = g.activity(ap['do_query'], datetime.datetime.now())
    # action1 = g.activity(ap['do_map'], datetime.datetime.now())
    # action1 = g.activity(ap['do_generic'], datetime.datetime.now())
    # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now())
    # Future... Support for ADAMA-native microservices
    # action1 = g.activity(ap['generate'], datetime.datetime.now())

    # Define current ADAMA response as an Entity
    # This is what's being returned to the user and is thus the subject of the PROV record
    # May be able to add more attributes to it but this is the minimum
    response = g.entity(ap['adama_response'])

    # Response is generated by the process_query action
    # Time-stamp it!
    g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now())
    # The process_query used the microservice
    g.used(ap['do_query'], adama_microservice, datetime.datetime.now())
    # The microservice used datasource1
    g.used(adama_microservice, datasource1, datetime.datetime.now())

    # Print prov_n
    print(g.get_provn())
    # Print prov-json
    print(g.serialize())
    # Write out as a pretty picture
    graph = prov.dot.prov_to_dot(g)
    graph.write_png('Sources.png')
Ejemplo n.º 36
0
def primer_example():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/prov-n/src/test/resources/prov/primer.pn
    # ===========================================================================
    # document
    g = ProvDocument()

    #    prefix ex <http://example/>
    #    prefix dcterms <http://purl.org/dc/terms/>
    #    prefix foaf <http://xmlns.com/foaf/0.1/>
    ex = Namespace(
        "ex", "http://example/"
    )  # namespaces do not need to be explicitly added to a document
    g.add_namespace("dcterms", "http://purl.org/dc/terms/")
    g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/")

    #    entity(ex:article, [dcterms:title="Crime rises in cities"])
    # first time the ex namespace was used, it is added to the document automatically
    g.entity(ex["article"], {"dcterms:title": "Crime rises in cities"})
    #    entity(ex:articleV1)
    g.entity(ex["articleV1"])
    #    entity(ex:articleV2)
    g.entity(ex["articleV2"])
    #    entity(ex:dataSet1)
    g.entity(ex["dataSet1"])
    #    entity(ex:dataSet2)
    g.entity(ex["dataSet2"])
    #    entity(ex:regionList)
    g.entity(ex["regionList"])
    #    entity(ex:composition)
    g.entity(ex["composition"])
    #    entity(ex:chart1)
    g.entity(ex["chart1"])
    #    entity(ex:chart2)
    g.entity(ex["chart2"])
    #    entity(ex:blogEntry)
    g.entity(ex["blogEntry"])

    #    activity(ex:compile)
    g.activity(
        "ex:compile")  # since ex is registered, it can be used like this
    #    activity(ex:compile2)
    g.activity("ex:compile2")
    #    activity(ex:compose)
    g.activity("ex:compose")
    #    activity(ex:correct, 2012-03-31T09:21:00, 2012-04-01T15:21:00)
    g.activity("ex:correct", "2012-03-31T09:21:00",
               "2012-04-01T15:21:00")  # date time can be provided as strings
    #    activity(ex:illustrate)
    g.activity("ex:illustrate")

    #    used(ex:compose, ex:dataSet1, -,   [ prov:role = "ex:dataToCompose"])
    g.used("ex:compose",
           "ex:dataSet1",
           other_attributes={"prov:role": "ex:dataToCompose"})
    #    used(ex:compose, ex:regionList, -, [ prov:role = "ex:regionsToAggregateBy"])
    g.used(
        "ex:compose",
        "ex:regionList",
        other_attributes={"prov:role": "ex:regionsToAggregateBy"},
    )
    #    wasGeneratedBy(ex:composition, ex:compose, -)
    g.wasGeneratedBy("ex:composition", "ex:compose")

    #    used(ex:illustrate, ex:composition, -)
    g.used("ex:illustrate", "ex:composition")
    #    wasGeneratedBy(ex:chart1, ex:illustrate, -)
    g.wasGeneratedBy("ex:chart1", "ex:illustrate")

    #    wasGeneratedBy(ex:chart1, ex:compile,  2012-03-02T10:30:00)
    g.wasGeneratedBy("ex:chart1", "ex:compile", "2012-03-02T10:30:00")
    #    wasGeneratedBy(ex:chart2, ex:compile2, 2012-04-01T15:21:00)
    #
    #
    #    agent(ex:derek, [ prov:type="prov:Person", foaf:givenName = "Derek",
    #           foaf:mbox= "<mailto:[email protected]>"])
    g.agent(
        "ex:derek",
        {
            "prov:type": PROV["Person"],
            "foaf:givenName": "Derek",
            "foaf:mbox": "<mailto:[email protected]>",
        },
    )
    #    wasAssociatedWith(ex:compose, ex:derek, -)
    g.wasAssociatedWith("ex:compose", "ex:derek")
    #    wasAssociatedWith(ex:illustrate, ex:derek, -)
    g.wasAssociatedWith("ex:illustrate", "ex:derek")
    #
    #    agent(ex:chartgen, [ prov:type="prov:Organization",
    #           foaf:name = "Chart Generators Inc"])
    g.agent(
        "ex:chartgen",
        {
            "prov:type": PROV["Organization"],
            "foaf:name": "Chart Generators Inc"
        },
    )
    #    actedOnBehalfOf(ex:derek, ex:chartgen, ex:compose)
    g.actedOnBehalfOf("ex:derek", "ex:chartgen", "ex:compose")
    #    wasAttributedTo(ex:chart1, ex:derek)
    g.wasAttributedTo("ex:chart1", "ex:derek")

    #    wasGeneratedBy(ex:dataSet2, ex:correct, -)
    g.wasGeneratedBy("ex:dataSet2", "ex:correct")
    #    used(ex:correct, ex:dataSet1, -)
    g.used("ex:correct", "ex:dataSet1")
    #    wasDerivedFrom(ex:dataSet2, ex:dataSet1, [prov:type='prov:Revision'])
    g.wasDerivedFrom("ex:dataSet2",
                     "ex:dataSet1",
                     other_attributes={"prov:type": PROV["Revision"]})
    #    wasDerivedFrom(ex:chart2, ex:dataSet2)
    g.wasDerivedFrom("ex:chart2", "ex:dataSet2")

    #    wasDerivedFrom(ex:blogEntry, ex:article, [prov:type='prov:Quotation'])
    g.wasDerivedFrom("ex:blogEntry",
                     "ex:article",
                     other_attributes={"prov:type": PROV["Quotation"]})
    #    specializationOf(ex:articleV1, ex:article)
    g.specializationOf("ex:articleV1", "ex:article")
    #    wasDerivedFrom(ex:articleV1, ex:dataSet1)
    g.wasDerivedFrom("ex:articleV1", "ex:dataSet1")

    #    specializationOf(ex:articleV2, ex:article)
    g.specializationOf("ex:articleV2", "ex:article")
    #    wasDerivedFrom(ex:articleV2, ex:dataSet2)
    g.wasDerivedFrom("ex:articleV2", "ex:dataSet2")

    #    alternateOf(ex:articleV2, ex:articleV1)
    g.alternateOf("ex:articleV2", "ex:articleV1")

    # endDocument
    return g
Ejemplo n.º 37
0
def primer_example_alternate():
    g = ProvDocument(
        namespaces={
            'ex': 'http://example/',
            'dcterms': 'http://purl.org/dc/terms/',
            'foaf': 'http://xmlns.com/foaf/0.1/'
        })

    article = g.entity('ex:article',
                       {'dcterms:title': "Crime rises in cities"})
    articleV1 = g.entity('ex:articleV1')
    articleV2 = g.entity('ex:articleV2')
    dataSet1 = g.entity('ex:dataSet1')
    dataSet2 = g.entity('ex:dataSet2')
    regionList = g.entity('ex:regionList')
    composition = g.entity('ex:composition')
    chart1 = g.entity('ex:chart1')
    chart2 = g.entity('ex:chart2')
    blogEntry = g.entity('ex:blogEntry')

    compile = g.activity('ex:compile')
    compile2 = g.activity('ex:compile2')
    compose = g.activity('ex:compose')
    correct = g.activity('ex:correct', '2012-03-31T09:21:00',
                         '2012-04-01T15:21:00')
    illustrate = g.activity('ex:illustrate')

    compose.used(dataSet1, attributes={'prov:role': "ex:dataToCompose"})
    compose.used(regionList,
                 attributes={'prov:role': "ex:regionsToAggregateBy"})
    composition.wasGeneratedBy(compose)

    illustrate.used(composition)
    chart1.wasGeneratedBy(illustrate)

    chart1.wasGeneratedBy(compile, '2012-03-02T10:30:00')

    derek = g.agent(
        'ex:derek', {
            'prov:type': PROV['Person'],
            'foaf:givenName': "Derek",
            'foaf:mbox': "<mailto:[email protected]>"
        })
    compose.wasAssociatedWith(derek)
    illustrate.wasAssociatedWith(derek)

