table_dict[key] = list(curr_dict.values())

items = table_dict['i']
x_ranges = [[5, 105]] * len(items)
y_ranges = []
for index in range(0, len(items)):
    y_ranges.append([table_dict['begin'][index], table_dict['end'][index]])

data_bases = ['GSE87571_TEST']

for data_base in data_bases:

    data = pdm.Data(path='', base='GSE43414')

    annotations = pdm.Annotations(name='annotations',
                                  type='450k',
                                  exclude='bad_cpgs',
                                  select_dict={'CHR': ['-X', '-Y']})

    observables = pdm.Observables(name='observables', types={})

    cells = pdm.Cells(name='cells', types='any')

    target = get_target(data.base)
    observables_list = get_observables_list(data.base)
    data_params = get_data_params(data.base)

    attributes = pdm.Attributes(target=target,
                                observables=observables,
                                cells=cells)

    pdm.betas_plot_scatter(data=data,
Ejemplo n.º 2
0
import pydnameth as pdm

data = pdm.Data(path='', base='GSE87571')

annotations = pdm.Annotations(name='annotations',
                              exclude='bad_cpgs',
                              cross_reactive='any',
                              snp='any',
                              chr='NS',
                              gene_region='any',
                              geo='any',
                              probe_class='any')

cells = pdm.Cells(name='cells', types='any')

if data.base == 'GSE55763':
    observables_list = [
        {
            'gender': 'any',
            'is_duplicate': '0',
            'age': (35, 100)
        },
    ]
else:
    observables_list = [
        {
            'gender': 'any'
        },
    ]

method_params = {
from tqdm import tqdm
import numpy as np
from scipy.stats import pearsonr, pointbiserialr
from statsmodels.stats.multitest import multipletests
from paper.routines.infrastructure.save.table import save_table_dict_xlsx

save_path = 'E:/YandexDisk/Work/pydnameth/unn_epic/comparison'

data_unn_epic = pdm.Data(
    path='',
    base='unn_epic'
)
annotations_unn_epic = pdm.Annotations(
    name='annotations',
    type='850k',
    exclude='bad_cpgs_from_ChAMP',
    select_dict={
        'CHR': ['-X', '-Y']
    }
)
target_unn_epic = 'Age'
observables_unn_epic = pdm.Observables(
    name='observables',
    types={}
)
cells_unn_epic = pdm.Cells(
    name='cell_counts_horvath_filtered_normalized',
    types='any'
)
attributes_unn_epic = pdm.Attributes(
    target=target_unn_epic,
    observables=observables_unn_epic,
Ejemplo n.º 4
0
import pydnameth as pdm
from scripts.develop.routines import *


data = pdm.Data(
    path='',
    base='unn_epic'
)

annotations = pdm.Annotations(
    name='annotations',
    type='850k',
    exclude='none',
    select_dict={}
)

observables = pdm.Observables(
    name='observables_part(v1)',
    types={'COVID': ['no', 'before'],
           'Sample_Chronology': [0, 1]}
)

cells = pdm.Cells(
    name='cell_counts_part(v1)',
    types='any'
)

target = 'Group'
attributes = pdm.Attributes(
    target=target,
    observables=observables,
Ejemplo n.º 5
0
import pydnameth as pdm
from scripts.develop.routines import *

data = pdm.Data(path='', base='unn_epic')

annotations = pdm.Annotations(name='annotations',
                              type='850k',
                              exclude='none',
                              select_dict={'CHR': ['-X', '-Y']})

observables = pdm.Observables(name='observables_part(wo_noIntensity_detP)',
                              types={})

cells = pdm.Cells(name='cell_counts_part(wo_noIntensity_detP)', types='any')

target = 'Sample_Group'
attributes = pdm.Attributes(target=target,
                            observables=observables,
                            cells=cells)

data_params = {
    'norm': 'fun',
    'part': 'wo_noIntensity_detP',
}

method_params = {
    'formula': 'cpg ~ Sample_Group + Sex*Age + Bcell + CD4T + CD8T + Neu + NK',
}

pdm.betas_table_formula_new(
    data=data,