Ejemplo n.º 1
0
def foot_in_stepping_stone(prog, terrain, n_steps, decision_variables):
    
    # unpack only decision variables needed in this function
    position_left, position_right, stone_left, stone_right = decision_variables[:4]
    
    # big-M vector
    M = get_big_M(terrain)
    
    # modify here
    for t in range(n_steps + 1):
      for i in range(len(terrain.stepping_stones)):
        A = terrain.stepping_stones[i].A
        b = terrain.stepping_stones[i].b
        prog.AddLinearConstraint(le(np.dot(A, position_left[t]), b + (1 - stone_left[t, i])*M))
        prog.AddLinearConstraint(le(np.dot(A, position_right[t]), b + (1 - stone_right[t, i])*M))
Ejemplo n.º 2
0
 def add_arena_limits_nl(self, prog, state, N):
     arena_lims = np.array([
         self.params.arena_limits_x / 2.0, self.params.arena_limits_y / 2.0
     ])
     for k in range(N + 1):
         prog.AddLinearConstraint(le(state[k][0:2], arena_lims))
         prog.AddLinearConstraint(ge(state[k][0:2], -arena_lims))
Ejemplo n.º 3
0
 def add_input_limits_nl(self, prog, cmd, N):
     """Add saturation limits to cmd"""
     for k in range(N):
         prog.AddLinearConstraint(
             le(cmd[k], self.params.input_limit * np.ones(2)))
         prog.AddLinearConstraint(
             ge(cmd[k], -self.params.input_limit * np.ones(2)))
Ejemplo n.º 4
0
def relative_position_limits(prog, n_steps, step_span, decision_variables):
    
    # unpack only decision variables needed in this function
    position_left, position_right = decision_variables[:2]
    
    # modify here
    for t in range(n_steps + 1):
      prog.AddLinearConstraint(le(position_left[t], position_right[t] + step_span/2))
      prog.AddLinearConstraint(ge(position_left[t], position_right[t] - step_span/2))
Ejemplo n.º 5
0
def step_sequence(prog, n_steps, step_span, decision_variables):
    
    # unpack only decision variables needed in this function
    position_left, position_right = decision_variables[:2]
    first_left = decision_variables[-1]
    
    # variable equal to one if first step is with right foot
    first_right = 1 - first_left
    
    # note that the step_span coincides with the maximum distance
    # (both horizontal and vertical) between the position of
    # a foot at step t and at step t + 1
    step_limit = np.ones(2) * step_span

    # sequence for the robot steps implied by the binaries first_left and first_right
    # (could be written more compactly, but would be harder to read)
    for t in range(n_steps):

        # lengths of the steps
        step_left = position_left[t + 1] - position_left[t]
        step_right = position_right[t + 1] - position_right[t]

        # for all even steps
        if t % 2 == 0:
            limit_left = step_limit * first_left   # left foot can move iff first_left
            limit_right = step_limit * first_right # right foot can move iff first_right

        # for all odd steps
        else:
            limit_left = step_limit * first_right # left foot can move iff first_right
            limit_right = step_limit * first_left # right foot can move iff first_left

        # constraints on left-foot relative position
        prog.AddLinearConstraint(le(step_left, limit_left))
        prog.AddLinearConstraint(ge(step_left, - limit_left))
        
        # constraints on right-foot relative position
        prog.AddLinearConstraint(le(step_right, limit_right))
        prog.AddLinearConstraint(ge(step_right, - limit_right))
Ejemplo n.º 6
0
    def create_qp1(self, plant_context, V, q_des, v_des, vd_des):
        # Determine contact points
        contact_positions_per_frame = {}
        active_contacts_per_frame = {}  # Note this should be in frame space
        for frame, contacts in self.contacts_per_frame.items():
            contact_positions = self.plant.CalcPointsPositions(
                plant_context, self.plant.GetFrameByName(frame), contacts,
                self.plant.world_frame())
            active_contacts_per_frame[
                frame] = contacts[:,
                                  np.where(contact_positions[2, :] <= 0.0)[0]]

        N_c = sum([
            active_contacts.shape[1]
            for active_contacts in active_contacts_per_frame.values()
        ])  # num contact points
        if N_c == 0:
            print("Not in contact!")
            return None
        ''' Eq(7) '''
        H = self.plant.CalcMassMatrixViaInverseDynamics(plant_context)
        # Note that CalcGravityGeneralizedForces assumes the form Mv̇ + C(q, v)v = tau_g(q) + tau_app
        # while Eq(7) assumes gravity is accounted in C (on the left hand side)
        C_7 = self.plant.CalcBiasTerm(
            plant_context) - self.plant.CalcGravityGeneralizedForces(
                plant_context)
        B_7 = self.B_7