    chartgen = g.agent('ex:chartgen', {
        'prov:type': PROV["Organization"],
        'foaf:name': "Chart Generators Inc"
    })
    derek.actedOnBehalfOf(chartgen, compose)
    chart1.wasAttributedTo(derek)

    dataSet2.wasGeneratedBy(correct)
    correct.used(dataSet1)
    dataSet2.wasDerivedFrom(dataSet1,
                            attributes={'prov:type': PROV['Revision']})
    chart2.wasDerivedFrom(dataSet2)

    blogEntry.wasDerivedFrom(article,
                             attributes={'prov:type': PROV['Quotation']})
    articleV1.specializationOf(article)
    articleV1.wasDerivedFrom(dataSet1)

    articleV2.specializationOf(article)
    articleV2.wasDerivedFrom(dataSet2)

    articleV2.alternateOf(articleV1)

    return g
Ejemplo n.º 38
0
class NIDMExporter():
    """
    Generic class to parse a result directory to extract the pieces of
    information to be stored in NIDM-Results and to generate a NIDM-Results
    export.
    """
    def __init__(self, version, out_dir, zipped=True):
        out_dirname = os.path.basename(out_dir)
        out_path = os.path.dirname(out_dir)

        # Create output path from output name
        self.zipped = zipped
        if not self.zipped:
            out_dirname = out_dirname + ".nidm"
        else:
            out_dirname = out_dirname + ".nidm.zip"
        out_dir = os.path.join(out_path, out_dirname)

        # Quit if output path already exists and user doesn't want to overwrite
        # it
        if os.path.exists(out_dir):
            msg = out_dir + " already exists, overwrite?"
            if not input("%s (y/N) " % msg).lower() == 'y':
                quit("Bye.")
            if os.path.isdir(out_dir):
                shutil.rmtree(out_dir)
            else:
                os.remove(out_dir)
        self.out_dir = out_dir

        if version == "dev":
            self.version = {
                'major': 10000,
                'minor': 0,
                'revision': 0,
                'num': version
            }
        else:
            major, minor, revision = version.split(".")
            if "-rc" in revision:
                revision, rc = revision.split("-rc")
            else:
                rc = -1
            self.version = {
                'major': int(major),
                'minor': int(minor),
                'revision': int(revision),
                'rc': int(rc),
                'num': version
            }

        # Initialise prov document
        self.doc = ProvDocument()
        self._add_namespaces()

        # A temp directory that will contain the exported data
        self.export_dir = tempfile.mkdtemp(prefix="nidm-", dir=out_path)

        self.prepend_path = ''

    def parse(self):
        """
        Parse a result directory to extract the pieces information to be
        stored in NIDM-Results.
        """

        try:
            # Methods: find_software, find_model_fitting, find_contrasts and
            # find_inferences should be defined in the children classes and
            # return a list of NIDM Objects as specified in the objects module

            # Object of type Software describing the neuroimaging software
            # package used for the analysis
            self.software = self._find_software()

            # List of objects of type ModelFitting describing the
            # model fitting step in NIDM-Results (main activity: Model
            # Parameters Estimation)
            self.model_fittings = self._find_model_fitting()

            # Dictionary of (key, value) pairs where where key is a tuple
            # containing the identifier of a ModelParametersEstimation object
            # and a tuple of identifiers of ParameterEstimateMap objects and
            # value is an object of type Contrast describing the contrast
            # estimation step in NIDM-Results (main activity: Contrast
            # Estimation)
            self.contrasts = self._find_contrasts()

            # Inference activity and entities
            # Dictionary of (key, value) pairs where key is the identifier of a
            # ContrastEstimation object and value is an object of type
            # Inference describing the inference step in NIDM-Results (main
            # activity: Inference)
            self.inferences = self._find_inferences()
        except Exception:
            self.cleanup()
            raise

    def cleanup(self):
        if os.path.isdir(self.export_dir):
            shutil.rmtree(self.export_dir)

    def add_object(self, nidm_object, export_file=True):
        """
        Add a NIDMObject to a NIDM-Results export.
        """
        if not export_file:
            export_dir = None
        else:
            export_dir = self.export_dir

        if not isinstance(nidm_object, NIDMFile):
            nidm_object.export(self.version, export_dir)
        else:
            nidm_object.export(self.version, export_dir, self.prepend_path)
        # ProvDocument: add object to the bundle
        if nidm_object.prov_type == PROV['Activity']:
            self.bundle.activity(nidm_object.id,
                                 other_attributes=nidm_object.attributes)
        elif nidm_object.prov_type == PROV['Entity']:
            self.bundle.entity(nidm_object.id,
                               other_attributes=nidm_object.attributes)
        elif nidm_object.prov_type == PROV['Agent']:
            self.bundle.agent(nidm_object.id,
                              other_attributes=nidm_object.attributes)
        # self.bundle.update(nidm_object.p)

    def export(self):
        """
        Generate a NIDM-Results export.
        """
        try:
            if not os.path.isdir(self.export_dir):
                os.mkdir(self.export_dir)

            # Initialise main bundle
            self._create_bundle(self.version)

            self.add_object(self.software)

            # Add model fitting steps
            if not isinstance(self.model_fittings, list):
                self.model_fittings = list(self.model_fittings.values())

            for model_fitting in self.model_fittings:
                # Design Matrix
                # model_fitting.activity.used(model_fitting.design_matrix)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.design_matrix.id)
                self.add_object(model_fitting.design_matrix)
                # *** Export visualisation of the design matrix
                self.add_object(model_fitting.design_matrix.image)

                if model_fitting.design_matrix.image.file is not None:
                    self.add_object(model_fitting.design_matrix.image.file)

                if model_fitting.design_matrix.hrf_models is not None:
                    # drift model
                    self.add_object(model_fitting.design_matrix.drift_model)

                if self.version['major'] > 1 or \
                        (self.version['major'] == 1 and
                         self.version['minor'] >= 3):
                    # Machine
                    # model_fitting.data.wasAttributedTo(model_fitting.machine)
                    self.bundle.wasAttributedTo(model_fitting.data.id,
                                                model_fitting.machine.id)
                    self.add_object(model_fitting.machine)

                    # Imaged subject or group(s)
                    for sub in model_fitting.subjects:
                        self.add_object(sub)
                        # model_fitting.data.wasAttributedTo(sub)
                        self.bundle.wasAttributedTo(model_fitting.data.id,
                                                    sub.id)

                # Data
                # model_fitting.activity.used(model_fitting.data)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.data.id)
                self.add_object(model_fitting.data)

                # Error Model
                # model_fitting.activity.used(model_fitting.error_model)
                self.bundle.used(model_fitting.activity.id,
                                 model_fitting.error_model.id)
                self.add_object(model_fitting.error_model)

                # Parameter Estimate Maps
                for param_estimate in model_fitting.param_estimates:
                    # param_estimate.wasGeneratedBy(model_fitting.activity)
                    self.bundle.wasGeneratedBy(param_estimate.id,
                                               model_fitting.activity.id)
                    self.add_object(param_estimate)
                    self.add_object(param_estimate.coord_space)
                    self.add_object(param_estimate.file)

                    if param_estimate.derfrom is not None:
                        self.bundle.wasDerivedFrom(param_estimate.id,
                                                   param_estimate.derfrom.id)
                        self.add_object(param_estimate.derfrom)
                        self.add_object(param_estimate.derfrom.file,
                                        export_file=False)

                # Residual Mean Squares Map
                # model_fitting.rms_map.wasGeneratedBy(model_fitting.activity)
                self.add_object(model_fitting.rms_map)
                self.bundle.wasGeneratedBy(model_fitting.rms_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.rms_map.coord_space)
                self.add_object(model_fitting.rms_map.file)
                if model_fitting.rms_map.derfrom is not None:
                    self.bundle.wasDerivedFrom(
                        model_fitting.rms_map.id,
                        model_fitting.rms_map.derfrom.id)
                    self.add_object(model_fitting.rms_map.derfrom)
                    self.add_object(model_fitting.rms_map.derfrom.file,
                                    export_file=False)

                # Resels per Voxel Map
                if model_fitting.rpv_map is not None:
                    self.add_object(model_fitting.rpv_map)
                    self.bundle.wasGeneratedBy(model_fitting.rpv_map.id,
                                               model_fitting.activity.id)
                    self.add_object(model_fitting.rpv_map.coord_space)
                    self.add_object(model_fitting.rpv_map.file)
                    if model_fitting.rpv_map.inf_id is not None:
                        self.bundle.used(model_fitting.rpv_map.inf_id,
                                         model_fitting.rpv_map.id)
                    if model_fitting.rpv_map.derfrom is not None:
                        self.bundle.wasDerivedFrom(
                            model_fitting.rpv_map.id,
                            model_fitting.rpv_map.derfrom.id)
                        self.add_object(model_fitting.rpv_map.derfrom)
                        self.add_object(model_fitting.rpv_map.derfrom.file,
                                        export_file=False)

