import numpy as np import math import time # vacuum mat_vac = mb.material("Vacuum", None) mb.material.add_to_library(mat_vac) # Ziolkowski active region material qm = mb.qm_desc_2lvl(1e24, 2 * math.pi * 2e14, 6.24e-11, 1.0e10, 1.0e10, -1.0) mat_ar = mb.material("AR_Ziolkowski", qm) mb.material.add_to_library(mat_ar) # Ziolkowski setup dev = mb.device("Ziolkowski") dev.add_region(mb.region("Vacuum left", mat_vac, 0, 7.5e-6)) dev.add_region(mb.region("Active region", mat_ar, 7.5e-6, 142.5e-6)) dev.add_region(mb.region("Vacuum right", mat_vac, 142.5e-6, 150e-6)) # initial density matrix rho_init = mb.qm_operator([1, 0]) # scenario sce = mb.scenario("Basic", 32768, 200e-15, rho_init) sce.add_record(mb.record("inv12", 2.5e-15)) sce.add_record(mb.record("e", 2.5e-15)) # add source sce.add_source( mb.sech_pulse("sech", 0.0, mb.source.hard_source, 4.2186e9, 2e14, 10, 2e14))
import pymbsolvelib as mb vacuum = mb.material('vacuum') reg = mb.region('Vacuum right', vacuum, 0, 7.5e-6) dev = mb.Device('QCL') dev.add_region(reg)
import numpy as np import math import time # vacuum mat_vac = mb.material("Vacuum") mb.material.add_to_library(mat_vac) # Ziolkowski active region material qm = mb.qm_desc_2lvl(1e24, 2 * math.pi * 2e14, 6.24e-11, 1.0e10, 1.0e10, -1.0) mat_ar = mb.material("AR_Ziolkowski", qm) mb.material.add_to_library(mat_ar) # Ziolkowski setup dev = mb.device("Ziolkowski") dev.add_region(mb.region("Vacuum left", mat_vac, 0, 7.5e-6)) dev.add_region(mb.region("Active region", mat_ar, 7.5e-6, 142.5e-6)) dev.add_region(mb.region("Vacuum right", mat_vac, 142.5e-6, 150e-6)) # initial density matrix rho_init = mb.qm_operator([ 1, 0 ]) # scenario sce = mb.scenario("Basic", 32768, 200e-15, rho_init) sce.add_record(mb.record("inv12", 2.5e-15)) sce.add_record(mb.record("e", 2.5e-15)) # add source sce.add_source(mb.sech_pulse("sech", 0.0, mb.source.hard_source, 4.2186e9, 2e14, 10, 2e14))
# relaxation superoperator rate = 1e10 rates = [[0, rate, rate], [rate, 0, rate], [rate, rate, 0]] relax_sop = mb.qm_lindblad_relaxation(rates) # initial density matrix rho_init = mb.qm_operator([1, 0, 0]) # quantum mechanical description qm = mb.qm_description(6e24, H, u, relax_sop) mat_ar = mb.material("AR_Song", qm) mb.material.add_to_library(mat_ar) # Ziolkowski setup dev = mb.device("Song") dev.add_region(mb.region("Active region", mat_ar, 0, 150e-6)) # scenario sce = mb.scenario("Basic", 32768, 80e-15, rho_init) sce.add_record(mb.record("e", 0.0, 0.0)) sce.add_record(mb.record("d11", mb.record.density, 1, 1, 0.0, 0.0)) sce.add_record(mb.record("d22", mb.record.density, 2, 2, 0.0, 0.0)) sce.add_record(mb.record("d33", mb.record.density, 3, 3, 0.0, 0.0)) # add source sce.add_source( mb.sech_pulse("sech", 0.0, mb.source.hard_source, 3.5471e9, 3.8118e14, 17.248, 1.76 / 5e-15, -math.pi / 2)) # run solver sol = mb.solver("openmp-3lvl-os-red", dev, sce)
print(L) print(loss) # Freeman 2013 active region # varies gain recovery time T1 T1 = 20e-12 qm = mb.qm_desc_2lvl(3.7e20, 2 * math.pi * 2.45e12, 6.2e-9, 1 / T1, 1 / 2.35e-12, 1.0) # background rel permittivity 12.9 # overlap factor 1 mat_ar = mb.material("AR_Freeman", qm, 12.9, 1, loss) mb.material.add_to_library(mat_ar) L_abs = 0.25e-3 dev = mb.device("Freeman") dev.add_region(mb.region("Vacuum left", mat_abs, 0, L_abs)) dev.add_region(mb.region("Active region", mat_ar, L_abs, L_abs + L)) dev.add_region(mb.region("Vacuum right", mat_abs, L_abs + L, 2 * L_abs + L)) # scenario # approx 14000 grid points -> choose 16k? # rather set d_x directly # courant number? sce = mb.scenario("Basic", 16384, 230e-12) sce.add_record(mb.record("inv12", 2e-12)) sce.add_record(mb.record("e", 1e-13, L_abs + L)) #TODO check whether position > device length # add source sce.add_source(