        # TODO: Double check
        Phi_foots = []
        for frame, active_contacts in active_contacts_per_frame.items():
            if active_contacts.size:
                Phi_foots.append(
                    self.plant.CalcJacobianTranslationalVelocity(
                        plant_context, JacobianWrtVariable.kV,
                        self.plant.GetFrameByName(frame), active_contacts,
                        self.plant.world_frame(), self.plant.world_frame()))
        Phi = np.vstack(Phi_foots)
        ''' Eq(8) '''
        v_idx_act = self.v_idx_act
        H_f = H[0:v_idx_act, :]
        H_a = H[v_idx_act:, :]
        C_f = C_7[0:v_idx_act]
        C_a = C_7[v_idx_act:]
        B_a = self.B_a
        Phi_f_T = Phi.T[0:v_idx_act:, :]
        Phi_a_T = Phi.T[v_idx_act:, :]
        ''' Eq(9) '''
        # Assume flat ground for now
        n = np.array([[0], [0], [1.0]])
        d = np.array([[1.0, -1.0, 0.0, 0.0], [0.0, 0.0, 1.0, -1.0],
                      [0.0, 0.0, 0.0, 0.0]])
        v = np.zeros((N_d, N_c, N_f))
        for i in range(N_d):
            for j in range(N_c):
                v[i, j] = (n + mu * d)[:, i]
        ''' Quadratic Program I '''
        prog = MathematicalProgram()
        qdd = prog.NewContinuousVariables(
            self.plant.num_velocities(),
            name="qdd")  # To ignore 6 DOF floating base
        self.qdd = qdd
        beta = prog.NewContinuousVariables(N_d, N_c, name="beta")
        self.beta = beta
        lambd = prog.NewContinuousVariables(N_f * N_c, name="lambda")
        self.lambd = lambd

        # Jacobians ignoring the 6DOF floating base
        J_foots = []
        for frame, active_contacts in active_contacts_per_frame.items():
            if active_contacts.size:
                num_active_contacts = active_contacts.shape[1]
                J_foot = np.zeros((N_f * num_active_contacts, Atlas.TOTAL_DOF))
                # TODO: Can this be simplified?
                for i in range(num_active_contacts):
                    J_foot[N_f * i:N_f *
                           (i +
                            1), :] = self.plant.CalcJacobianSpatialVelocity(
                                plant_context, JacobianWrtVariable.kV,
                                self.plant.GetFrameByName(frame),
                                active_contacts[:,
                                                i], self.plant.world_frame(),
                                self.plant.world_frame())[3:]
                J_foots.append(J_foot)
        J = np.vstack(J_foots)
        assert (J.shape == (N_c * N_f, Atlas.TOTAL_DOF))

        eta = prog.NewContinuousVariables(J.shape[0], name="eta")
        self.eta = eta

        x = prog.NewContinuousVariables(
            self.x_size, name="x")  # x_com, y_com, x_com_d, y_com_d
        self.x = x
        u = prog.NewContinuousVariables(self.u_size,
                                        name="u")  # x_com_dd, y_com_dd
        self.u = u
        ''' Eq(10) '''
        w = 0.01
        epsilon = 1.0e-8
        K_p = 10.0
        K_d = 4.0
        frame_weights = np.ones((Atlas.TOTAL_DOF))

        q = self.plant.GetPositions(plant_context)
        qd = self.plant.GetVelocities(plant_context)

