Ejemplo n.º 1
0
import numpy as np
import math
import time

# vacuum
mat_vac = mb.material("Vacuum", None)
mb.material.add_to_library(mat_vac)

# Ziolkowski active region material
qm = mb.qm_desc_2lvl(1e24, 2 * math.pi * 2e14, 6.24e-11, 1.0e10, 1.0e10, -1.0)
mat_ar = mb.material("AR_Ziolkowski", qm)
mb.material.add_to_library(mat_ar)

# Ziolkowski setup
dev = mb.device("Ziolkowski")
dev.add_region(mb.region("Vacuum left", mat_vac, 0, 7.5e-6))
dev.add_region(mb.region("Active region", mat_ar, 7.5e-6, 142.5e-6))
dev.add_region(mb.region("Vacuum right", mat_vac, 142.5e-6, 150e-6))

# initial density matrix
rho_init = mb.qm_operator([1, 0])

# scenario
sce = mb.scenario("Basic", 32768, 200e-15, rho_init)
sce.add_record(mb.record("inv12", 2.5e-15))
sce.add_record(mb.record("e", 2.5e-15))

# add source
sce.add_source(
    mb.sech_pulse("sech", 0.0, mb.source.hard_source, 4.2186e9, 2e14, 10,
                  2e14))
Ejemplo n.º 2
0
import pymbsolvelib as mb

vacuum = mb.material('vacuum')

reg = mb.region('Vacuum right', vacuum, 0, 7.5e-6)

dev = mb.Device('QCL')

dev.add_region(reg)
Ejemplo n.º 3
0
import numpy as np
import math
import time

# vacuum
mat_vac = mb.material("Vacuum")
mb.material.add_to_library(mat_vac)

# Ziolkowski active region material
qm = mb.qm_desc_2lvl(1e24, 2 * math.pi * 2e14, 6.24e-11, 1.0e10, 1.0e10, -1.0)
mat_ar = mb.material("AR_Ziolkowski", qm)
mb.material.add_to_library(mat_ar)

# Ziolkowski setup
dev = mb.device("Ziolkowski")
dev.add_region(mb.region("Vacuum left", mat_vac, 0, 7.5e-6))
dev.add_region(mb.region("Active region", mat_ar, 7.5e-6, 142.5e-6))
dev.add_region(mb.region("Vacuum right", mat_vac, 142.5e-6, 150e-6))

# initial density matrix
rho_init = mb.qm_operator([ 1, 0 ])

# scenario
sce = mb.scenario("Basic", 32768, 200e-15, rho_init)
sce.add_record(mb.record("inv12", 2.5e-15))
sce.add_record(mb.record("e", 2.5e-15))

# add source
sce.add_source(mb.sech_pulse("sech", 0.0, mb.source.hard_source, 4.2186e9,
                             2e14, 10, 2e14))
Ejemplo n.º 4
0
# relaxation superoperator
rate = 1e10
rates = [[0, rate, rate], [rate, 0, rate], [rate, rate, 0]]
relax_sop = mb.qm_lindblad_relaxation(rates)

# initial density matrix
rho_init = mb.qm_operator([1, 0, 0])

# quantum mechanical description
qm = mb.qm_description(6e24, H, u, relax_sop)
mat_ar = mb.material("AR_Song", qm)
mb.material.add_to_library(mat_ar)

# Ziolkowski setup
dev = mb.device("Song")
dev.add_region(mb.region("Active region", mat_ar, 0, 150e-6))

# scenario
sce = mb.scenario("Basic", 32768, 80e-15, rho_init)
sce.add_record(mb.record("e", 0.0, 0.0))
sce.add_record(mb.record("d11", mb.record.density, 1, 1, 0.0, 0.0))
sce.add_record(mb.record("d22", mb.record.density, 2, 2, 0.0, 0.0))
sce.add_record(mb.record("d33", mb.record.density, 3, 3, 0.0, 0.0))

# add source
sce.add_source(
    mb.sech_pulse("sech", 0.0, mb.source.hard_source, 3.5471e9, 3.8118e14,
                  17.248, 1.76 / 5e-15, -math.pi / 2))

# run solver
sol = mb.solver("openmp-3lvl-os-red", dev, sce)
Ejemplo n.º 5
0
print(L)
print(loss)
# Freeman 2013 active region
# varies gain recovery time T1
T1 = 20e-12
qm = mb.qm_desc_2lvl(3.7e20, 2 * math.pi * 2.45e12, 6.2e-9, 1 / T1,
                     1 / 2.35e-12, 1.0)
# background rel permittivity 12.9
# overlap factor 1
mat_ar = mb.material("AR_Freeman", qm, 12.9, 1, loss)
mb.material.add_to_library(mat_ar)

L_abs = 0.25e-3

dev = mb.device("Freeman")
dev.add_region(mb.region("Vacuum left", mat_abs, 0, L_abs))
dev.add_region(mb.region("Active region", mat_ar, L_abs, L_abs + L))
dev.add_region(mb.region("Vacuum right", mat_abs, L_abs + L, 2 * L_abs + L))

# scenario
# approx 14000 grid points -> choose 16k?
# rather set d_x directly
# courant number?
sce = mb.scenario("Basic", 16384, 230e-12)
sce.add_record(mb.record("inv12", 2e-12))
sce.add_record(mb.record("e", 1e-13, L_abs + L))

#TODO check whether position > device length

# add source
sce.add_source(