Ejemplo n.º 1
0
    def input(self):

        controller_input = SimpleControllerState()
        theta = self.current_state.rot.yaw
        correction_vector = self.target_state.pos - self.current_state.pos

        facing_vector = Vec3(cos(theta), sin(theta), 0)


        car_to_target = (self.target_state.pos - self.current_state.pos).normalize()
        #Rotated to the car's reference frame on the ground.
        rel_correction_vector = Vec3((correction_vector.x*cos(theta)) + (correction_vector.y * sin(theta)),
                                     (-(correction_vector.x*sin(theta))) + (correction_vector.y * cos(theta)),
                                     0)

        if self.can_reverse and facing_vector.dot(car_to_target) < - 0.5:
            correction_angle = atan2(rel_correction_vector.y, rel_correction_vector.x)
            
            controller_input.throttle = - 1.0
            if abs(correction_angle) > 1.25:
                controller_input.handbrake = 1
            controller_input.steer = cap_magnitude(-5*correction_angle, 1)

        else:
            correction_angle = atan2(rel_correction_vector.y, rel_correction_vector.x)
            
            controller_input.throttle = 1.0
            if abs(correction_angle) > 1.25:
                controller_input.handbrake = 1
            controller_input.steer = cap_magnitude(5*correction_angle, 1)

        return controller_input
Ejemplo n.º 2
0
    def resolve(self, prev_status, car, packet: GameTickPacket):
        point = self.pointFunc(car, packet)
        car_location = Vec3(car.physics.location.x, car.physics.location.y)
        car_direction = rlmath.get_car_facing_vector(car)
        yaw_velocity = car.physics.angular_velocity.x
        car_velocity = Vec3(car.physics.velocity.x, car.physics.velocity.y)
        car_to_point = point - car_location

        steer_correction_radians = rlmath.fix_ang(
            car_direction.ang_to_flat(car_to_point) + yaw_velocity * 0.2)
        velocity_correction_radians = car_velocity.ang_to_flat(car_to_point)

        controller = SimpleControllerState()

        if abs(steer_correction_radians) > 0.5:
            controller.handbrake = True
        else:
            return (SUCCESS, self.parent, None)

        if steer_correction_radians > 0:
            controller.steer = 1
        elif steer_correction_radians < 0:
            controller.steer = -1

        controller.throttle = 0.3
        # In these cases we want to brake instead
        if car_velocity.length() > 500:
            controller.throttle = 0

        return (ACTION, self, controller)
Ejemplo n.º 3
0
    def controller(self, agent, angle):
        controller_state = SimpleControllerState()

        steer_value = steer(angle)
        controller_state.steer = steer_value
        controller_state.throttle = 1
        controller_state.handbrake = True

        if self.level == PowerSlideLevel.NORMAL:
            balance_threshold = 0.25 * abs(
                agent.me.angular_velocity.data[2])**2 + 0.05

            if balance_threshold * -1 <= angle <= balance_threshold:
                controller_state.handbrake = False
                controller_state.boost = True
                if abs(agent.me.angular_velocity.data[2]) >= 0.15:
                    controller_state.steer = sign(
                        agent.me.angular_velocity.data[2]) * -1
                else:
                    controller_state.steer = 0
        elif self.level == PowerSlideLevel.U_TURN:
            if abs(angle) < 1.15:
                controller_state.steer = steer_value * -1
                controller_state.throttle = -1
                controller_state.handbrake = False
                controller_state.boost = False

            if abs(angle) < 0.15:
                controller_state.steer = 0

        return controller_state
Ejemplo n.º 4
0
def CeilingRushController(
        agent, target_object1,
        target_object2):  #target_object es un objeto tipo obj
    controller_state = SimpleControllerState()
    '''if distance2D(agent.me,agent.pointA)<distance2D(agent.me,agent.pointB) and agent.me.location.data[2]>2800:
            target_object = target_object2
            location = agent.pointB.local_location
            angle_to_target = math.atan2(location.data[1],location.data[0])
        else:
            target_object = target_object1
            location = agent.pointA.local_location
            angle_to_target = math.atan2(location.data[1],location.data[0])'''
    target_object = target_object1
    location = agent.pointA.local_location
    angle_to_target = math.atan2(location.data[1], location.data[0])
    draw_debug(agent, agent.renderer, target_object.location.data)
    angle_velocity = math.atan2(agent.me.velocity.data[1],
                                agent.me.velocity.data[1])
    #draw_debug(agent.renderer,target_object.location.data)