        # Convert q, q_nom to generalized velocities form
        q_err = self.plant.MapQDotToVelocity(plant_context, q_des - q)
        # print(f"Pelvis error: {q_err[0:3]}")
        ## FIXME: Not sure if it's a good idea to ignore the x, y, z position of pelvis
        # ignored_pose_indices = {3, 4, 5} # Ignore x position, y position
        ignored_pose_indices = {}  # Ignore x position, y position
        relevant_pose_indices = list(
            set(range(Atlas.TOTAL_DOF)) - set(ignored_pose_indices))
        self.relevant_pose_indices = relevant_pose_indices
        qdd_ref = K_p * q_err + K_d * (v_des - qd) + vd_des  # Eq(27) of [1]
        qdd_err = qdd_ref - qdd
        qdd_err = qdd_err * frame_weights
        qdd_err = qdd_err[relevant_pose_indices]
        prog.AddCost(
            V(x, u) + w * ((qdd_err).dot(qdd_err)) +
            epsilon * np.sum(np.square(beta)) + eta.dot(eta))
        ''' Eq(11) - 0.003s '''
        eq11_lhs = H_f.dot(qdd) + C_f
        eq11_rhs = Phi_f_T.dot(lambd)
        prog.AddLinearConstraint(eq(eq11_lhs, eq11_rhs))
        ''' Eq(12) - 0.005s '''
        alpha = 0.1
        # TODO: Double check
        Jd_qd_foots = []
        for frame, active_contacts in active_contacts_per_frame.items():
            if active_contacts.size:
                Jd_qd_foot = self.plant.CalcBiasTranslationalAcceleration(
                    plant_context, JacobianWrtVariable.kV,
                    self.plant.GetFrameByName(frame), active_contacts,
                    self.plant.world_frame(), self.plant.world_frame())
                Jd_qd_foots.append(Jd_qd_foot.flatten())
        Jd_qd = np.concatenate(Jd_qd_foots)
        assert (Jd_qd.shape == (N_c * 3, ))
        eq12_lhs = J.dot(qdd) + Jd_qd
        eq12_rhs = -alpha * J.dot(qd) + eta
        prog.AddLinearConstraint(eq(eq12_lhs, eq12_rhs))
        ''' Eq(13) - 0.015s '''
        def tau(qdd, lambd):
            return self.B_a_inv.dot(H_a.dot(qdd) + C_a - Phi_a_T.dot(lambd))

        self.tau = tau
        eq13_lhs = self.tau(qdd, lambd)
        prog.AddLinearConstraint(ge(eq13_lhs, -self.sorted_max_efforts))
        prog.AddLinearConstraint(le(eq13_lhs, self.sorted_max_efforts))
        ''' Eq(14) '''
        for j in range(N_c):
            beta_v = beta[:, j].dot(v[:, j])
            prog.AddLinearConstraint(eq(lambd[N_f * j:N_f * j + 3], beta_v))
        ''' Eq(15) '''
        for b in beta.flat:
            prog.AddLinearConstraint(b >= 0.0)
        ''' Eq(16) '''
        prog.AddLinearConstraint(ge(eta, eta_min))
        prog.AddLinearConstraint(le(eta, eta_max))
        ''' Enforce x as com '''
        com = self.plant.CalcCenterOfMassPosition(plant_context)
        com_d = self.plant.CalcJacobianCenterOfMassTranslationalVelocity(
            plant_context, JacobianWrtVariable.kV, self.plant.world_frame(),
            self.plant.world_frame()).dot(qd)
        prog.AddLinearConstraint(x[0] == com[0])
        prog.AddLinearConstraint(x[1] == com[1])
        prog.AddLinearConstraint(x[2] == com_d[0])
        prog.AddLinearConstraint(x[3] == com_d[1])
        ''' Enforce u as com_dd '''
        com_dd = (
            self.plant.CalcBiasCenterOfMassTranslationalAcceleration(
                plant_context, JacobianWrtVariable.kV,
                self.plant.world_frame(), self.plant.world_frame()) +
            self.plant.CalcJacobianCenterOfMassTranslationalVelocity(
                plant_context, JacobianWrtVariable.kV,
                self.plant.world_frame(), self.plant.world_frame()).dot(qdd))
        prog.AddLinearConstraint(u[0] == com_dd[0])
        prog.AddLinearConstraint(u[1] == com_dd[1])
        ''' Respect joint limits '''
        for name, limit in Atlas.JOINT_LIMITS.items():
            # Get the corresponding joint value
            joint_pos = self.plant.GetJointByName(name).get_angle(
                plant_context)
            # Get the corresponding actuator index
            act_idx = getActuatorIndex(self.plant, name)
            # Use the actuator index to find the corresponding generalized coordinate index
            # q_idx = np.where(B_7[:,act_idx] == 1)[0][0]
            q_idx = getJointIndexInGeneralizedVelocities(self.plant, name)

            if joint_pos >= limit.upper:
                # print(f"Joint {name} max reached")
                prog.AddLinearConstraint(qdd[q_idx] <= 0.0)
            elif joint_pos <= limit.lower:
                # print(f"Joint {name} min reached")
                prog.AddLinearConstraint(qdd[q_idx] >= 0.0)

        return prog
Ejemplo n.º 7
0
def solveOptimization(state_init,
                      t_impact,
                      impact_combination,
                      T,
                      u_guess=None,
                      x_guess=None,
                      h_guess=None):
    prog = MathematicalProgram()
    h = prog.NewContinuousVariables(T, name='h')
    u = prog.NewContinuousVariables(rows=T + 1,
                                    cols=2 * n_quadrotors,
                                    name='u')
    x = prog.NewContinuousVariables(rows=T + 1,
                                    cols=6 * n_quadrotors + 4 * n_balls,
                                    name='x')
    dv = prog.decision_variables()

