Ejemplo n.º 1
0
def Smooth(x,y):
    """return: smoothed funciton s(x) and estimation of sigma of y for one data point"""
    #define segments to do spline smoothing
    t=np.linspace(0,len(x),3)[1:-1]
    sr = LSQUnivariateSpline(x, y.real, t)
    si = LSQUnivariateSpline(x, y.imag, t)
    return sr(x)+si(x)*1j, (sr.get_residual()/len(x))**0.5+(si.get_residual()/len(x))**0.5*1j
Ejemplo n.º 2
0
def Smooth(x,y):
    """return: smoothed funciton s(x) and estimation of sigma of y for one data point"""
    #define segments to do spline smoothing
    t=np.linspace(0,len(x),3)[1:-1]
    sr = LSQUnivariateSpline(x, y.real, t)
    si = LSQUnivariateSpline(x, y.imag, t)
    return sr(x)+si(x)*1j, (sr.get_residual()/len(x))**0.5+(si.get_residual()/len(x))**0.5*1j
Ejemplo n.º 3
0
def fun_residuals(params, xnor, ynor, w, bbox, k, ext):
    """Compute fit residuals"""

    spl = LSQUnivariateSpline(x=xnor,
                              y=ynor,
                              t=[item.value for item in params.values()],
                              w=w,
                              bbox=bbox,
                              k=k,
                              ext=ext,
                              check_finite=False)
    return spl.get_residual()
Ejemplo n.º 4
0
    def pval(self, index):
        ### In practice we'd implement some actual error scheme for this
        knotsDel = np.delete(self.knots, index)
        interpDel = LSQUnivariateSpline(self.x,
                                        self.y,
                                        knotsDel,
                                        k=1,
                                        w=self.weights)

        resid = self.interp.get_residual()
        residDel = interpDel.get_residual()

        dof = len(self.x) - len(
            self.knots
        ) - 2  # -2 because there are 2 parameters in a 1-knot k=1 fit.
        dofdel = dof + 1

        if dof == 0:
            self.knotPvals[index] = -np.inf
        else:
            self.knotPvals[index] = abs(residDel / dofdel -
                                        1) - abs(resid / dof - 1)
            print(self.knotPvals[index], resid / dof, residDel / dofdel, resid,
                  dof)
Ejemplo n.º 5
0
class fitfunc:
    def __init__(self, x, y, errors=None):
        if errors is not None:
            self.errors = errors
        else:
            grad = np.gradient(y)
            ms = grad**2
            ms2 = np.zeros(len(ms) + 4)
            ms2[0] = ms[0]
            ms2[1] = ms[0]
            ms2[2:-2] = ms
            ms2[-2] = ms[-1]
            ms2[-1] = ms[-1]
            ms = ms2
            ms = np.convolve(ms, np.ones((5, )) / 5, mode='valid')
            ms /= 2  # Correction for difference of uncorrelated errors
            self.errors = np.sqrt(ms)
            self.errors = np.copy(np.sqrt(np.abs(y)))

        self.weights = self.errors**2

        # Save inputs and enforce sorting along x
        inds = np.argsort(x)
        self.x = np.copy(x)[inds] + 1e-10 * np.array(range(
            len(x)))  # This prevents duplicates in x
        self.y = np.copy(y)[inds]

        # Setup knots
        self.knots = np.copy(self.x[1:-1])
        self.knotInd = np.array(range(len(self.knots)))
        self.knotPvals = None

        # Iteratively fit and remove knots
        self.interp = None
        self.fit()
        self.pvals()
        done = False
        while not done and len(self.knots) > 2:
            choice = np.random.choice(range(len(self.knots)),
                                      len(self.knots),
                                      replace=False)
            for i in choice:
                if self.knotPvals[i] < 0:
                    self.removeKnot(i)
                    self.fit()
                    self.pvals()
                    break
            else:
                done = True

        self.interpDeriv = self.interp.derivative(1)
        print('Converged with ', len(self.knots), 'knots.')
        print(self.knotPvals, self.interp.get_residual())

    def fit(self):
        self.knotPvals = np.zeros(len(self.knots))
        self.interp = LSQUnivariateSpline(self.x,
                                          self.y,
                                          self.knots,
                                          k=1,
                                          w=self.weights)

    def pvals(self):
        for i in range(len(self.knots)):
            self.pval(i)

    def pval(self, index):
        ### In practice we'd implement some actual error scheme for this
        knotsDel = np.delete(self.knots, index)
        interpDel = LSQUnivariateSpline(self.x,
                                        self.y,
                                        knotsDel,
                                        k=1,
                                        w=self.weights)

        resid = self.interp.get_residual()
        residDel = interpDel.get_residual()

        dof = len(self.x) - len(
            self.knots
        ) - 2  # -2 because there are 2 parameters in a 1-knot k=1 fit.
        dofdel = dof + 1

        if dof == 0:
            self.knotPvals[index] = -np.inf
        else:
            self.knotPvals[index] = abs(residDel / dofdel -
                                        1) - abs(resid / dof - 1)
            print(self.knotPvals[index], resid / dof, residDel / dofdel, resid,
                  dof)

    def removeKnot(self, index):
        # Note that index can be a list of indices, or even
        # a smart-indexing tool.
        self.knots = np.delete(self.knots, index)
        self.knotInd = np.delete(self.knotInd, index)
        self.slope = None
        self.intercept = None
        self.knotPvals = None

    def evalY(self, x):
        return self.interp(x)

    def evalDeriv(self, x):
        return self.interpDeriv(x)