    current_speed = velocity2D(agent.me)
    #steering
    if abs(angle_to_target) < math.pi / 4:
        controller_state.handbrake = False
    elif abs(angle_to_target) < math.pi and abs(angle_to_target) > math.pi / 2:
        controller_state.handbrake = True
    if agent.me.location.data[2] < 1800:
        controller_state.steer = sign(angle_to_target) * min(
            1, abs(2 * angle_to_target))
    else:
        controller_state.steer = 0
    #throttle
    controller_state.throttle = 1

    return controller_state
Ejemplo n.º 5
0
    def flyController(self, agent):
        controller_state = SimpleControllerState()
        location = toLocal(agent.ball, agent.me)
        angle_to_target = np.arctan2(location[1], location[0])
        location_of_target = toLocal(agent.ball, agent.me)
        '''steering'''
        if angle_to_target > .1:
            controller_state.steer = 1
            #controller_state.yaw = 1
            controller_state.throttle = 1
            if distance2D(agent.ball, agent.me) < 1000:
                controller_state.boost = True

        elif angle_to_target < -.1:
            controller_state.steer = -1
            #controller_state.yaw = -1
            controller_state.throttle = 1
            if distance2D(agent.ball, agent.me) < 1000:
                controller_state.boost = True

        else:
            controller_state.steer = controller_state.yaw = 0
            controller_state.throttle = .5
            if angle_to_target < .1 and angle_to_target > -.1:
                controller_state.boost = True
            else:
                controller_state.boost = False

        #jump
        time_difference = time.time() - agent.start
        if time_difference > 2.2:
            agent.start = time.time()
        elif time_difference < .1 and distance2D(
                agent.ball, agent.me) < 1000 and agent.ball.location[2] > 100:
            controller_state.jump = True
            print("jump")
        else:
            controller_state.jump = False

        if agent.ball.location[2] > agent.me.location[
                2] and agent.me.rotation[0] < verticalangle2D(
                    agent.ball.local_location,
                    agent.me) and agent.me.rotation[1] < angle_to_radians(
                        0):  #change angle, this is wrong
            controller_state.pitch = 1  # nose up

        elif agent.ball.location[2] < agent.me.location[
                2] and agent.me.rotation[0] > verticalangle2D(
                    agent.ball.local_location,
                    agent.me) and agent.me.rotation[1] > angle_to_radians(0):
            controller_state.pitch = -1  # nose down

        #updated code broke this
        # if(agent.ball.location[2] > agent.me.location[2]):
        #     print("ball above car", verticalangle2D(agent.ball.local_location, agent.me)*180/np.pi)
        # if(agent.ball.location[2] < agent.me.location[2]):
        #     print("ball below car", verticalangle2D(agent.ball.local_location, agent.me)*180/np.pi)

        return (controller_state)
Ejemplo n.º 6
0
def diagonal(game_info=None, x_sign=None, persistent=None):

    current_state = game_info.me
    controls = SimpleControllerState()

    #Set which boost we want based on team and side.
    if x_sign == -1:
        first_boost = 11
    else:
        first_boost = 10

    if game_info.boosts[first_boost].is_active:
        #If we haven't taken the small boost yet, drive towards it
        controls = GroundTurn(
            current_state,
            current_state.copy_state(pos=Vec3(0, -1000, 0))).input()
        controls.boost = 1

    elif abs(current_state.pos.y) > 1100 and current_state.wheel_contact:
        controls.jump = 1
        controls.boost = 1

    elif abs(current_state.pos.y) > 1100 and current_state.pos.z < 40:
        controls.jump = 1
        controls.boost = 1

    elif abs(current_state.pos.y) > 500 and not current_state.double_jumped:
        controls = CancelledFastDodge(current_state, Vec3(1, x_sign,
                                                          0)).input()

    elif abs(current_state.pos.y) > 250 and not current_state.wheel_contact:
        if persistent.aerial_turn.action == None:
            persistent.aerial_turn.initialize = True
            target_rot = Orientation(pitch=pi / 3,
                                     yaw=current_state.rot.yaw,
                                     roll=0)
            persistent.aerial_turn.target_orientation = target_rot