    prog.AddBoundingBoxConstraint([h_min] * T, [h_max] * T, h)

    for i in range(n_quadrotors):
        sys = Quadrotor2D()
        context = sys.CreateDefaultContext()
        dir_coll_constr = DirectCollocationConstraint(sys, context)
        ind_x = 6 * i
        ind_u = 2 * i

        for t in range(T):
            impact_indices = impact_combination[np.argmax(
                np.abs(t - t_impact) <= 1)]
            quad_ind, ball_ind = impact_indices[0], impact_indices[1]

            if quad_ind == i and np.any(
                    t == t_impact
            ):  # Don't add Direct collocation constraint at impact
                continue
            elif quad_ind == i and (np.any(t == t_impact - 1)
                                    or np.any(t == t_impact + 1)):
                prog.AddConstraint(
                    eq(
                        x[t + 1,
                          ind_x:ind_x + 3], x[t, ind_x:ind_x + 3] + h[t] *
                        x[t + 1, ind_x + 3:ind_x + 6]))  # Backward euler
                prog.AddConstraint(
                    eq(x[t + 1, ind_x + 3:ind_x + 6], x[t,
                                                        ind_x + 3:ind_x + 6])
                )  # Zero-acceleration assumption during this time step. Should maybe replace with something less naive
            else:
                AddDirectCollocationConstraint(
                    dir_coll_constr, np.array([[h[t]]]),
                    x[t, ind_x:ind_x + 6].reshape(-1, 1),
                    x[t + 1, ind_x:ind_x + 6].reshape(-1, 1),
                    u[t, ind_u:ind_u + 2].reshape(-1, 1),
                    u[t + 1, ind_u:ind_u + 2].reshape(-1, 1), prog)

    for i in range(n_balls):
        sys = Ball2D()
        context = sys.CreateDefaultContext()
        dir_coll_constr = DirectCollocationConstraint(sys, context)
        ind_x = 6 * n_quadrotors + 4 * i

        for t in range(T):
            impact_indices = impact_combination[np.argmax(
                np.abs(t - t_impact) <= 1)]
            quad_ind, ball_ind = impact_indices[0], impact_indices[1]

            if ball_ind == i and np.any(
                    t == t_impact
            ):  # Don't add Direct collocation constraint at impact
                continue
            elif ball_ind == i and (np.any(t == t_impact - 1)
                                    or np.any(t == t_impact + 1)):
                prog.AddConstraint(
                    eq(
                        x[t + 1,
                          ind_x:ind_x + 2], x[t, ind_x:ind_x + 2] + h[t] *
                        x[t + 1, ind_x + 2:ind_x + 4]))  # Backward euler
                prog.AddConstraint(
                    eq(x[t + 1,
                         ind_x + 2:ind_x + 4], x[t, ind_x + 2:ind_x + 4] +
                       h[t] * np.array([0, -9.81])))
            else:
                AddDirectCollocationConstraint(
                    dir_coll_constr, np.array([[h[t]]]),
                    x[t, ind_x:ind_x + 4].reshape(-1, 1),
                    x[t + 1, ind_x:ind_x + 4].reshape(-1, 1),
                    u[t, 0:0].reshape(-1, 1), u[t + 1, 0:0].reshape(-1,
                                                                    1), prog)

    # Initial conditions
    prog.AddLinearConstraint(eq(x[0, :], state_init))

    # Final conditions
    prog.AddLinearConstraint(eq(x[T, 0:14], state_final[0:14]))
    # Quadrotor final conditions (full state)
    for i in range(n_quadrotors):
        ind = 6 * i
        prog.AddLinearConstraint(
            eq(x[T, ind:ind + 6], state_final[ind:ind + 6]))

    # Ball final conditions (position only)
    for i in range(n_balls):
        ind = 6 * n_quadrotors + 4 * i
        prog.AddLinearConstraint(
            eq(x[T, ind:ind + 2], state_final[ind:ind + 2]))

    # Input constraints
    for i in range(n_quadrotors):
        prog.AddLinearConstraint(ge(u[:, 2 * i], -20.0))
        prog.AddLinearConstraint(le(u[:, 2 * i], 20.0))
        prog.AddLinearConstraint(ge(u[:, 2 * i + 1], -20.0))
        prog.AddLinearConstraint(le(u[:, 2 * i + 1], 20.0))