                # Mask
                # model_fitting.mask_map.wasGeneratedBy(model_fitting.activity)
                self.bundle.wasGeneratedBy(model_fitting.mask_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.mask_map)
                if model_fitting.mask_map.derfrom is not None:
                    self.bundle.wasDerivedFrom(
                        model_fitting.mask_map.id,
                        model_fitting.mask_map.derfrom.id)
                    self.add_object(model_fitting.mask_map.derfrom)
                    self.add_object(model_fitting.mask_map.derfrom.file,
                                    export_file=False)

                # Create coordinate space export
                self.add_object(model_fitting.mask_map.coord_space)
                # Create "Mask map" entity
                self.add_object(model_fitting.mask_map.file)

                # Grand Mean map
                # model_fitting.grand_mean_map.wasGeneratedBy(model_fitting.activity)
                self.bundle.wasGeneratedBy(model_fitting.grand_mean_map.id,
                                           model_fitting.activity.id)
                self.add_object(model_fitting.grand_mean_map)
                # Coordinate space entity
                self.add_object(model_fitting.grand_mean_map.coord_space)
                # Grand Mean Map entity
                self.add_object(model_fitting.grand_mean_map.file)

                # Model Parameters Estimation activity
                self.add_object(model_fitting.activity)
                self.bundle.wasAssociatedWith(model_fitting.activity.id,
                                              self.software.id)
                # model_fitting.activity.wasAssociatedWith(self.software)
                # self.add_object(model_fitting)

            # Add contrast estimation steps
            analysis_masks = dict()
            for (model_fitting_id,
                 pe_ids), contrasts in list(self.contrasts.items()):
                for contrast in contrasts:
                    model_fitting = self._get_model_fitting(model_fitting_id)
                    # for contrast in contrasts:
                    # contrast.estimation.used(model_fitting.rms_map)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.rms_map.id)
                    # contrast.estimation.used(model_fitting.mask_map)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.mask_map.id)
                    analysis_masks[contrast.estimation.id] = \
                        model_fitting.mask_map.id
                    self.bundle.used(contrast.estimation.id,
                                     contrast.weights.id)
                    self.bundle.used(contrast.estimation.id,
                                     model_fitting.design_matrix.id)
                    # contrast.estimation.wasAssociatedWith(self.software)
                    self.bundle.wasAssociatedWith(contrast.estimation.id,
                                                  self.software.id)

                    for pe_id in pe_ids:
                        # contrast.estimation.used(pe_id)
                        self.bundle.used(contrast.estimation.id, pe_id)

                    # Create estimation activity
                    self.add_object(contrast.estimation)

                    # Create contrast weights
                    self.add_object(contrast.weights)

                    if contrast.contrast_map is not None:
                        # Create contrast Map
                        # contrast.contrast_map.wasGeneratedBy(contrast.estimation)
                        self.bundle.wasGeneratedBy(contrast.contrast_map.id,
                                                   contrast.estimation.id)
                        self.add_object(contrast.contrast_map)
                        self.add_object(contrast.contrast_map.coord_space)
                        # Copy contrast map in export directory
                        self.add_object(contrast.contrast_map.file)

                        if contrast.contrast_map.derfrom is not None:
                            self.bundle.wasDerivedFrom(
                                contrast.contrast_map.id,
                                contrast.contrast_map.derfrom.id)
                            self.add_object(contrast.contrast_map.derfrom)
                            self.add_object(contrast.contrast_map.derfrom.file,
                                            export_file=False)

                    # Create Std Err. Map (T-tests) or Explained Mean Sq. Map
                    # (F-tests)
                    # contrast.stderr_or_expl_mean_sq_map.wasGeneratedBy
                    # (contrast.estimation)
                    stderr_explmeansq_map = (
                        contrast.stderr_or_expl_mean_sq_map)
                    self.bundle.wasGeneratedBy(stderr_explmeansq_map.id,
                                               contrast.estimation.id)
                    self.add_object(stderr_explmeansq_map)
                    self.add_object(stderr_explmeansq_map.coord_space)
                    if isinstance(stderr_explmeansq_map,
                                  ContrastStdErrMap) and \
                            stderr_explmeansq_map.contrast_var:
                        self.add_object(stderr_explmeansq_map.contrast_var)
                        if stderr_explmeansq_map.var_coord_space:
                            self.add_object(
                                stderr_explmeansq_map.var_coord_space)
                        if stderr_explmeansq_map.contrast_var.coord_space:
                            self.add_object(
                                stderr_explmeansq_map.contrast_var.coord_space)
                        self.add_object(
                            stderr_explmeansq_map.contrast_var.file,
                            export_file=False)
                        self.bundle.wasDerivedFrom(
                            stderr_explmeansq_map.id,
                            stderr_explmeansq_map.contrast_var.id)
                    self.add_object(stderr_explmeansq_map.file)

                    # Create Statistic Map
                    # contrast.stat_map.wasGeneratedBy(contrast.estimation)
                    self.bundle.wasGeneratedBy(contrast.stat_map.id,
                                               contrast.estimation.id)
                    self.add_object(contrast.stat_map)
                    self.add_object(contrast.stat_map.coord_space)
                    # Copy Statistical map in export directory
                    self.add_object(contrast.stat_map.file)

                    if contrast.stat_map.derfrom is not None:
                        self.bundle.wasDerivedFrom(
                            contrast.stat_map.id, contrast.stat_map.derfrom.id)
                        self.add_object(contrast.stat_map.derfrom)
                        self.add_object(contrast.stat_map.derfrom.file,
                                        export_file=False)

                    # Create Z Statistic Map
                    if contrast.z_stat_map:
                        # contrast.z_stat_map.wasGeneratedBy(contrast.estimation)
                        self.bundle.wasGeneratedBy(contrast.z_stat_map.id,
                                                   contrast.estimation.id)
                        self.add_object(contrast.z_stat_map)
                        self.add_object(contrast.z_stat_map.coord_space)
                        # Copy Statistical map in export directory
                        self.add_object(contrast.z_stat_map.file)

                    # self.add_object(contrast)

            # Add inference steps
            for contrast_id, inferences in list(self.inferences.items()):
                contrast = self._get_contrast(contrast_id)

                for inference in inferences:
                    if contrast.z_stat_map:
                        used_id = contrast.z_stat_map.id
                    else:
                        used_id = contrast.stat_map.id
                    # inference.inference_act.used(used_id)
                    self.bundle.used(inference.inference_act.id, used_id)
                    # inference.inference_act.wasAssociatedWith(self.software)
                    self.bundle.wasAssociatedWith(inference.inference_act.id,
                                                  self.software.id)

                    # self.add_object(inference)
                    # Excursion set
                    # inference.excursion_set.wasGeneratedBy(inference.inference_act)
                    self.bundle.wasGeneratedBy(inference.excursion_set.id,
                                               inference.inference_act.id)
                    self.add_object(inference.excursion_set)
                    self.add_object(inference.excursion_set.coord_space)
                    if inference.excursion_set.visu is not None:
                        self.add_object(inference.excursion_set.visu)
                        if inference.excursion_set.visu.file is not None:
                            self.add_object(inference.excursion_set.visu.file)
                    # Copy "Excursion set map" file in export directory
                    self.add_object(inference.excursion_set.file)
                    if inference.excursion_set.clust_map is not None:
                        self.add_object(inference.excursion_set.clust_map)
                        self.add_object(inference.excursion_set.clust_map.file)
                        self.add_object(
                            inference.excursion_set.clust_map.coord_space)

                    if inference.excursion_set.mip is not None:
                        self.add_object(inference.excursion_set.mip)
                        self.add_object(inference.excursion_set.mip.file)

                    # Height threshold
                    if inference.height_thresh.equiv_thresh is not None:
                        for equiv in inference.height_thresh.equiv_thresh:
                            self.add_object(equiv)
                    self.add_object(inference.height_thresh)

                    # Extent threshold
                    if inference.extent_thresh.equiv_thresh is not None:
                        for equiv in inference.extent_thresh.equiv_thresh:
                            self.add_object(equiv)
                    self.add_object(inference.extent_thresh)

                    # Display Mask (potentially more than 1)
                    if inference.disp_mask:
                        for mask in inference.disp_mask:
                            # inference.inference_act.used(mask)
                            self.bundle.used(inference.inference_act.id,
                                             mask.id)
                            self.add_object(mask)
                            # Create coordinate space entity
                            self.add_object(mask.coord_space)
                            # Create "Display Mask Map" entity
                            self.add_object(mask.file)