        else:
            controls, persistent = aerial_rotation(game_info.dt, persistent)
        controls.boost = 1
        controls.steer = x_sign  #Turn into the ball

    elif abs(current_state.pos.y) > 235:
        controls.throttle = 1
        controls.boost = 1
        controls.steer = x_sign

    else:
        controls = FrontDodge(current_state).input()

    return controls, persistent
Ejemplo n.º 7
0
 def get_output(self,
                game_tick_packet: GameTickPacket) -> SimpleControllerState:
     seconds = game_tick_packet.game_info.seconds_elapsed
     controller_state = SimpleControllerState()
     controller_state.steer = 0
     controller_state.handbrake = 0
     return controller_state
Ejemplo n.º 8
0
def waitController(agent, target, speed):
    controller_state = SimpleControllerState()
    loc = toLocal(target, agent.me)
    angle_to_target = math.atan2(loc.data[1], loc.data[0])


    controller_state.steer = steer(angle_to_target)

    current_speed = velocity2D(agent.me) 
    if current_speed < speed:
        controller_state.throttle = 1.0
    elif current_speed - 50 > speed:
        controller_state.throttle = -1.0
    else:
        controller_state.throttle = 0

    time_diff = time.time() - agent.start
    if time_diff > 2.2 and distance2D(target,agent.me) > (velocity2D(agent.me)*2.3) and abs(angle_to_target) < 1 and current_speed < speed:
        agent.start = time.time()
    elif time_diff <= 0.1:
        controller_state.jump = True
        controller_state.pitch = -1
    elif time_diff >= 0.1 and time_diff <= 0.15:
        controller_state.jump = False
        controller_state.pitch = -1
    elif time_diff > 0.15 and time_diff < 1:
        controller_state.jump = True
        controller_state.yaw = controller_state.steer
        controller_state.pitch = -1

    return controller_state
Ejemplo n.º 9
0
def exampleController(agent, target_object,target_speed):
    distance = distance2D(agent.me.location,target_object.location)
    if distance > 400:
        #print("switching to efficient")
        agent.state = efficientMover
        return efficientMover(agent,target_object,target_speed)

    controller_state = SimpleControllerState()
    controller_state.handbrake = False

    car_direction = get_car_facing_vector(agent.me)
    car_to_ball =  agent.me.location - target_object.location

    steer_correction_radians = steer(car_direction.correction_to(car_to_ball))

    current_speed = getVelocity(agent.me.velocity)
    #steering
    controller_state.steer = steer(steer_correction_radians)

    #throttle
    if target_speed > current_speed:
        controller_state.throttle = 1.0
        if target_speed > 1400 and current_speed < 2250:
            controller_state.boost = True
    elif target_speed < current_speed:
        controller_state.throttle = 0

    return controller_state
Ejemplo n.º 10
0
def exampleController(agent,
                      target_object):  #target_object es un objeto tipo obj

    location = target_object.local_location
    controller_state = SimpleControllerState()
    angle_to_target = math.atan2(location.data[1], location.data[0])
    angle_velocity = math.atan2(agent.me.velocity.data[1],
                                agent.me.velocity.data[1])
    #draw_debug(agent.renderer,location.data)
    draw_debug(agent, agent.renderer, target_object.location.data)
    current_speed = velocity2D(agent.me)
    #steering
    if abs(angle_to_target) < math.pi / 4:
        if agent.me.has_wheel_contact == True:
            controller_state.boost = True
        controller_state.handbrake = False
    else:
        controller_state.boost = False
        controller_state.handbrake = True
    controller_state.steer = sign(angle_to_target) * min(
        1, abs(2 * angle_to_target))
    controller_state.throttle = 1
    #dodging
    if abs(angle_to_target) < math.pi / 2 and abs(
            angle_velocity) < math.pi / 3:
        dodging(agent, target_object, controller_state, angle_to_target)
    return controller_state
Ejemplo n.º 11
0
def frugal_controller(agent, target, speed):
    controller_state = SimpleControllerState()
    location = return_local_location(target, agent.me)
    angle_to_target = math.atan2(location.data[1], location.data[0])

    controller_state.steer = steer(angle_to_target)

    current_speed = velocity_2d(agent.me)
    if current_speed < speed:
        controller_state.throttle = 1.0
    elif current_speed - 50 > speed:
        controller_state.throttle = -1.0
    else:
        controller_state.throttle = 0

    if distance_2d(agent.me.location.data, target) < 250:
        controller_state.handbrake = 1