    # Don't allow quadrotor to pitch more than 60 degrees
    for i in range(n_quadrotors):
        prog.AddLinearConstraint(ge(x[:, 6 * i + 2], -np.pi / 3))
        prog.AddLinearConstraint(le(x[:, 6 * i + 2], np.pi / 3))

    # Ball position constraints
    # for i in range(n_balls):
    #     ind_i = 6*n_quadrotors + 4*i
    #     prog.AddLinearConstraint(ge(x[:,ind_i],-2.0))
    #     prog.AddLinearConstraint(le(x[:,ind_i], 2.0))
    #     prog.AddLinearConstraint(ge(x[:,ind_i+1],-3.0))
    #     prog.AddLinearConstraint(le(x[:,ind_i+1], 3.0))

    # Impact constraint
    quad_temp = Quadrotor2D()

    for i in range(n_quadrotors):
        for j in range(n_balls):
            ind_q = 6 * i
            ind_b = 6 * n_quadrotors + 4 * j
            for t in range(T):
                if np.any(
                        t == t_impact
                ):  # If quad i and ball j impact at time t, add impact constraint
                    impact_indices = impact_combination[np.argmax(
                        t == t_impact)]
                    quad_ind, ball_ind = impact_indices[0], impact_indices[1]
                    if quad_ind == i and ball_ind == j:
                        # At impact, witness function == 0
                        prog.AddConstraint(lambda a: np.array([
                            CalcClosestDistanceQuadBall(a[0:3], a[3:5])
                        ]).reshape(1, 1),
                                           lb=np.zeros((1, 1)),
                                           ub=np.zeros((1, 1)),
                                           vars=np.concatenate(
                                               (x[t, ind_q:ind_q + 3],
                                                x[t,
                                                  ind_b:ind_b + 2])).reshape(
                                                      -1, 1))
                        # At impact, enforce discrete collision update for both ball and quadrotor
                        prog.AddConstraint(
                            CalcPostCollisionStateQuadBallResidual,
                            lb=np.zeros((6, 1)),
                            ub=np.zeros((6, 1)),
                            vars=np.concatenate(
                                (x[t, ind_q:ind_q + 6], x[t, ind_b:ind_b + 4],
                                 x[t + 1, ind_q:ind_q + 6])).reshape(-1, 1))
                        prog.AddConstraint(
                            CalcPostCollisionStateBallQuadResidual,
                            lb=np.zeros((4, 1)),
                            ub=np.zeros((4, 1)),
                            vars=np.concatenate(
                                (x[t, ind_q:ind_q + 6], x[t, ind_b:ind_b + 4],
                                 x[t + 1, ind_b:ind_b + 4])).reshape(-1, 1))

                        # rough constraints to enforce hitting center-ish of paddle
                        prog.AddLinearConstraint(
                            x[t, ind_q] - x[t, ind_b] >= -0.01)
                        prog.AddLinearConstraint(
                            x[t, ind_q] - x[t, ind_b] <= 0.01)
                        continue
                # Everywhere else, witness function must be > 0
                prog.AddConstraint(lambda a: np.array([
                    CalcClosestDistanceQuadBall(a[ind_q:ind_q + 3], a[
                        ind_b:ind_b + 2])
                ]).reshape(1, 1),
                                   lb=np.zeros((1, 1)),
                                   ub=np.inf * np.ones((1, 1)),
                                   vars=x[t, :].reshape(-1, 1))

    # Don't allow quadrotor collisions
    # for t in range(T):
    #     for i in range(n_quadrotors):
    #         for j in range(i+1, n_quadrotors):
    #             prog.AddConstraint((x[t,6*i]-x[t,6*j])**2 + (x[t,6*i+1]-x[t,6*j+1])**2 >= 0.65**2)

    # Quadrotors stay on their own side
    # prog.AddLinearConstraint(ge(x[:, 0], 0.3))
    # prog.AddLinearConstraint(le(x[:, 6], -0.3))

    ###############################################################################
    # Set up initial guesses
    initial_guess = np.empty(prog.num_vars())

    # # initial guess for the time step
    prog.SetDecisionVariableValueInVector(h, h_guess, initial_guess)

    x_init[0, :] = state_init
    prog.SetDecisionVariableValueInVector(x, x_guess, initial_guess)

    prog.SetDecisionVariableValueInVector(u, u_guess, initial_guess)

    solver = SnoptSolver()
    print("Solving...")
    result = solver.Solve(prog, initial_guess)

    # print(GetInfeasibleConstraints(prog,result))
    # be sure that the solution is optimal
    assert result.is_success()

    print(f'Solution found? {result.is_success()}.')