                            if mask.derfrom is not None:
                                self.bundle.wasDerivedFrom(
                                    mask.id, mask.derfrom.id)
                                self.add_object(mask.derfrom)
                                self.add_object(mask.derfrom.file,
                                                export_file=False)

                    # Search Space
                    self.bundle.wasGeneratedBy(inference.search_space.id,
                                               inference.inference_act.id)
                    # inference.search_space.wasGeneratedBy(inference.inference_act)
                    self.add_object(inference.search_space)
                    self.add_object(inference.search_space.coord_space)
                    # Copy "Mask map" in export directory
                    self.add_object(inference.search_space.file)

                    # Peak Definition
                    if inference.peak_criteria:
                        # inference.inference_act.used(inference.peak_criteria)
                        self.bundle.used(inference.inference_act.id,
                                         inference.peak_criteria.id)
                        self.add_object(inference.peak_criteria)

                    # Cluster Definition
                    if inference.cluster_criteria:
                        # inference.inference_act.used(inference.cluster_criteria)
                        self.bundle.used(inference.inference_act.id,
                                         inference.cluster_criteria.id)
                        self.add_object(inference.cluster_criteria)

                    if inference.clusters:
                        # Clusters and peaks
                        for cluster in inference.clusters:
                            # cluster.wasDerivedFrom(inference.excursion_set)
                            self.bundle.wasDerivedFrom(
                                cluster.id, inference.excursion_set.id)
                            self.add_object(cluster)
                            for peak in cluster.peaks:
                                self.bundle.wasDerivedFrom(peak.id, cluster.id)
                                self.add_object(peak)
                                self.add_object(peak.coordinate)

                            if cluster.cog is not None:
                                self.bundle.wasDerivedFrom(
                                    cluster.cog.id, cluster.id)
                                self.add_object(cluster.cog)
                                self.add_object(cluster.cog.coordinate)

                    # Inference activity
                    # inference.inference_act.wasAssociatedWith(inference.software_id)
                    # inference.inference_act.used(inference.height_thresh)
                    self.bundle.used(inference.inference_act.id,
                                     inference.height_thresh.id)
                    # inference.inference_act.used(inference.extent_thresh)
                    self.bundle.used(inference.inference_act.id,
                                     inference.extent_thresh.id)
                    self.bundle.used(inference.inference_act.id,
                                     analysis_masks[contrast.estimation.id])
                    self.add_object(inference.inference_act)

            # Write-out prov file
            self.save_prov_to_files()

            return self.out_dir
        except Exception:
            self.cleanup()
            raise

    def _get_model_fitting(self, mf_id):
        """
        Retreive model fitting with identifier 'mf_id' from the list of model
        fitting objects stored in self.model_fitting
        """
        for model_fitting in self.model_fittings:
            if model_fitting.activity.id == mf_id:
                return model_fitting

        raise Exception("Model fitting activity with id: " + str(mf_id) +
                        " not found.")

    def _get_contrast(self, con_id):
        """
        Retreive contrast with identifier 'con_id' from the list of contrast
        objects stored in self.contrasts
        """
        for contrasts in list(self.contrasts.values()):
            for contrast in contrasts:
                if contrast.estimation.id == con_id:
                    return contrast
        raise Exception("Contrast activity with id: " + str(con_id) +
                        " not found.")

    def _add_namespaces(self):
        """
        Add namespaces to NIDM document.
        """
        self.doc.add_namespace(NIDM)
        self.doc.add_namespace(NIIRI)
        self.doc.add_namespace(CRYPTO)
        self.doc.add_namespace(DCT)
        self.doc.add_namespace(DC)
        self.doc.add_namespace(NFO)
        self.doc.add_namespace(OBO)
        self.doc.add_namespace(SCR)
        self.doc.add_namespace(NIF)

    def _create_bundle(self, version):
        """
        Initialise NIDM-Results bundle.
        """
        # *** Bundle entity
        if not hasattr(self, 'bundle_ent'):
            self.bundle_ent = NIDMResultsBundle(nidm_version=version['num'])

        self.bundle = ProvBundle(identifier=self.bundle_ent.id)

        self.bundle_ent.export(self.version, self.export_dir)

        # # provn export
        # self.bundle = ProvBundle(identifier=bundle_id)

        self.doc.entity(self.bundle_ent.id,
                        other_attributes=self.bundle_ent.attributes)

        # *** NIDM-Results Export Activity
        if version['num'] not in ["1.0.0", "1.1.0"]:
            if not hasattr(self, 'export_act'):
                self.export_act = NIDMResultsExport()
            self.export_act.export(self.version, self.export_dir)
            # self.doc.update(self.export_act.p)
            self.doc.activity(self.export_act.id,
                              other_attributes=self.export_act.attributes)

        # *** bundle was Generated by NIDM-Results Export Activity
        if not hasattr(self, 'export_time'):
            self.export_time = str(datetime.datetime.now().time())

        if version['num'] in ["1.0.0", "1.1.0"]:
            self.doc.wasGeneratedBy(entity=self.bundle_ent.id,
                                    time=self.export_time)
        else:
            # provn
            self.doc.wasGeneratedBy(entity=self.bundle_ent.id,
                                    activity=self.export_act.id,
                                    time=self.export_time)

        # *** NIDM-Results Exporter (Software Agent)
        if version['num'] not in ["1.0.0", "1.1.0"]:
            if not hasattr(self, 'exporter'):
                self.exporter = self._get_exporter()
            self.exporter.export(self.version, self.export_dir)
            # self.doc.update(self.exporter.p)
            self.doc.agent(self.exporter.id,
                           other_attributes=self.exporter.attributes)

            self.doc.wasAssociatedWith(self.export_act.id, self.exporter.id)

    def _get_model_parameters_estimations(self, error_model):
        """
        Infer model estimation method from the 'error_model'. Return an object
        of type ModelParametersEstimation.
        """
        if error_model.dependance == NIDM_INDEPEDENT_ERROR:
            if error_model.variance_homo:
                estimation_method = STATO_OLS
            else:
                estimation_method = STATO_WLS
        else:
            estimation_method = STATO_GLS

        mpe = ModelParametersEstimation(estimation_method, self.software.id)

        return mpe

    def use_prefixes(self, ttl):
        prefix_file = os.path.join(os.path.dirname(__file__), 'prefixes.csv')
        context = dict()
        with open(prefix_file, encoding="ascii") as csvfile:
            reader = csv.reader(csvfile)
            next(reader, None)  # skip the headers
            for alphanum_id, prefix, uri in reader:
                if alphanum_id in ttl:
                    context[prefix] = uri
                    ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl
                    ttl = ttl.replace(alphanum_id, prefix + ":")
                    if uri in ttl:
                        ttl = ttl.replace(alphanum_id, prefix + ":")
                elif uri in ttl:
                    context[prefix] = uri
                    ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl
                    ttl = ttl.replace(alphanum_id, prefix + ":")
        return (ttl, context)

    def save_prov_to_files(self, showattributes=False):
        """
        Write-out provn serialisation to nidm.provn.
        """
        self.doc.add_bundle(self.bundle)
        # provn_file = os.path.join(self.export_dir, 'nidm.provn')
        # provn_fid = open(provn_file, 'w')
        # # FIXME None
        # # provn_fid.write(self.doc.get_provn(4).replace("None", "-"))
        # provn_fid.close()

        ttl_file = os.path.join(self.export_dir, 'nidm.ttl')
        ttl_txt = self.doc.serialize(format='rdf', rdf_format='turtle')
        ttl_txt, json_context = self.use_prefixes(ttl_txt)

        # Add namespaces to json-ld context
        for namespace in self.doc._namespaces.get_registered_namespaces():
            json_context[namespace._prefix] = namespace._uri
        for namespace in \
                list(self.doc._namespaces._default_namespaces.values()):
            json_context[namespace._prefix] = namespace._uri
        json_context["xsd"] = "http://www.w3.org/2000/01/rdf-schema#"

        # Work-around to issue with INF value in rdflib (reported in
        # https://github.com/RDFLib/rdflib/pull/655)
        ttl_txt = ttl_txt.replace(' inf ', ' "INF"^^xsd:float ')
        with open(ttl_file, 'w') as ttl_fid:
            ttl_fid.write(ttl_txt)

        # print(json_context)
        jsonld_file = os.path.join(self.export_dir, 'nidm.json')
        jsonld_txt = self.doc.serialize(format='rdf',
                                        rdf_format='json-ld',
                                        context=json_context)
        with open(jsonld_file, 'w') as jsonld_fid:
            jsonld_fid.write(jsonld_txt)

        # provjsonld_file = os.path.join(self.export_dir, 'nidm.provjsonld')
        # provjsonld_txt = self.doc.serialize(format='jsonld')
        # with open(provjsonld_file, 'w') as provjsonld_fid:
        #     provjsonld_fid.write(provjsonld_txt)