    # time_difference = time.time() - agent.start
    # if time_difference > 2.2 and distance_2d(target, agent.me) > (velocity_2d(agent.me) * 2.3) and abs(
    #         angle_to_target) < 1 and current_speed < speed:
    #     agent.start = time.time()
    # elif time_difference <= 0.1:
    #     controller_state.jump = True
    #     controller_state.pitch = -1
    # elif time_difference >= 0.1 and time_difference <= 0.15:
    #     controller_state.jump = False
    #     controller_state.pitch = -1
    # elif time_difference > 0.15 and time_difference < 1:
    #     controller_state.jump = True
    #     controller_state.yaw = controller_state.steer
    #     controller_state.pitch = -1

    return controller_state
Ejemplo n.º 12
0
def pid_steer(game_info, target_location, pid: SteerPID):
    """Gives a set of commands to move the car along the ground toward a target location

    Attributes:
        target_location (Vec3): The local location the car wants to aim for

    Returns:
        SimpleControllerState: the set of commands to achieve the goal
    """
    controller_state = SimpleControllerState()
    ball_direction = target_location

    angle = -np.arctan2(ball_direction.y, ball_direction.x)

    if angle > np.pi:
        angle -= 2 * np.pi
    elif angle < -np.pi:
        angle += 2 * np.pi

    # adjust angle
    turn_rate = pid.get_steer(angle)

    controller_state.throttle = 1
    controller_state.steer = turn_rate
    controller_state.jump = False
    return controller_state
Ejemplo n.º 13
0
    def get_output(self,
                   game_tick_packet: GameTickPacket) -> SimpleControllerState:
        # Get the direction to the ball
        car = game_tick_packet.game_cars[self.index]
        ball_pos = game_tick_packet.game_ball.physics.location
        to_ball_x = ball_pos.x - car.physics.location.x
        to_ball_y = ball_pos.y - car.physics.location.y
        dist_to_ball = math.sqrt(to_ball_x**2 + to_ball_y**2)
        if dist_to_ball == 0: return SimpleControllerState()
        to_ball_x /= dist_to_ball
        to_ball_y /= dist_to_ball

        # How is the car aligned with the direction to the ball?
        yaw = float(car.physics.rotation.yaw)
        car_left_x = -math.sin(yaw)
        car_left_y = math.cos(yaw)
        dot_product = to_ball_x * car_left_x + to_ball_y * car_left_y

        # Act on the information above.
        controller_state = SimpleControllerState()
        controller_state.throttle = 1.0
        controller_state.steer = min(
            1, max(-1, self.steering_coefficient * dot_product))
        controller_state.boost = abs(dot_product) < .1
        controller_state.handbrake = abs(dot_product) > .9
        return controller_state
Ejemplo n.º 14
0
def frugalController(agent, target, speed):
    controller_state = SimpleControllerState()
    location = toLocal(target, agent.me)
    angle_to_target = math.atan2(location.data[1], location.data[0])

    controller_state.steer = steer(angle_to_target)

    speed -= ((angle_to_target**2) * 300)
    current_speed = velocity1D(agent.me).data[1]
    if current_speed < speed:
        controller_state.throttle = 1.0
    elif current_speed - 50 > speed:
        controller_state.throttle = -1.0
    else:
        controller_state.throttle = 0

    time_difference = time.time() - agent.start
    if time_difference > 2.2 and distance2D(
            target, agent.me) > (velocity2D(agent.me) * 2.3) and abs(
                angle_to_target
            ) < 0.9 and current_speed < speed and current_speed > 220:
        agent.start = time.time()
    elif time_difference <= 0.1:
        controller_state.jump = True
        controller_state.pitch = -1
    elif time_difference >= 0.1 and time_difference <= 0.15:
        controller_state.jump = False
        controller_state.pitch = -1
    elif time_difference > 0.15 and time_difference < 1:
        controller_state.jump = True
        controller_state.yaw = controller_state.steer
        controller_state.pitch = -1