    #################################################################################
    # Extract results
    # get optimal solution
    h_opt = result.GetSolution(h)
    x_opt = result.GetSolution(x)
    u_opt = result.GetSolution(u)
    time_breaks_opt = np.array([sum(h_opt[:t]) for t in range(T + 1)])
    u_opt_poly = PiecewisePolynomial.ZeroOrderHold(time_breaks_opt, u_opt.T)
    # x_opt_poly = PiecewisePolynomial.Cubic(time_breaks_opt, x_opt.T, False)
    x_opt_poly = PiecewisePolynomial.FirstOrderHold(
        time_breaks_opt, x_opt.T
    )  # Switch to first order hold instead of cubic because cubic was taking too long to create
    #################################################################################
    # Create list of K matrices for time varying LQR
    context = quad_plant.CreateDefaultContext()
    breaks = copy.copy(
        time_breaks_opt)  #np.linspace(0, x_opt_poly.end_time(), 100)

    K_samples = np.zeros((breaks.size, 12 * n_quadrotors))

    for i in range(n_quadrotors):
        K = None
        for j in range(breaks.size):
            context.SetContinuousState(
                x_opt_poly.value(breaks[j])[6 * i:6 * (i + 1)])
            context.FixInputPort(
                0,
                u_opt_poly.value(breaks[j])[2 * i:2 * (i + 1)])
            linear_system = FirstOrderTaylorApproximation(quad_plant, context)
            A = linear_system.A()
            B = linear_system.B()
            try:
                K, _, _ = control.lqr(A, B, Q, R)
            except:
                assert K is not None, "Failed to calculate initial K for quadrotor " + str(
                    i)
                print("Warning: Failed to calculate K at timestep", j,
                      "for quadrotor", i, ". Using K from previous timestep")

            K_samples[j, 12 * i:12 * (i + 1)] = K.reshape(-1)

    K_poly = PiecewisePolynomial.ZeroOrderHold(breaks, K_samples.T)

    return u_opt_poly, x_opt_poly, K_poly, h_opt
Ejemplo n.º 8
0
import numpy as np
from pydrake.all import Quaternion
from pydrake.all import MathematicalProgram, Solve, eq, le, ge, SolverOptions, SnoptSolver
import pdb

prog = MathematicalProgram()
x = prog.NewContinuousVariables(rows=1, name='x')
y = prog.NewContinuousVariables(rows=1, name='y')
slack = prog.NewContinuousVariables(rows=1, name="slack")

prog.AddConstraint(eq(x * y, slack))
prog.AddLinearConstraint(ge(x, 0))
prog.AddLinearConstraint(ge(y, 0))
prog.AddLinearConstraint(le(x, 1))
prog.AddLinearConstraint(le(y, 1))
prog.AddCost(1e5 * (slack**2)[0])
prog.AddCost(-(2 * x[0] + y[0]))

solver = SnoptSolver()
result = solver.Solve(prog)
print(
    f"Success: {result.is_success()}, x = {result.GetSolution(x)}, y = {result.GetSolution(y)}, slack = {result.GetSolution(slack)}"
)
Ejemplo n.º 9
0
    def optimize(self, vehs):
        c = self.c
        p = self.p

        n_veh, L, N, dt, u_max = c.n_veh, c.circumference, c.n_opt, c.sim_step, c.u_max
        L_veh = vehs[0].length
        a, b, s0, T, v0, delta = p.a, p.b, p.s0, p.tau, p.v0, p.delta

        vehs = vehs[::-1]
        np.set_printoptions(linewidth=100)
        # the controlled vehicle is now the first vehicle, positions are sorted from largest to smallest
        print(f'Current positions {[veh.pos for veh in vehs]}')
        v_init = [veh.speed for veh in vehs]
        print(f'Current speeds {v_init}')
        # spacing
        s_init = [vehs[-1].pos - vehs[0].pos - L_veh] + [
            veh_im1.pos - veh_i.pos - L_veh
            for veh_im1, veh_i in zip(vehs[:-1], vehs[1:])
        ]
        s_init = [s + L if s < 0 else s for s in s_init]  # handle wrap
        print(f'Current spacings {s_init}')

        # can still follow current plan
        if self.plan_index < len(self.plan):
            accel = self.plan[self.plan_index]
            self.plan_index += 1
            return accel

        print(f'Optimizing trajectory for {c.n_opt} steps')