        # provn_file = os.path.join(self.export_dir, 'nidm.provn')
        # provn_txt = self.doc.serialize(format='provn')
        # with open(provn_file, 'w') as provn_fid:
        #     provn_fid.write(provn_txt)

        # Post-processing
        if not self.zipped:
            # Just rename temp directory to output_path
            os.rename(self.export_dir, self.out_dir)
        else:
            # Create a zip file that contains the content of the temp directory
            os.chdir(self.export_dir)
            zf = zipfile.ZipFile(os.path.join("..", self.out_dir), mode='w')
            try:
                for root, dirnames, filenames in os.walk("."):
                    for filename in filenames:
                        zf.write(os.path.join(filename))
                shutil.rmtree(os.path.join("..", self.export_dir))
            finally:
                zf.close()
                os.chdir("..")
Ejemplo n.º 39
0
def w3c_publication_2():
    # https://github.com/lucmoreau/ProvToolbox/blob/master/asn/src/test/resources/prov/w3c-publication2.prov-asn
    #===========================================================================
    # bundle
    #
    # prefix ex <http://example.org/>
    # prefix rec <http://example.org/record>
    #
    # prefix w3 <http://www.w3.org/TR/2011/>
    # prefix hg <http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/>
    #
    #
    # entity(hg:Overview.html, [ prov:type="file in hg" ])
    # entity(w3:WD-prov-dm-20111215, [ prov:type="html4" ])
    #
    #
    # activity(ex:rcp,-,-,[prov:type="copy directory"])
    #
    # wasGeneratedBy(rec:g; w3:WD-prov-dm-20111215, ex:rcp, -)
    #
    # entity(ex:req3, [ prov:type="http://www.w3.org/2005/08/01-transitions.html#pubreq" %% xsd:anyURI ])
    #
    # used(rec:u; ex:rcp,hg:Overview.html,-)
    # used(ex:rcp, ex:req3, -)
    #
    #
    # wasDerivedFrom(w3:WD-prov-dm-20111215, hg:Overview.html, ex:rcp, rec:g, rec:u)
    #
    # agent(ex:webmaster, [ prov:type='prov:Person' ])
    #
    # wasAssociatedWith(ex:rcp, ex:webmaster, -)
    #
    # endBundle
    #===========================================================================

    ex = Namespace('ex', 'http://example.org/')
    rec = Namespace('rec', 'http://example.org/record')
    w3 = Namespace('w3', 'http://www.w3.org/TR/2011/')
    hg = Namespace(
        'hg',
        'http://dvcs.w3.org/hg/prov/raw-file/9628aaff6e20/model/releases/WD-prov-dm-20111215/'
    )

    g = ProvDocument()

    g.entity(hg['Overview.html'], {'prov:type': "file in hg"})
    g.entity(w3['WD-prov-dm-20111215'], {'prov:type': "html4"})

    g.activity(ex['rcp'], None, None, {'prov:type': "copy directory"})

    g.wasGeneratedBy('w3:WD-prov-dm-20111215', 'ex:rcp', identifier=rec['g'])

    g.entity(
        'ex:req3', {
            'prov:type':
            Identifier("http://www.w3.org/2005/08/01-transitions.html#pubreq")
        })

    g.used('ex:rcp', 'hg:Overview.html', identifier='rec:u')
    g.used('ex:rcp', 'ex:req3')

    g.wasDerivedFrom('w3:WD-prov-dm-20111215', 'hg:Overview.html', 'ex:rcp',
                     'rec:g', 'rec:u')

    g.agent('ex:webmaster', {'prov:type': "Person"})

    g.wasAssociatedWith('ex:rcp', 'ex:webmaster')

    return g
Ejemplo n.º 40
0
class ProvenanceProfile:
    """
    Provenance profile.

    Populated as the workflow runs.
    """
    def __init__(
        self,
        research_object: "ResearchObject",
        full_name: str,
        host_provenance: bool,
        user_provenance: bool,
        orcid: str,
        fsaccess: StdFsAccess,
        run_uuid: Optional[uuid.UUID] = None,
    ) -> None:
        """Initialize the provenance profile."""
        self.fsaccess = fsaccess
        self.orcid = orcid
        self.research_object = research_object
        self.folder = self.research_object.folder
        self.document = ProvDocument()
        self.host_provenance = host_provenance
        self.user_provenance = user_provenance
        self.engine_uuid = research_object.engine_uuid  # type: str
        self.add_to_manifest = self.research_object.add_to_manifest
        if self.orcid:
            _logger.debug("[provenance] Creator ORCID: %s", self.orcid)
        self.full_name = full_name
        if self.full_name:
            _logger.debug("[provenance] Creator Full name: %s", self.full_name)
        self.workflow_run_uuid = run_uuid or uuid.uuid4()
        self.workflow_run_uri = self.workflow_run_uuid.urn  # type: str
        self.generate_prov_doc()

    def __str__(self) -> str:
        """Represent this Provenvance profile as a string."""
        return "ProvenanceProfile <{}> in <{}>".format(
            self.workflow_run_uri,
            self.research_object,
        )

    def generate_prov_doc(self) -> Tuple[str, ProvDocument]:
        """Add basic namespaces."""
        def host_provenance(document: ProvDocument) -> None:
            """Record host provenance."""
            document.add_namespace(CWLPROV)
            document.add_namespace(UUID)
            document.add_namespace(FOAF)

            hostname = getfqdn()
            # won't have a foaf:accountServiceHomepage for unix hosts, but
            # we can at least provide hostname
            document.agent(
                ACCOUNT_UUID,
                {
                    PROV_TYPE: FOAF["OnlineAccount"],
                    "prov:location": hostname,
                    CWLPROV["hostname"]: hostname,
                },
            )

        self.cwltool_version = "cwltool %s" % versionstring().split()[-1]
        self.document.add_namespace("wfprov",
                                    "http://purl.org/wf4ever/wfprov#")
        # document.add_namespace('prov', 'http://www.w3.org/ns/prov#')
        self.document.add_namespace("wfdesc",
                                    "http://purl.org/wf4ever/wfdesc#")
        # TODO: Make this ontology. For now only has cwlprov:image
        self.document.add_namespace("cwlprov", "https://w3id.org/cwl/prov#")
        self.document.add_namespace("foaf", "http://xmlns.com/foaf/0.1/")
        self.document.add_namespace("schema", "http://schema.org/")
        self.document.add_namespace("orcid", "https://orcid.org/")
        self.document.add_namespace("id", "urn:uuid:")
        # NOTE: Internet draft expired 2004-03-04 (!)
        #  https://tools.ietf.org/html/draft-thiemann-hash-urn-01
        # TODO: Change to nih:sha-256; hashes
        #  https://tools.ietf.org/html/rfc6920#section-7
        self.document.add_namespace("data", "urn:hash::sha1:")
        # Also needed for docker images
        self.document.add_namespace(SHA256, "nih:sha-256;")

        # info only, won't really be used by prov as sub-resources use /
        self.document.add_namespace("researchobject",
                                    self.research_object.base_uri)
        # annotations
        self.metadata_ns = self.document.add_namespace(
            "metadata", self.research_object.base_uri + METADATA + "/")
        # Pre-register provenance directory so we can refer to its files
        self.provenance_ns = self.document.add_namespace(
            "provenance",
            self.research_object.base_uri + posix_path(PROVENANCE) + "/")
        ro_identifier_workflow = self.research_object.base_uri + "workflow/packed.cwl#"
        self.wf_ns = self.document.add_namespace("wf", ro_identifier_workflow)
        ro_identifier_input = (self.research_object.base_uri +
                               "workflow/primary-job.json#")
        self.document.add_namespace("input", ro_identifier_input)