    return controller_state
Ejemplo n.º 15
0
def go_nuts(gi: GameInfo) -> Sequence:
    ball_location = Vec3(gi.packet.game_ball.physics.location)
    if gi.car.location.flat().dist(ball_location.flat()) > 2000:
        # We're far away from the ball, let's try to lead it a little bit
        ball_prediction = gi.bot.get_ball_prediction_struct()  # This can predict bounces, etc
        ball_in_future_location = Vec3(find_slice_at_time(ball_prediction, gi.packet.game_info.seconds_elapsed + 2).physics.location)
        target_location = ball_in_future_location.flat() + (ball_in_future_location.flat() - Vec3(gi.field.opponent_goal.location)).rescale(2200).flat()
        with Renderer(gi.bot.renderer) as r:
            r.draw_line_3d(ball_location, target_location, r.cyan())
    else:
        target_location = ball_location + (ball_location - Vec3(gi.field.opponent_goal.location)).rescale(100)

    # Draw some things to help understand what the bot is thinking
    with Renderer(gi.bot.renderer) as r:
        r.draw_line_3d(gi.car.location, target_location, r.white())
        r.draw_string_3d(gi.car.location, 1, 1, f'Speed: {gi.car.velocity.length():.1f}', r.white())
        r.draw_rect_3d(target_location, 8, 8, True, r.cyan(), centered=True)

    controls = SimpleControllerState()
    controls.steer = gi.car.steer_toward_target(target_location)
    controls.throttle = 1.0
    controls.boost = abs(controls.steer) < 0.2 and gi.car.velocity.length() < 2000
    # controls.handbrake = abs(controls.steer) > 0.99 and gi.car.location.dist(ball_location) > 1000

    return Sequence([SingleStep(controls)])
Ejemplo n.º 16
0
def deltaC(
    info: Info, target: Vector3, jt
):  # this controller takes a vector containing the required acceleration to reach a target, and then gets the car there
    c = SimpleControllerState()
    target_local = info.car_matrix.dot(target)
    if info.car.has_wheel_contact:  # if on the ground
        if jt + 1.5 > info.game_time:  # if we haven't jumped in the last 1.5 seconds
            c.jump = True
        else:
            c.jump = False
            jt = info.game_time
    else:
        c.steer, c.yaw, c.pitch, c.roll, error = default_pd(info, target_local, True)
        if target.length > 25:  # stops boosting when "close enough"
            c.boost = True
        if error > 0.9:  # don't boost if we're not facing the right way
            c.boost = False
        tsj = info.game_time - jt  # time since jump
        if tsj < 0.215:
            c.jump = True
        elif tsj < 0.25:
            c.jump = False
        elif (
            tsj >= 0.25 and tsj < 0.27 and target.z > 560
        ):  # considers a double-jump if we still need to go up a lot
            c.jump = True
            c.boost = False
            c.yaw = c.pitch = c.roll = 0
        else:
            c.jump = False
        c.throttle = 1
    return c, jt
Ejemplo n.º 17
0
    def action_goto(self, my_car, car_location, target_location):
        controller = SimpleControllerState()

        if target_location is None:
            return controller
        car_to_target = target_location - car_location

        # Find the direction of our car using the Orientation class
        car_orientation = Orientation(my_car.physics.rotation)
        car_direction = car_orientation.forward

        steer_correction_radians = find_correction(car_direction,
                                                   car_to_target)

        if steer_correction_radians > 0:
            # Positive radians in the unit circle is a turn to the left.
            turn = -1.0  # Negative value for a turn to the left.
            self.action_display = "turn left"
        else:
            turn = 1.0
            self.action_display = "turn right"

        controller.throttle = 1.0
        controller.steer = turn
        controller.boost = True

        return controller
Ejemplo n.º 18
0
    def input(self):
        controller_input = SimpleControllerState()
        current_angle_vec = Vec3(cos(self.current_state.rot.yaw), sin(self.current_state.rot.yaw), 0)
        goal_angle_vec = Vec3(cos(self.goal_state.rot.yaw), sin(self.goal_state.rot.yaw), 0)
        vel_2d = Vec3(self.current_state.vel.x, self.current_state.vel.y, 0)



        if (self.current_state.pos - self.goal_state.pos).magnitude() > 400:

            #Turn towards target. Hold throttle until we're close enough to start stopping.
            controller_input = GroundTurn(self.current_state, self.goal_state).input()

        elif vel_2d.magnitude() < 50 and current_angle_vec.dot(goal_angle_vec) < 0:

            #If we're moving slowly, but not facing the right way, jump to turn in the air.
            #Decide which way to turn.  Make sure we don't have wraparound issues.

            goal_x = goal_angle_vec.x
            goal_y = goal_angle_vec.y
            car_theta = self.current_state.rot.yaw


            #Rotated to the car's reference frame on the ground.
            rel_vector = Vec3((goal_x*cos(car_theta)) + (goal_y * sin(car_theta)),
                              (-(goal_x*sin(car_theta))) + (goal_y * cos(car_theta)),
                              0)

            correction_angle = atan2(rel_vector.y, rel_vector.x)

            #Jump and turn to reach goal yaw.
            if self.current_state.wheel_contact:
                controller_input.jump = 1
            else:
                controller_input.yaw = cap_magnitude(correction_angle, 1)

        elif self.current_state.vel.magnitude() > 400:
            #TODO: Proportional controller to stop in the right place
            controller_input.throttle = -1


        else:
            #Wiggle to face ball
            #Check if the goal is ahead of or behind us, and throttle in that direction
            goal_angle = atan2((self.goal_state.pos - self.current_state.pos).y, (self.goal_state.pos - self.current_state.pos).x)
            if abs(angle_difference(goal_angle,self.current_state.rot.yaw)) > pi/2:
                correction_sign = -1
            else:
                correction_sign = 1
            controller_input.throttle = correction_sign

            #Correct as we wiggle so that we face goal_yaw.
            if angle_difference(self.goal_state.rot.yaw, self.current_state.rot.yaw) > 0:
                angle_sign = 1
            else:
                angle_sign = -1

            controller_input.steer = correction_sign*angle_sign

        return controller_input
Ejemplo n.º 19
0
def exampleController(agent, target_object, target_speed):
    location = toLocal(target_object, agent.me)
    controller_state = SimpleControllerState()
    angle_to_ball = math.atan2(location.data[1], location.data[0])

    current_speed = velocity2D(agent.me)
    #steering
    controller_state.steer = steer(angle_to_ball)

    #throttle
    if target_speed > current_speed:
        controller_state.throttle = 1.0
        if target_speed > 1400 and agent.start > 2.2 and current_speed < 2250:
            controller_state.boost = True
    elif target_speed < current_speed:
        controller_state.throttle = 0

    #dodging
    time_difference = time.time() - agent.start
    if time_difference > 2.2 and distance2D(target_object, agent.me) > (
            velocity2D(agent.me) * 2.5) and abs(angle_to_ball) < 1.3:
        agent.start = time.time()
    elif time_difference <= 0.1:
        controller_state.jump = True
        controller_state.pitch = -1
    elif time_difference >= 0.1 and time_difference <= 0.15:
        controller_state.jump = False
        controller_state.pitch = -1
    elif time_difference > 0.15 and time_difference < 1:
        controller_state.jump = True
        controller_state.yaw = controller_state.steer
        controller_state.pitch = -1

    return controller_state
Ejemplo n.º 20
0
 def get_output(self, game_tick_packet: GameTickPacket) -> SimpleControllerState:
     controller_state = SimpleControllerState()
     controller_state.throttle = 1
     controller_state.boost = True
     controller_state.steer = -1 if int(game_tick_packet.game_info.seconds_elapsed) % 2 == 0 else 1
     self.renderer.draw_line_3d((0, 0, 50), (0, 0, 2000), self.renderer.orange())
     return controller_state
Ejemplo n.º 21
0
    def get_output(self,
                   game_tick_packet: GameTickPacket) -> SimpleControllerState:
        controller_state = SimpleControllerState()

        if not game_tick_packet.game_info.is_round_active:
            return controller_state

        ball_location = Vector2(game_tick_packet.game_ball.physics.location.x,
                                game_tick_packet.game_ball.physics.location.y)

        my_car = game_tick_packet.game_cars[self.index]
        car_location = Vector2(my_car.physics.location.x,
                               my_car.physics.location.y)
        car_direction = get_car_facing_vector(my_car)
        car_to_ball = ball_location - car_location