        ## solve for equilibrium conditions (when all vehicles have same spacing and going at optimal speed)
        import scipy.optimize
        sf = L / n_veh - L_veh  # equilibrium space
        accel_fn = lambda v: a * (1 - (v / v0)**delta - ((s0 + v * T) / sf)**2)
        sol = scipy.optimize.root(accel_fn, 0)
        vf = sol.x.item()  # equilibrium speed
        sstarf = s0 + vf * T
        print('Equilibrium speed', vf)

        # nonconvex optimization
        from pydrake.all import MathematicalProgram, SnoptSolver, eq, le, ge

        # get guesses for solutions
        v_guess = [np.mean(v_init)]
        for _ in range(N):
            v_guess.append(dt * accel_fn(v_guess[-1]))
        s_guess = [sf] * (N + 1)

        prog = MathematicalProgram()
        v = prog.NewContinuousVariables(N + 1, n_veh, 'v')  # speed
        s = prog.NewContinuousVariables(N + 1, n_veh, 's')  # spacing
        flat = lambda x: x.reshape(-1)

        # Guess
        prog.SetInitialGuess(s, np.stack([s_guess] * n_veh, axis=1))
        prog.SetInitialGuess(v, np.stack([v_guess] * n_veh, axis=1))

        # initial conditions constraint
        prog.AddLinearConstraint(eq(v[0], v_init))
        prog.AddLinearConstraint(eq(s[0], s_init))

        # velocity constraint
        prog.AddLinearConstraint(ge(flat(v[1:]), 0))
        prog.AddLinearConstraint(le(flat(v[1:]),
                                    vf + 1))  # extra constraint to help solver

        # spacing constraint
        prog.AddLinearConstraint(ge(flat(s[1:]), s0))
        prog.AddLinearConstraint(le(flat(s[1:]),
                                    sf * 2))  # extra constraint to help solver
        prog.AddLinearConstraint(eq(flat(s[1:].sum(axis=1)),
                                    L - L_veh * n_veh))

        # spacing update constraint
        s_n = s[:-1, 1:]  # s_i[n]
        s_np1 = s[1:, 1:]  # s_i[n + 1]
        v_n = v[:-1, 1:]  # v_i[n]
        v_np1 = v[1:, 1:]  # v_i[n + 1]
        v_n_im1 = v[:-1, :-1]  # v_{i - 1}[n]
        v_np1_im1 = v[1:, :-1]  # v_{i - 1}[n + 1]
        prog.AddLinearConstraint(
            eq(flat(s_np1 - s_n),
               flat(0.5 * dt * (v_n_im1 + v_np1_im1 - v_n - v_np1))))
        # handle position wrap for vehicle 1
        prog.AddLinearConstraint(
            eq(s[1:, 0] - s[:-1, 0],
               0.5 * dt * (v[:-1, -1] + v[1:, -1] - v[:-1, 0] - v[1:, 0])))

        # vehicle 0's action constraint
        prog.AddLinearConstraint(ge(v[1:, 0], v[:-1, 0] - u_max * dt))
        prog.AddLinearConstraint(le(v[1:, 0], v[:-1, 0] + u_max * dt))

        # idm constraint
        prog.AddConstraint(
            eq((v_np1 - v_n - dt * a * (1 - (v_n / v0)**delta)) * s_n**2,
               -dt * a * (s0 + v_n * T + v_n * (v_n - v_n_im1) /
                          (2 * np.sqrt(a * b)))**2))

        if c.cost == 'mean':
            prog.AddCost(-v.mean())
        elif c.cost == 'target':
            prog.AddCost(((v - vf)**2).mean() + ((s - sf)**2).mean())

        solver = SnoptSolver()
        result = solver.Solve(prog)

        if not result.is_success():
            accel = self.idm_backup.step(s_init[0], v_init[0], v_init[-1])
            print(f'Optimization failed, using accel {accel} from IDM')
            return accel

        v_desired = result.GetSolution(v)
        print('Planned speeds')
        print(v_desired)
        print('Planned spacings')
        print(result.GetSolution(s))
        a_desired = (v_desired[1:, 0] - v_desired[:-1, 0]
                     ) / dt  # we're optimizing the velocity of the 0th vehicle
        self.plan = a_desired
        self.plan_index = 1
        return self.plan[0]
Ejemplo n.º 10
0
    def compute_input(self, x, xd, initial_guess=None, tol=0.0):
        prog = MathematicalProgram()

        # Joint configuration states & Contact forces
        q = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='q')
        v = prog.NewContinuousVariables(rows=self.T + 1,
                                        cols=self.nq,
                                        name='v')
        u = prog.NewContinuousVariables(rows=self.T, cols=self.nu, name='u')
        contact = prog.NewContinuousVariables(rows=self.T,
                                              cols=self.nf,
                                              name='lambda')

