def exec(self, task_input, task_output):
        labels_information_loc = task_input["labels_information_location"]
        resources_path = task_output["res_loc"]

        labels_info = jReader.parse_data(labels_information_loc)

        os.makedirs(task_input["training_loc"], True)

        resources = os.dir_res_list(resources_path)

        training_path = f"{task_input['training_loc']}{os.get_path_seperator()}training.csv"
        labels_path = f"{task_input['training_loc']}{os.get_path_seperator()}labels.csv"

        with open(training_path, 'w') as training_file:
            with open(labels_path, 'w') as labels_file: 
                labels_file.write("Sinus, AF\n")
                index = 0

                while index < task_input["readings"]:
                    training_file.write(f"x_{index}")
                    index += 1
                    if index < task_input["readings"]:
                        training_file.write(',')
                
                training_file.write("\n")

                self.prep_training_file(training_file, labels_file, labels_info, task_output["res_loc"], resources)
Ejemplo n.º 2
0
    def exec(self, task_input, task_output):
        target_labels_loc = task_input["labels_loc"]

        #TODO - make sure folder exists
        os.makedirs(target_labels_loc, True)
        #TODO - join taining folder with name of label file
        target_labels_loc = os.path_join(target_labels_loc, "labels.csv")

        data_labels_mappings = jReader.parse_data(
            task_input["data_labels_mappings"])

        self.create_labels_file(target_labels_loc, data_labels_mappings)
Ejemplo n.º 3
0
    def _training_loc(self, res_loc):
        path_split = res_loc.split(os.get_path_seperator())

        training_path = f"{path_split[0]}{os.get_path_seperator()}{path_split[1]}"

        for x in range(2, len(path_split) - 1):
            training_path = os.path_join(training_path, path_split[x])

        training_path = os.path_join(training_path, "training")

        os.makedirs(training_path, True)

        return os.path_join(training_path,
                            f"{path_split[len(path_split) - 1]}.csv")
 def _prep_split_folder(self):
     os.makedirs(self.res_path.split('.')[0], True)