        steer_correction_radians = car_direction.correction_to(car_to_ball)

        if steer_correction_radians > 0:
            # Positive radians in the unit circle is a turn to the left.
            turn = -1.0  # Negative value for a turn to the left.
        else:
            turn = 1.0

        if self.flip_turning:
            turn *= -1.0

        if turn == -1.0 and self.test_quickchat:
            self.send_quick_chat(QuickChats.CHAT_EVERYONE,
                                 QuickChats.Information_IGotIt)

        if self.test_rendering:
            self.do_rendering_test(game_tick_packet, my_car)

        if self.test_dropshot:
            self.do_dropshot_tile_test(game_tick_packet)

        if self.test_state:
            self.set_state_test(game_tick_packet)

        if self.test_ball_prediction:
            self.render_ball_prediction()

        if self.test_physics_tick:
            self.do_physics_tick_test(game_tick_packet)

        controller_state.throttle = 1.0
        controller_state.steer = turn

        return self.convert_output_to_v4([
            1.0,  # throttle
            turn,  # steer
            0.0,  # pitch
            0.0,  # yaw
            0.0,  # roll
            0,  # jump
            0,  # boost
            0  # handbrake
        ])
Ejemplo n.º 22
0
 def move_towards_point(self, my_car, point, boost: bool) -> SimpleControllerState:
      # Set the final controls based off of above decision making
     controls = SimpleControllerState()
     controls.steer = steer_toward_target(my_car, point)
     controls.throttle = 1.0
     if boost:
         controls.boost = True
     return controls
Ejemplo n.º 23
0
 def input(self):
     controller_input = SimpleControllerState()
     controller_input.throttle = 1
     if self.boost == 1:
         controller_input.boost = 1
     controller_input.handbrake = 1
     controller_input.steer = self.direction
     return controller_input
Ejemplo n.º 24
0
def hermite_update(fieldstate):
    spline_pos, spline_d = h_spline.get(
        fieldstate.elapsed_time() - spline_start, spline_scale)

    goal_position = spline_pos
    error_vector = goal_position - fieldstate.car_location()

    correction_angle = fieldstate.car_facing_vector().correction_to(
        error_vector)

    goal_velocity = spline_d
    goal_angle = fieldstate.car_facing_vector().correction_to(spline_d)

    output = SimpleControllerState()

    #velocity PID
    vel_pid_out = vel_pid.update(goal_velocity.length(),
                                 fieldstate.car_velocity().length(),
                                 fieldstate.delta_time())

    position_pid_out = position_pid.update(error_vector.length(), 0,
                                           fieldstate.delta_time())

    output.throttle = clamp(vel_pid_out + position_pid_out, 1.0, -1.0)

    #heading PID

    heading_pid_out = heading_pid.update(-goal_angle * sign(output.throttle),
                                         0, fieldstate.delta_time())

    heading_abs_pid_out = heading_abs_pid.update(
        -correction_angle * sign(output.throttle), 0, fieldstate.delta_time())

    output.steer = clamp(heading_pid_out + heading_abs_pid_out, 1.0, -1.0)

    # fi.write("{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}\n".format(
    #     fieldstate.elapsed_time(),
    #     error_vector.length() * sign(Vector3.dot(error_vector, fieldstate.car_facing_vector().normalize())),
    #     goal_position.x,
    #     goal_position.y,
    #     fieldstate.car_location().x,
    #     fieldstate.car_location().y,
    #     goal_velocity.length(),
    #     fieldstate.car_velocity().length(),
    #     math.atan2(spline_d.y, spline_d.x),
    #     math.atan2(fieldstate.car_facing_vector().y, fieldstate.car_facing_vector().x),
    #     vel_pid_out,
    #     position_pid_out,
    #     heading_pid_out,
    #     heading_abs_pid_out,
    #     output.throttle,
    #     output.steer
    # ))

    if goal_velocity.length() > 1400:
        output.boost = True

    return output
Ejemplo n.º 25
0
def ground_controller(game_info, target_location):
    """Gives a set of commands to move the car along the ground toward a target location
    
    Attributes:
        target_location (Vec3): The local location the car wants to aim for
        