        # More info about the account (e.g. username, fullname)
        # may or may not have been previously logged by user_provenance()
        # .. but we always know cwltool was launched (directly or indirectly)
        # by a user account, as cwltool is a command line tool
        account = self.document.agent(ACCOUNT_UUID)
        if self.orcid or self.full_name:
            person = {PROV_TYPE: PROV["Person"], "prov:type": SCHEMA["Person"]}
            if self.full_name:
                person["prov:label"] = self.full_name
                person["foaf:name"] = self.full_name
                person["schema:name"] = self.full_name
            else:
                # TODO: Look up name from ORCID API?
                pass
            agent = self.document.agent(self.orcid or uuid.uuid4().urn, person)
            self.document.actedOnBehalfOf(account, agent)
        else:
            if self.host_provenance:
                host_provenance(self.document)
            if self.user_provenance:
                self.research_object.user_provenance(self.document)
        # The execution of cwltool
        wfengine = self.document.agent(
            self.engine_uuid,
            {
                PROV_TYPE: PROV["SoftwareAgent"],
                "prov:type": WFPROV["WorkflowEngine"],
                "prov:label": self.cwltool_version,
            },
        )
        # FIXME: This datetime will be a bit too delayed, we should
        # capture when cwltool.py earliest started?
        self.document.wasStartedBy(wfengine, None, account,
                                   datetime.datetime.now())
        # define workflow run level activity
        self.document.activity(
            self.workflow_run_uri,
            datetime.datetime.now(),
            None,
            {
                PROV_TYPE: WFPROV["WorkflowRun"],
                "prov:label": "Run of workflow/packed.cwl#main",
            },
        )
        # association between SoftwareAgent and WorkflowRun
        main_workflow = "wf:main"
        self.document.wasAssociatedWith(self.workflow_run_uri,
                                        self.engine_uuid, main_workflow)
        self.document.wasStartedBy(self.workflow_run_uri, None,
                                   self.engine_uuid, datetime.datetime.now())
        return (self.workflow_run_uri, self.document)

    def evaluate(
        self,
        process: Process,
        job: JobsType,
        job_order_object: CWLObjectType,
        research_obj: "ResearchObject",
    ) -> None:
        """Evaluate the nature of job."""
        if not hasattr(process, "steps"):
            # record provenance of independent commandline tool executions
            self.prospective_prov(job)
            customised_job = copy_job_order(job, job_order_object)
            self.used_artefacts(customised_job, self.workflow_run_uri)
            research_obj.create_job(customised_job)
        elif hasattr(job, "workflow"):
            # record provenance of workflow executions
            self.prospective_prov(job)
            customised_job = copy_job_order(job, job_order_object)
            self.used_artefacts(customised_job, self.workflow_run_uri)

    def record_process_start(
            self,
            process: Process,
            job: JobsType,
            process_run_id: Optional[str] = None) -> Optional[str]:
        if not hasattr(process, "steps"):
            process_run_id = self.workflow_run_uri
        elif not hasattr(job, "workflow"):
            # commandline tool execution as part of workflow
            name = ""
            if isinstance(job, (CommandLineJob, JobBase, WorkflowJob)):
                name = job.name
            process_name = urllib.parse.quote(name, safe=":/,#")
            process_run_id = self.start_process(process_name,
                                                datetime.datetime.now())
        return process_run_id

    def start_process(
        self,
        process_name: str,
        when: datetime.datetime,
        process_run_id: Optional[str] = None,
    ) -> str:
        """Record the start of each Process."""
        if process_run_id is None:
            process_run_id = uuid.uuid4().urn
        prov_label = "Run of workflow/packed.cwl#main/" + process_name
        self.document.activity(
            process_run_id,
            None,
            None,
            {
                PROV_TYPE: WFPROV["ProcessRun"],
                PROV_LABEL: prov_label
            },
        )
        self.document.wasAssociatedWith(process_run_id, self.engine_uuid,
                                        str("wf:main/" + process_name))
        self.document.wasStartedBy(process_run_id, None, self.workflow_run_uri,
                                   when, None, None)
        return process_run_id

    def record_process_end(
        self,
        process_name: str,
        process_run_id: str,
        outputs: Union[CWLObjectType, MutableSequence[CWLObjectType], None],
        when: datetime.datetime,
    ) -> None:
        self.generate_output_prov(outputs, process_run_id, process_name)
        self.document.wasEndedBy(process_run_id, None, self.workflow_run_uri,
                                 when)

    def declare_file(
            self, value: CWLObjectType) -> Tuple[ProvEntity, ProvEntity, str]:
        if value["class"] != "File":
            raise ValueError("Must have class:File: %s" % value)
        # Need to determine file hash aka RO filename
        entity = None  # type: Optional[ProvEntity]
        checksum = None
        if "checksum" in value:
            csum = cast(str, value["checksum"])
            (method, checksum) = csum.split("$", 1)
            if method == SHA1 and self.research_object.has_data_file(checksum):
                entity = self.document.entity("data:" + checksum)

        if not entity and "location" in value:
            location = str(value["location"])
            # If we made it here, we'll have to add it to the RO
            with self.fsaccess.open(location, "rb") as fhandle:
                relative_path = self.research_object.add_data_file(fhandle)
                # FIXME: This naively relies on add_data_file setting hash as filename
                checksum = PurePath(relative_path).name
                entity = self.document.entity("data:" + checksum,
                                              {PROV_TYPE: WFPROV["Artifact"]})
                if "checksum" not in value:
                    value["checksum"] = f"{SHA1}${checksum}"

        if not entity and "contents" in value:
            # Anonymous file, add content as string
            entity, checksum = self.declare_string(cast(
                str, value["contents"]))

        # By here one of them should have worked!
        if not entity or not checksum:
            raise ValueError(
                "class:File but missing checksum/location/content: %r" % value)

        # Track filename and extension, this is generally useful only for
        # secondaryFiles. Note that multiple uses of a file might thus record
        # different names for the same entity, so we'll
        # make/track a specialized entity by UUID
        file_id = value.setdefault("@id", uuid.uuid4().urn)
        # A specialized entity that has just these names
        file_entity = self.document.entity(
            file_id,
            [(PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, WF4EVER["File"])],
        )  # type: ProvEntity

        if "basename" in value:
            file_entity.add_attributes(
                {CWLPROV["basename"]: value["basename"]})
        if "nameroot" in value:
            file_entity.add_attributes(
                {CWLPROV["nameroot"]: value["nameroot"]})
        if "nameext" in value:
            file_entity.add_attributes({CWLPROV["nameext"]: value["nameext"]})
        self.document.specializationOf(file_entity, entity)

        # Check for secondaries
        for sec in cast(MutableSequence[CWLObjectType],
                        value.get("secondaryFiles", [])):
            # TODO: Record these in a specializationOf entity with UUID?
            if sec["class"] == "File":
                (sec_entity, _, _) = self.declare_file(sec)
            elif sec["class"] == "Directory":
                sec_entity = self.declare_directory(sec)
            else:
                raise ValueError(f"Got unexpected secondaryFiles value: {sec}")
            # We don't know how/when/where the secondary file was generated,
            # but CWL convention is a kind of summary/index derived
            # from the original file. As its generally in a different format
            # then prov:Quotation is not appropriate.
            self.document.derivation(
                sec_entity,
                file_entity,
                other_attributes={PROV["type"]: CWLPROV["SecondaryFile"]},
            )

        return file_entity, entity, checksum

    def declare_directory(self, value: CWLObjectType) -> ProvEntity:
        """Register any nested files/directories."""
        # FIXME: Calculate a hash-like identifier for directory
        # so we get same value if it's the same filenames/hashes
        # in a different location.
        # For now, mint a new UUID to identify this directory, but
        # attempt to keep it inside the value dictionary
        dir_id = cast(str, value.setdefault("@id", uuid.uuid4().urn))

        # New annotation file to keep the ORE Folder listing
        ore_doc_fn = dir_id.replace("urn:uuid:", "directory-") + ".ttl"
        dir_bundle = self.document.bundle(self.metadata_ns[ore_doc_fn])

        coll = self.document.entity(
            dir_id,
            [
                (PROV_TYPE, WFPROV["Artifact"]),
                (PROV_TYPE, PROV["Collection"]),
                (PROV_TYPE, PROV["Dictionary"]),
                (PROV_TYPE, RO["Folder"]),
            ],
        )
        # ORE description of ro:Folder, saved separately
        coll_b = dir_bundle.entity(
            dir_id,
            [(PROV_TYPE, RO["Folder"]), (PROV_TYPE, ORE["Aggregation"])],
        )
        self.document.mentionOf(dir_id + "#ore", dir_id, dir_bundle.identifier)

        # dir_manifest = dir_bundle.entity(
        #     dir_bundle.identifier, {PROV["type"]: ORE["ResourceMap"],
        #                             ORE["describes"]: coll_b.identifier})

        coll_attribs = [(ORE["isDescribedBy"], dir_bundle.identifier)]
        coll_b_attribs = []  # type: List[Tuple[Identifier, ProvEntity]]

        # FIXME: .listing might not be populated yet - hopefully
        # a later call to this method will sort that
        is_empty = True

        if "listing" not in value:
            get_listing(self.fsaccess, value)
        for entry in cast(MutableSequence[CWLObjectType],
                          value.get("listing", [])):
            is_empty = False
            # Declare child-artifacts
            entity = self.declare_artefact(entry)
            self.document.membership(coll, entity)
            # Membership relation aka our ORE Proxy
            m_id = uuid.uuid4().urn
            m_entity = self.document.entity(m_id)
            m_b = dir_bundle.entity(m_id)

            # PROV-O style Dictionary
            # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition
            # ..as prov.py do not currently allow PROV-N extensions
            # like hadDictionaryMember(..)
            m_entity.add_asserted_type(PROV["KeyEntityPair"])

            m_entity.add_attributes({
                PROV["pairKey"]: entry["basename"],
                PROV["pairEntity"]: entity,
            })

