def experiment(variant): if variant["use_gpu"]: gpu_id = variant["gpu_id"] ptu.set_gpu_mode(True) ptu.set_device(gpu_id) beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data = get_data(10000) m = ConvVAE(representation_size, input_channels=3) t = ConvVAETrainer(train_data, test_data, m, beta=beta, use_cuda=True) for epoch in range(50): t.train_epoch(epoch) t.test_epoch(epoch) t.dump_samples(epoch)
def experiment(variant): if variant["use_gpu"]: gpu_id = variant["gpu_id"] ptu.set_gpu_mode(True) ptu.set_device(gpu_id) beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data = get_data(10000) m = ConvVAE(representation_size, input_channels=3) t = ConvVAETrainer(train_data, test_data, m, beta_schedule=PiecewiseLinearSchedule([0, 400, 800], [0.5, 0.5, beta])) for epoch in range(1001): t.train_epoch(epoch) t.test_epoch(epoch) t.dump_samples(epoch)
ptu.set_device(gpu_id) beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data = get_data(10000) m = ConvVAE(train_data, test_data, representation_size, beta=beta, use_cuda=True, input_channels=3) for epoch in range(50): m.train_epoch(epoch) m.test_epoch(epoch) m.dump_samples(epoch) if __name__ == "__main__": variants = [] train_data, test_data = get_data(100) import ipdb ipdb.set_trace() for representation_size in [2, 4, 8, 16]: for beta in [0.5, 5.0, 50]: variant = dict( beta=beta, representation_size=representation_size, ) variants.append(variant) run_variants(experiment, variants, run_id=0)