table_dict[key] = list(curr_dict.values()) items = table_dict['i'] x_ranges = [[5, 105]] * len(items) y_ranges = [] for index in range(0, len(items)): y_ranges.append([table_dict['begin'][index], table_dict['end'][index]]) data_bases = ['GSE87571_TEST'] for data_base in data_bases: data = pdm.Data(path='', base='GSE43414') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells', types='any') target = get_target(data.base) observables_list = get_observables_list(data.base) data_params = get_data_params(data.base) attributes = pdm.Attributes(target=target, observables=observables, cells=cells) pdm.betas_plot_scatter(data=data,
import pydnameth as pdm data = pdm.Data(path='', base='GSE87571') annotations = pdm.Annotations(name='annotations', exclude='bad_cpgs', cross_reactive='any', snp='any', chr='NS', gene_region='any', geo='any', probe_class='any') cells = pdm.Cells(name='cells', types='any') if data.base == 'GSE55763': observables_list = [ { 'gender': 'any', 'is_duplicate': '0', 'age': (35, 100) }, ] else: observables_list = [ { 'gender': 'any' }, ] method_params = {
from tqdm import tqdm import numpy as np from scipy.stats import pearsonr, pointbiserialr from statsmodels.stats.multitest import multipletests from paper.routines.infrastructure.save.table import save_table_dict_xlsx save_path = 'E:/YandexDisk/Work/pydnameth/unn_epic/comparison' data_unn_epic = pdm.Data( path='', base='unn_epic' ) annotations_unn_epic = pdm.Annotations( name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={ 'CHR': ['-X', '-Y'] } ) target_unn_epic = 'Age' observables_unn_epic = pdm.Observables( name='observables', types={} ) cells_unn_epic = pdm.Cells( name='cell_counts_horvath_filtered_normalized', types='any' ) attributes_unn_epic = pdm.Attributes( target=target_unn_epic, observables=observables_unn_epic,
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( path='', base='unn_epic' ) annotations = pdm.Annotations( name='annotations', type='850k', exclude='none', select_dict={} ) observables = pdm.Observables( name='observables_part(v1)', types={'COVID': ['no', 'before'], 'Sample_Chronology': [0, 1]} ) cells = pdm.Cells( name='cell_counts_part(v1)', types='any' ) target = 'Group' attributes = pdm.Attributes( target=target, observables=observables,
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='unn_epic') annotations = pdm.Annotations(name='annotations', type='850k', exclude='none', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables_part(wo_noIntensity_detP)', types={}) cells = pdm.Cells(name='cell_counts_part(wo_noIntensity_detP)', types='any') target = 'Sample_Group' attributes = pdm.Attributes(target=target, observables=observables, cells=cells) data_params = { 'norm': 'fun', 'part': 'wo_noIntensity_detP', } method_params = { 'formula': 'cpg ~ Sample_Group + Sex*Age + Bcell + CD4T + CD8T + Neu + NK', } pdm.betas_table_formula_new( data=data,