            # As well as a being a
            # http://wf4ever.github.io/ro/2016-01-28/ro/#FolderEntry
            m_b.add_asserted_type(RO["FolderEntry"])
            m_b.add_asserted_type(ORE["Proxy"])
            m_b.add_attributes({
                RO["entryName"]: entry["basename"],
                ORE["proxyIn"]: coll,
                ORE["proxyFor"]: entity,
            })
            coll_attribs.append((PROV["hadDictionaryMember"], m_entity))
            coll_b_attribs.append((ORE["aggregates"], m_b))

        coll.add_attributes(coll_attribs)
        coll_b.add_attributes(coll_b_attribs)

        # Also Save ORE Folder as annotation metadata
        ore_doc = ProvDocument()
        ore_doc.add_namespace(ORE)
        ore_doc.add_namespace(RO)
        ore_doc.add_namespace(UUID)
        ore_doc.add_bundle(dir_bundle)
        ore_doc = ore_doc.flattened()
        ore_doc_path = str(PurePosixPath(METADATA, ore_doc_fn))
        with self.research_object.write_bag_file(
                ore_doc_path) as provenance_file:
            ore_doc.serialize(provenance_file,
                              format="rdf",
                              rdf_format="turtle")
        self.research_object.add_annotation(dir_id, [ore_doc_fn],
                                            ORE["isDescribedBy"].uri)

        if is_empty:
            # Empty directory
            coll.add_asserted_type(PROV["EmptyCollection"])
            coll.add_asserted_type(PROV["EmptyDictionary"])
        self.research_object.add_uri(coll.identifier.uri)
        return coll

    def declare_string(self, value: str) -> Tuple[ProvEntity, str]:
        """Save as string in UTF-8."""
        byte_s = BytesIO(str(value).encode(ENCODING))
        data_file = self.research_object.add_data_file(byte_s,
                                                       content_type=TEXT_PLAIN)
        checksum = PurePosixPath(data_file).name
        # FIXME: Don't naively assume add_data_file uses hash in filename!
        data_id = "data:%s" % PurePosixPath(data_file).stem
        entity = self.document.entity(data_id, {
            PROV_TYPE: WFPROV["Artifact"],
            PROV_VALUE: str(value)
        })  # type: ProvEntity
        return entity, checksum

    def declare_artefact(self, value: Optional[CWLOutputType]) -> ProvEntity:
        """Create data artefact entities for all file objects."""
        if value is None:
            # FIXME: If this can happen in CWL, we'll
            # need a better way to represent this in PROV
            return self.document.entity(CWLPROV["None"], {PROV_LABEL: "None"})

        if isinstance(value, (bool, int, float)):
            # Typically used in job documents for flags

            # FIXME: Make consistent hash URIs for these
            # that somehow include the type
            # (so "1" != 1 != "1.0" != true)
            entity = self.document.entity(uuid.uuid4().urn,
                                          {PROV_VALUE: value})
            self.research_object.add_uri(entity.identifier.uri)
            return entity

        if isinstance(value, (str, str)):
            (entity, _) = self.declare_string(value)
            return entity

        if isinstance(value, bytes):
            # If we got here then we must be in Python 3
            byte_s = BytesIO(value)
            data_file = self.research_object.add_data_file(byte_s)
            # FIXME: Don't naively assume add_data_file uses hash in filename!
            data_id = "data:%s" % PurePosixPath(data_file).stem
            return self.document.entity(
                data_id,
                {
                    PROV_TYPE: WFPROV["Artifact"],
                    PROV_VALUE: str(value)
                },
            )

        if isinstance(value, MutableMapping):
            if "@id" in value:
                # Already processed this value, but it might not be in this PROV
                entities = self.document.get_record(value["@id"])
                if entities:
                    return entities[0]
                # else, unknown in PROV, re-add below as if it's fresh

            # Base case - we found a File we need to update
            if value.get("class") == "File":
                (entity, _, _) = self.declare_file(value)
                value["@id"] = entity.identifier.uri
                return entity

            if value.get("class") == "Directory":
                entity = self.declare_directory(value)
                value["@id"] = entity.identifier.uri
                return entity
            coll_id = value.setdefault("@id", uuid.uuid4().urn)
            # some other kind of dictionary?
            # TODO: also Save as JSON
            coll = self.document.entity(
                coll_id,
                [
                    (PROV_TYPE, WFPROV["Artifact"]),
                    (PROV_TYPE, PROV["Collection"]),
                    (PROV_TYPE, PROV["Dictionary"]),
                ],
            )

            if value.get("class"):
                _logger.warning("Unknown data class %s.", value["class"])
                # FIXME: The class might be "http://example.com/somethingelse"
                coll.add_asserted_type(CWLPROV[value["class"]])

            # Let's iterate and recurse
            coll_attribs = []  # type: List[Tuple[Identifier, ProvEntity]]
            for (key, val) in value.items():
                v_ent = self.declare_artefact(val)
                self.document.membership(coll, v_ent)
                m_entity = self.document.entity(uuid.uuid4().urn)
                # Note: only support PROV-O style dictionary
                # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition
                # as prov.py do not easily allow PROV-N extensions
                m_entity.add_asserted_type(PROV["KeyEntityPair"])
                m_entity.add_attributes({
                    PROV["pairKey"]: str(key),
                    PROV["pairEntity"]: v_ent
                })
                coll_attribs.append((PROV["hadDictionaryMember"], m_entity))
            coll.add_attributes(coll_attribs)
            self.research_object.add_uri(coll.identifier.uri)
            return coll

        # some other kind of Collection?
        # TODO: also save as JSON
        try:
            members = []
            for each_input_obj in iter(value):
                # Recurse and register any nested objects
                e = self.declare_artefact(each_input_obj)
                members.append(e)

            # If we reached this, then we were allowed to iterate
            coll = self.document.entity(
                uuid.uuid4().urn,
                [
                    (PROV_TYPE, WFPROV["Artifact"]),
                    (PROV_TYPE, PROV["Collection"]),
                ],
            )
            if not members:
                coll.add_asserted_type(PROV["EmptyCollection"])
            else:
                for member in members:
                    # FIXME: This won't preserve order, for that
                    # we would need to use PROV.Dictionary
                    # with numeric keys
                    self.document.membership(coll, member)
            self.research_object.add_uri(coll.identifier.uri)
            # FIXME: list value does not support adding "@id"
            return coll
        except TypeError:
            _logger.warning("Unrecognized type %s of %r", type(value), value)
            # Let's just fall back to Python repr()
            entity = self.document.entity(uuid.uuid4().urn,
                                          {PROV_LABEL: repr(value)})
            self.research_object.add_uri(entity.identifier.uri)
            return entity

    def used_artefacts(
        self,
        job_order: Union[CWLObjectType, List[CWLObjectType]],
        process_run_id: str,
        name: Optional[str] = None,
    ) -> None:
        """Add used() for each data artefact."""
        if isinstance(job_order, list):
            for entry in job_order:
                self.used_artefacts(entry, process_run_id, name)
        else:
            # FIXME: Use workflow name in packed.cwl, "main" is wrong for nested workflows
            base = "main"
            if name is not None:
                base += "/" + name
            for key, value in job_order.items():
                prov_role = self.wf_ns[f"{base}/{key}"]
                try:
                    entity = self.declare_artefact(value)
                    self.document.used(
                        process_run_id,
                        entity,
                        datetime.datetime.now(),
                        None,
                        {"prov:role": prov_role},
                    )
                except OSError:
                    pass

    def generate_output_prov(
        self,
        final_output: Union[CWLObjectType, MutableSequence[CWLObjectType],
                            None],
        process_run_id: Optional[str],
        name: Optional[str],
    ) -> None:
        """Call wasGeneratedBy() for each output,copy the files into the RO."""
        if isinstance(final_output, MutableSequence):
            for entry in final_output:
                self.generate_output_prov(entry, process_run_id, name)
        elif final_output is not None:
            # Timestamp should be created at the earliest
            timestamp = datetime.datetime.now()