    Returns:
        SimpleControllerState: the set of commands to achieve the goal
    """
    controller_state = SimpleControllerState()
    ball_direction = target_location
    distance = target_location.flat().length()
    
    angle = -math.atan2(ball_direction.y, ball_direction.x)

    if angle > math.pi:
        angle -= 2*math.pi
    elif angle < -math.pi:
        angle += 2*math.pi
    
    speed = 0.0
    turn_rate = 0.0
    r1 = 250
    r2 = 1000
    # adjust angle
    if angle > 0.02:
        turn_rate = -1.0
    elif angle < -0.02:
        turn_rate = 1.0
    else:
        turn_rate = 0
    if distance <= r1:
        # if toward ball move forward
        if abs(angle) < math.pi / 4:
            speed = 1.0
        else:
            # if not toward ball reverse, flips turn rate to adjust
            turn_rate = turn_rate * -1.0
            speed = -1.0
    # if far away, move at full speed forward
    elif distance >= r2:
        speed = 1.0
        if game_info.me.velocity.length() < 2250:
            controller_state.boost = True
    # if mid range, adjust forward
    else:
        # adjust speed
        if game_info.me.velocity.length() < 2250:
            controller_state.boost = True
        if abs(angle) < math.pi / 2:
            speed = 1.0
        else:
            speed = 0.5

    controller_state.throttle = speed
    controller_state.steer = turn_rate
    controller_state.jump = False
    return controller_state
Ejemplo n.º 26
0
    def get_output(self, packet: GameTickPacket) -> SimpleControllerState:
        bot = PhysicsObject(packet.game_cars[self.agent.index].physics)
        steer = steering.simple_aim(bot.location, bot.rotation.z, self.target)

        controller = SimpleControllerState()
        controller.steer = steer
        controller.throttle = 1

        return controller
Ejemplo n.º 27
0
def get_controls(game_info, sub_state_machine):

    controls = SimpleControllerState()
    controls.throttle = 1
    controls.boost = 1
    controls.steer = -1

    persistent = game_info.persistent
    return controls, persistent
Ejemplo n.º 28
0
 def to_simple_controller_state(self):
     controls = SimpleControllerState()
     controls.throttle = self.throttle
     controls.steer = self.steer
     controls.yaw = self.yaw
     controls.pitch = self.pitch
     controls.roll = self.roll
     controls.boost = self.boost
     controls.jump = self.jump
     controls.handbrake = self.handbrake
     return controls
def get_controls(game_info, sub_state_machine):

    controls = SimpleControllerState()

    persistent = game_info.persistent
    persistent.aerial_turn.action.step(game_info.dt)
    controls = persistent.aerial_turn.action.controls
    controls.boost = 1
    controls.steer = 1

    return controls, persistent
Ejemplo n.º 30
-1
def goto(target_location, target_speed, my_car, agent, packet):
    car_speed = Vec3(my_car.physics.velocity).length()
    distance = Vec3(my_car.physics.location).flat().dist(
        target_location.flat())
    angle = Orientation(
        my_car.physics.rotation).forward.ang_to(target_location -
                                                Vec3(my_car.physics.location))
    controls = SimpleControllerState()
    controls.steer = steer_toward_target(my_car, target_location, 0)
    controls.yaw = steer_toward_target(my_car, target_location,
                                       -my_car.physics.angular_velocity.z / 6)
    controls.throttle = cap(target_speed - car_speed, -1, 1)
    controls.boost = (target_speed > 1410
                      and abs(target_speed - car_speed) > 20 and angle < 0.3)
    controls.handbrake = angle > 2.3
    controls.jump = (1 if my_car.physics.location.y >= 0 else -1) == (
        1 if agent.team == 1 else -1
    ) and abs(
        my_car.physics.location.y) > 5000 and my_car.physics.location.z > 200
    controls.use_item = Vec3(my_car.physics.location).dist(
        Vec3(packet.game_ball.physics.location)) < 200 and relative_location(
            Vec3(my_car.physics.location), Orientation(
                my_car.physics.rotation),
            Vec3(packet.game_ball.physics.location)).z < 75
    if (abs(target_speed - car_speed) > 20 and angle < 0.3 and
            distance > 600) and ((target_speed > 1410 and my_car.boost == 0)
                                 or 700 < car_speed < 800):
        agent.stack.append(wavedash(target_location))
    return controls