Ejemplo n.º 1
0
def experiment(variant):
    if variant["use_gpu"]:
        gpu_id = variant["gpu_id"]
        ptu.set_gpu_mode(True)
        ptu.set_device(gpu_id)

    beta = variant["beta"]
    representation_size = variant["representation_size"]
    train_data, test_data = get_data(10000)
    m = ConvVAE(representation_size, input_channels=3)
    t = ConvVAETrainer(train_data, test_data, m, beta=beta, use_cuda=True)
    for epoch in range(50):
        t.train_epoch(epoch)
        t.test_epoch(epoch)
        t.dump_samples(epoch)
Ejemplo n.º 2
0
def experiment(variant):
    if variant["use_gpu"]:
        gpu_id = variant["gpu_id"]
        ptu.set_gpu_mode(True)
        ptu.set_device(gpu_id)

    beta = variant["beta"]
    representation_size = variant["representation_size"]
    train_data, test_data = get_data(10000)
    m = ConvVAE(representation_size, input_channels=3)
    t = ConvVAETrainer(train_data,
                       test_data,
                       m,
                       beta_schedule=PiecewiseLinearSchedule([0, 400, 800],
                                                             [0.5, 0.5, beta]))
    for epoch in range(1001):
        t.train_epoch(epoch)
        t.test_epoch(epoch)
        t.dump_samples(epoch)
Ejemplo n.º 3
0
        ptu.set_device(gpu_id)

    beta = variant["beta"]
    representation_size = variant["representation_size"]
    train_data, test_data = get_data(10000)
    m = ConvVAE(train_data,
                test_data,
                representation_size,
                beta=beta,
                use_cuda=True,
                input_channels=3)
    for epoch in range(50):
        m.train_epoch(epoch)
        m.test_epoch(epoch)
        m.dump_samples(epoch)


if __name__ == "__main__":
    variants = []
    train_data, test_data = get_data(100)
    import ipdb
    ipdb.set_trace()
    for representation_size in [2, 4, 8, 16]:
        for beta in [0.5, 5.0, 50]:
            variant = dict(
                beta=beta,
                representation_size=representation_size,
            )
            variants.append(variant)
    run_variants(experiment, variants, run_id=0)