            # For each output, find/register the corresponding
            # entity (UUID) and document it as generated in
            # a role corresponding to the output
            for output, value in final_output.items():
                entity = self.declare_artefact(value)
                if name is not None:
                    name = urllib.parse.quote(str(name), safe=":/,#")
                    # FIXME: Probably not "main" in nested workflows
                    role = self.wf_ns[f"main/{name}/{output}"]
                else:
                    role = self.wf_ns["main/%s" % output]

                if not process_run_id:
                    process_run_id = self.workflow_run_uri

                self.document.wasGeneratedBy(entity, process_run_id, timestamp,
                                             None, {"prov:role": role})

    def prospective_prov(self, job: JobsType) -> None:
        """Create prospective prov recording as wfdesc prov:Plan."""
        if not isinstance(job, WorkflowJob):
            # direct command line tool execution
            self.document.entity(
                "wf:main",
                {
                    PROV_TYPE: WFDESC["Process"],
                    "prov:type": PROV["Plan"],
                    "prov:label": "Prospective provenance",
                },
            )
            return

        self.document.entity(
            "wf:main",
            {
                PROV_TYPE: WFDESC["Workflow"],
                "prov:type": PROV["Plan"],
                "prov:label": "Prospective provenance",
            },
        )

        for step in job.steps:
            stepnametemp = "wf:main/" + str(step.name)[5:]
            stepname = urllib.parse.quote(stepnametemp, safe=":/,#")
            provstep = self.document.entity(
                stepname,
                {
                    PROV_TYPE: WFDESC["Process"],
                    "prov:type": PROV["Plan"]
                },
            )
            self.document.entity(
                "wf:main",
                {
                    "wfdesc:hasSubProcess": provstep,
                    "prov:label": "Prospective provenance",
                },
            )
        # TODO: Declare roles/parameters as well

    def activity_has_provenance(self, activity, prov_ids):
        # type: (str, List[Identifier]) -> None
        """Add http://www.w3.org/TR/prov-aq/ relations to nested PROV files."""
        # NOTE: The below will only work if the corresponding metadata/provenance arcp URI
        # is a pre-registered namespace in the PROV Document
        attribs = [(PROV["has_provenance"], prov_id) for prov_id in prov_ids]
        self.document.activity(activity, other_attributes=attribs)
        # Tip: we can't use https://www.w3.org/TR/prov-links/#term-mention
        # as prov:mentionOf() is only for entities, not activities
        uris = [i.uri for i in prov_ids]
        self.research_object.add_annotation(activity, uris,
                                            PROV["has_provenance"].uri)

    def finalize_prov_profile(self, name):
        # type: (Optional[str]) -> List[Identifier]
        """Transfer the provenance related files to the RO."""
        # NOTE: Relative posix path
        if name is None:
            # main workflow, fixed filenames
            filename = "primary.cwlprov"
        else:
            # ASCII-friendly filename, avoiding % as we don't want %2520 in manifest.json
            wf_name = urllib.parse.quote(str(name), safe="").replace("%", "_")
            # Note that the above could cause overlaps for similarly named
            # workflows, but that's OK as we'll also include run uuid
            # which also covers thhe case of this step being run in
            # multiple places or iterations
            filename = f"{wf_name}.{self.workflow_run_uuid}.cwlprov"

        basename = str(PurePosixPath(PROVENANCE) / filename)

        # TODO: Also support other profiles than CWLProv, e.g. ProvOne

        # list of prov identifiers of provenance files
        prov_ids = []

        # https://www.w3.org/TR/prov-xml/
        with self.research_object.write_bag_file(basename +
                                                 ".xml") as provenance_file:
            self.document.serialize(provenance_file, format="xml", indent=4)
            prov_ids.append(self.provenance_ns[filename + ".xml"])

        # https://www.w3.org/TR/prov-n/
        with self.research_object.write_bag_file(basename +
                                                 ".provn") as provenance_file:
            self.document.serialize(provenance_file, format="provn", indent=2)
            prov_ids.append(self.provenance_ns[filename + ".provn"])

        # https://www.w3.org/Submission/prov-json/
        with self.research_object.write_bag_file(basename +
                                                 ".json") as provenance_file:
            self.document.serialize(provenance_file, format="json", indent=2)
            prov_ids.append(self.provenance_ns[filename + ".json"])

        # "rdf" aka https://www.w3.org/TR/prov-o/
        # which can be serialized to ttl/nt/jsonld (and more!)

        # https://www.w3.org/TR/turtle/
        with self.research_object.write_bag_file(basename +
                                                 ".ttl") as provenance_file:
            self.document.serialize(provenance_file,
                                    format="rdf",
                                    rdf_format="turtle")
            prov_ids.append(self.provenance_ns[filename + ".ttl"])

        # https://www.w3.org/TR/n-triples/
        with self.research_object.write_bag_file(basename +
                                                 ".nt") as provenance_file:
            self.document.serialize(provenance_file,
                                    format="rdf",
                                    rdf_format="ntriples")
            prov_ids.append(self.provenance_ns[filename + ".nt"])

        # https://www.w3.org/TR/json-ld/
        # TODO: Use a nice JSON-LD context
        # see also https://eprints.soton.ac.uk/395985/
        # 404 Not Found on https://provenance.ecs.soton.ac.uk/prov.jsonld :(
        with self.research_object.write_bag_file(basename +
                                                 ".jsonld") as provenance_file:
            self.document.serialize(provenance_file,
                                    format="rdf",
                                    rdf_format="json-ld")
            prov_ids.append(self.provenance_ns[filename + ".jsonld"])

        _logger.debug("[provenance] added provenance: %s", prov_ids)
        return prov_ids
Ejemplo n.º 41
0
    def write_targets_prov(self, tlist, C, bundle_id):
        #Initialisation
#         cs = b.agent('CrowdScanner')
         
        if self.document_id == -1:
            d = ProvDocument()
            d.add_namespace(AO)
            d.set_default_namespace(self.defaultns % self.game_id)
            if uploadprov:
                provstore_document = self.api.document.create(d, name="Operation%s CrowdScanner" % self.game_id, public=True)
                document_uri = provstore_document.url
                logging.info("prov doc URI: " + str(document_uri))
                self.provfilelist.append(provstore_document.id)
                self.savelocalrecord()
                self.document_id = provstore_document.id
         
        b = ProvDocument()  # Create a new document for this update
        b.add_namespace(AO)
        b.set_default_namespace(self.defaultns % self.game_id)            
            
        # cs to be used with all targets
        cs = b.agent('agent/CrowdScanner', (('prov:type', AO['IBCCAlgo']), ('prov:type', PROV['SoftwareAgent'])))
        
        timestamp = time.time()  # Record the timestamp at each update to generate unique identifiers        
        startTime = datetime.datetime.fromtimestamp(timestamp)
        endTime = startTime
        activity = b.activity('activity/cs/update_report_%s' % timestamp, startTime, endTime)
        activity.wasAssociatedWith(cs)

        #Add target and report entities
        for i, tdata in enumerate(tlist):
            if self.changedtargets[i]==0:
                continue
            
            #Target entity for target i
            tid = int(tdata[0])
            x = tdata[1]
            y = tdata[2]
#             targettype = tdata[3] #don't record here, it will be revealed and recorded by UAVs
            v = int(tdata[4])
            agentids = tdata[7]
            
            targetattributes = {'ao:longitude': x, 'ao:latitude': y, }
            #'ao:asset_type':str(targettype)}
            target_v0 = b.entity('cs/target/'+str(tid)+'.'+str(v), targetattributes)            
            #Post the root report if this is the first version
            if v==0:
                self.targets[tid] = b.entity('cs/target/'+str(tid))
            else:
                try:
                    target_v0.wasDerivedFrom(self.targetversions[tid])
                except KeyError:
                    logging.error("Got a key error for key " + str(tid) + ', which is supposed to be version' + str(v))
            self.targetversions[tid] = target_v0                    
            target_v0.specializationOf(self.targets[tid])
            target_v0.wasAttributedTo(cs)
            
            #Report entities for origins of target i
            for j, r in enumerate(self.target_rep_ids[i]):
                if r not in self.postedreports:
                    Crow = C[r,:]
                    x = Crow[1]
                    y = Crow[2]
                    reptext = tdata[5][j].decode('utf8')
                    # Try to replace unusual characters
                    reptext = reptext.encode('ascii', 'replace')  
                    agentid = agentids[j]
                    
                    reporter_name = 'agent/crowdreporter%s' % agentid
                    b.agent(reporter_name, (('prov:type', AO['CrowdReporter']), ('prov:type', PROV['Person'])))
                    
                    reportattributes = {'ao:longitude': x, 'ao:latitude': y, 'ao:report': reptext}
                    
                    self.postedreports[r] = b.entity('cs/report/'+str(r), reportattributes)
                    self.postedreports[r].wasAttributedTo(reporter_name)
                activity.used(self.postedreports[r])
                target_v0.wasDerivedFrom(self.postedreports[r])
        
        if uploadprov:
            #Invalidate old targets no longer in use
            for i,tid in enumerate(self.targets_to_invalidate):
                target_v = self.targetversions[tid]
                b.wasInvalidatedBy(target_v, activity)
            #Post the document to the server
            #bundle = b.bundle('crowd_scanner')
            bundle_id = 'bundle/csupdate/%s' % timestamp
            self.api.add_bundle(self.document_id, b.serialize(), bundle_id)