        #
        alpha = prog.NewContinuousVariables(rows=self.T, cols=2, name='alpha')
        beta = prog.NewContinuousVariables(rows=self.T, cols=2, name='beta')

        # Add Initial Condition Constraint
        prog.AddConstraint(eq(q[0], np.array(x[0:3])))
        prog.AddConstraint(eq(v[0], np.array(x[3:6])))

        # Add Final Condition Constraint
        prog.AddConstraint(eq(q[self.T], np.array(xd[0:3])))
        prog.AddConstraint(eq(v[self.T], np.array(xd[3:6])))

        # Add Dynamics Constraints
        for t in range(self.T):
            # Add Dynamics Constraints
            prog.AddConstraint(
                eq(q[t + 1], (q[t] + self.sim.params['h'] * v[t + 1])))

            prog.AddConstraint(v[t + 1, 0] == (
                v[t, 0] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 0] - contact[t, 0] + u[t, 0])))
            prog.AddConstraint(v[t + 1,
                                 1] == (v[t, 1] + self.sim.params['h'] *
                                        (-self.sim.params['c'] * v[t, 1] +
                                         contact[t, 0] - contact[t, 1])))
            prog.AddConstraint(v[t + 1, 2] == (
                v[t, 2] + self.sim.params['h'] *
                (-self.sim.params['c'] * v[t, 2] + contact[t, 1] + u[t, 1])))

            # Add Contact Constraints
            prog.AddConstraint(ge(alpha[t], 0))
            prog.AddConstraint(ge(beta[t], 0))
            prog.AddConstraint(alpha[t, 0] == contact[t, 0])
            prog.AddConstraint(alpha[t, 1] == contact[t, 1])
            prog.AddConstraint(
                beta[t, 0] == (contact[t, 0] + self.sim.params['k'] *
                               (q[t, 1] - q[t, 0] - self.sim.params['d'])))
            prog.AddConstraint(
                beta[t, 1] == (contact[t, 1] + self.sim.params['k'] *
                               (q[t, 2] - q[t, 1] - self.sim.params['d'])))

            # Complementarity constraints. Start with relaxed version and start constraining.
            prog.AddConstraint(alpha[t, 0] * beta[t, 0] <= tol)
            prog.AddConstraint(alpha[t, 1] * beta[t, 1] <= tol)

            # Add Input Constraints and Contact Constraints
            prog.AddConstraint(le(contact[t], self.contact_max))
            prog.AddConstraint(ge(contact[t], -self.contact_max))
            prog.AddConstraint(le(u[t], self.input_max))
            prog.AddConstraint(ge(u[t], -self.input_max))

            # Add Costs
            prog.AddCost(u[t].dot(u[t]))

        # Set Initial Guess as empty. Otherwise, start from last solver iteration.
        if (type(initial_guess) == type(None)):
            initial_guess = np.empty(prog.num_vars())

            # Populate initial guess by linearly interpolating between initial
            # and final states
            #qinit = np.linspace(x[0:3], xd[0:3], self.T + 1)
            qinit = np.tile(np.array(x[0:3]), (self.T + 1, 1))
            vinit = np.tile(np.array(x[3:6]), (self.T + 1, 1))
            uinit = np.tile(np.array([0, 0]), (self.T, 1))
            finit = np.tile(np.array([0, 0]), (self.T, 1))

            prog.SetDecisionVariableValueInVector(q, qinit, initial_guess)
            prog.SetDecisionVariableValueInVector(v, vinit, initial_guess)
            prog.SetDecisionVariableValueInVector(u, uinit, initial_guess)
            prog.SetDecisionVariableValueInVector(contact, finit,
                                                  initial_guess)

        # Solve the program
        if (self.solver == "ipopt"):
            solver = IpoptSolver()
        elif (self.solver == "snopt"):
            solver = SnoptSolver()

        result = solver.Solve(prog, initial_guess)

        if (self.solver == "ipopt"):
            print("Ipopt Solver Status: ",
                  result.get_solver_details().status, ", meaning ",
                  result.get_solver_details().ConvertStatusToString())
        elif (self.solver == "snopt"):
            val = result.get_solver_details().info
            status = self.snopt_status(val)
            print("Snopt Solver Status: ",
                  result.get_solver_details().info, ", meaning ", status)

        sol = result.GetSolution()
        q_opt = result.GetSolution(q)
        v_opt = result.GetSolution(v)
        u_opt = result.GetSolution(u)
        f_opt = result.GetSolution(contact)

        return sol, q_opt, v_opt, u_opt, f_opt