Ejemplo n.º 1
0
def plot_tracking_values(observed, filtered, cov_hist, signal_label, ax):
    """
    observed: array(nsteps, 2)
        Array of observed values
    filtered: array(nsteps, state_size)
        Array of latent (hidden) values. We consider only the first
        two dimensions of the latent values
    cov_hist: array(nsteps, state_size, state_size)
        History of the retrieved (filtered) covariance matrices
    ax: matplotlib AxesSubplot
    """
    timesteps, _ = observed.shape
    ax.plot(observed[:, 0],
            observed[:, 1],
            marker="o",
            linewidth=0,
            markerfacecolor="none",
            markeredgewidth=2,
            markersize=8,
            label="observed",
            c="tab:green")
    ax.plot(*filtered[:, :2].T,
            label=signal_label,
            c="tab:red",
            marker="x",
            linewidth=2)
    for t in range(0, timesteps, 1):
        covn = cov_hist[t][:2, :2]
        pml.plot_ellipse(covn,
                         filtered[t, :2],
                         ax,
                         n_std=2.0,
                         plot_center=False)
    ax.axis("equal")
    ax.legend()
Ejemplo n.º 2
0
def plot_inference(sample_obs, mean_hist, Sigma_hist):
    fig, ax = plt.subplots()
    ax.scatter(*sample_obs.T, marker="+", color="tab:green")
    ax.plot(*mean_hist.T, c="tab:orange", label="filtered")
    ax.scatter(*mean_hist[0], c="black", zorder=3)
    plt.legend()
    collection = [(mut, Vt) for mut, Vt in zip(mean_hist[::4], Sigma_hist[::4])
                  if Vt[0, 0] > 0 and Vt[1, 1] > 0 and abs(Vt[1, 0] - Vt[0, 1]) < 7e-4]
    for mut, Vt in collection:
        pml.plot_ellipse(Vt, mut, ax, plot_center=False, alpha=0.9, zorder=3)
    plt.axis("equal")
Ejemplo n.º 3
0
def plot_collection(obs, ax, means=None, covs=None, **kwargs):
    n_samples, n_steps, _ = obs.shape
    for nsim in range(n_samples):
        X = obs[nsim]
        if means is not None:
            mean = means[nsim]
            ax.scatter(*mean[0, :2], marker="o", s=20, c="black", zorder=2)
            ax.plot(*mean[:, :2].T,
                    marker="o",
                    markersize=2,
                    **kwargs,
                    zorder=1)
            if covs is not None:
                cov = covs[nsim]
                for t in range(1, n_steps, 3):
                    pml.plot_ellipse(cov[t][:2, :2],
                                     mean[t, :2],
                                     ax,
                                     plot_center=False,
                                     alpha=0.7)
        ax.scatter(*X.T, marker="+", s=60)
step = 0.1
vmin, vmax = -1.5, 1.5 + step
X = np.mgrid[-1:1.5:step, vmin:vmax:step][::-1]
X_dot = jnp.einsum("ij,jxy->ixy", A, X)

fig, ax = plt.subplots()
ax.plot(*sample_state.T, label="state space")
ax.scatter(*sample_obs.T, marker="+", c="tab:green", s=60, label="observations")
ax.scatter(*sample_state[0], c="black", zorder=3)
field = ax.streamplot(*X, *X_dot, density=1.1, color="#ccccccaa")
ax.legend()
plt.axis("equal")
ax.set_title("State Space")
pml.savefig("kf-circle-state.pdf")

fig, ax = plt.subplots()
ax.plot(*mu_hist.T, c="tab:orange", label="Filtered")
ax.scatter(*sample_obs.T, marker="+", s=60, c="tab:green", label="observations")
ax.scatter(*mu_hist[0], c="black", zorder=3)
for mut, Vt in zip(mu_hist[::4], V_hist[::4]):
    pml.plot_ellipse(Vt, mut, ax, plot_center=False, alpha=0.9, zorder=3)
plt.legend()
field = ax.streamplot(*X, *X_dot, density=1.1, color="#ccccccaa")
ax.legend()
plt.axis("equal")
ax.set_title("Approximate Space")
pml.savefig("kf-circle-filtered.pdf")

plt.show()
Ejemplo n.º 5
0
def plot_uncertainty_ellipses(means, covs):
    timesteps = len(means)
    for t in range(timesteps):
        pml.plot_ellipse(covs[t], means[t], ax, plot_center=False, alpha=0.7)