def _normalize_elements(self, res_elems, task_output):
        for res in res_elems:
            if "f1" not in res:
                continue

            data = loader.load_data(os.path_join(task_output["res_loc"], res))

            with open(os.path_join(task_output["res_loc"], res), 'w') as dfile:
                for elem in data.values:
                    off_value = 0

                    if elem[2] < 16000:
                        off_value = 15000
                    elif elem[2] < 17000:
                        off_value = 16000
                    elif elem[2] < 18000:
                        off_value = 17000
                    elif elem[2] < 19000:
                        off_value = 18000
                    else:
                        off_value = 19000

                    temp_d_elem = elem[2] - off_value

                    dfile.write(f"{elem[0]},{elem[1]},{temp_d_elem}\n")
Ejemplo n.º 2
0
    def exec(self, task_input, task_output):
        path = task_output["res_loc"]

        path = os.path_join(path, "apple_health_export", "electrocardiograms")

        resources = os.dir_res_list(path)

        workers = []

        for elem in resources:
            res_path = os.path_join(path, elem)

            if os.is_path_file(res_path):
                splitted_elem = elem.split('.')

                backup_name = f"{splitted_elem[0]}.bak"

                worker = DataPreparerWorker(res_path, backup_name)

                worker.start()

                workers.append(worker)

        for worker in workers:
            worker.join()

        task_output["res_loc"] = path
    def __init__(self, **kwargs):
        threading.Thread.__init__(self)

        self.fantasia = os.path_join(kwargs["training"], kwargs["fantasia"])
        self.nsr = os.path_join(kwargs["training"], kwargs["nsr"])
        self.ltaf = os.path_join(kwargs["training"], kwargs["ltaf"])

        self.path = kwargs["path"]
        self.concat_rate = kwargs["concat_rate"]
    def _calc_labels_loc(self, path):
        splitted = path.split(os.get_path_seperator())

        label_path = f"{splitted[0]}{os.get_path_seperator()}{splitted[1]}"

        for path_elem in range(2, len(splitted) - 1):
            label_path = os.path_join(label_path, splitted[path_elem])

        path_name = f"{splitted[len(splitted) - 1][:-4]}_labels.csv"

        return path, os.path_join(label_path, path_name)
Ejemplo n.º 5
0
    def _training_loc(self, res_loc):
        path_split = res_loc.split(os.get_path_seperator())

        training_path = f"{path_split[0]}{os.get_path_seperator()}{path_split[1]}"

        for x in range(2, len(path_split) - 1):
            training_path = os.path_join(training_path, path_split[x])

        training_path = os.path_join(training_path, "training")

        os.makedirs(training_path, True)

        return os.path_join(training_path,
                            f"{path_split[len(path_split) - 1]}.csv")
    def _split(self, file, headers):
        temp_reading = file.readline()

        split_index = 1

        while temp_reading != "":
            index_at = 0
            
            readings = []

            while index_at < self.readings:
                if temp_reading != "":
                    readings.append(temp_reading)

                temp_reading = file.readline()
                
                index_at += 1
            
            split_path = os.path_join(self.containing_folder.split('.')[0], f"{self.readings}_ecg_split_{split_index}.csv")

            split_thread = _Save_split(readings, headers, split_path)

            split_thread.start()

            split_index += 1
    def exec(self, task_input, task_output):
        task_output["readings"] = self.data_readings

        resources = os.dir_res_list(task_output["res_loc"])

        splitter_threads = []

        for elem in resources:
            res_path = os.path_join(task_output["res_loc"], elem)

            if not os.is_path_file(res_path):
                continue

            splitter = _Splitter(elem, res_path, self.data_readings)
            splitter.start()
            splitter_threads.append(splitter)

            if len(splitter_threads) > 5:
                for thread in splitter_threads:
                    thread.join()
                
                splitter_threads = []
            
        for thread in splitter_threads:
            thread.join()
    def prep_training_file(self, training_writer, labels_writer, labels_info, resources_loc, resources):
        for label_info in labels_info["mappings"]:
            resource = self.get_resource(label_info["file_name"], resources)

            medical_condition = label_info["medical_condition"]

            if resource != None and (medical_condition == "Sinusrytme" or medical_condition == "Artrieflimren"):
                with open(os.path_join(resources_loc, resource)) as data_file:
                    data_file.readline()

                    reading = data_file.readline()

                    while reading != "":
                        splitted_reading = reading.split("\n")

                        training_writer.write(splitted_reading[0])
                    
                        reading = data_file.readline()

                        if reading != "":
                            training_writer.write(',')
                
                training_writer.write("\n")
                
                if medical_condition == "Sinusrytme":
                    labels_writer.write("1,0\n")
                elif medical_condition == "Artrieflimren":
                    labels_writer.write("0,1\n")
    def run(self):
        file_to_backup = os.path_join(self.path, self.resource)
        backup_name = f"{self.resource.split('.')[0]}.bak"

        backup_path = os.copy_file(file_to_backup, backup_name)

        with open(os.path_join(self.path, self.resource), 'w') as datafile:
            with open(backup_path) as data:
                datafile.write(data.readline())

                temp = data.readline()

                while temp != "":
                    normalized_reading = self.data_reading_normalizer(temp)

                    datafile.write(normalized_reading)

                    temp = data.readline()

        os.remove_file(backup_path)
    def exec(self, task_input, task_output):
        self._prep_dir(task_input["model_loc"])

        model_path = os.path_join(task_input["model_loc"],
                                  f'model-{task_input["inputs"]}')

        if not task_input["model_override"] and os.is_dir(model_path):
            #TODO implement a dynamic "path increment" model-name save functionality
            pass

        task_output["model"].save(model_path)
Ejemplo n.º 11
0
    def exec(self, task_input, task_output):
        target_labels_loc = task_input["labels_loc"]

        #TODO - make sure folder exists
        os.makedirs(target_labels_loc, True)
        #TODO - join taining folder with name of label file
        target_labels_loc = os.path_join(target_labels_loc, "labels.csv")

        data_labels_mappings = jReader.parse_data(
            task_input["data_labels_mappings"])

        self.create_labels_file(target_labels_loc, data_labels_mappings)
    def _spawn_worker(self, task_input, name, *args):
        concat_train_path = os.path_join(task_input["training"], name)

        t = _Concatter(fantasia=args[0],
                       nsr=args[1],
                       ltaf=args[2],
                       training=task_input["training"],
                       path=concat_train_path,
                       concat_rate=task_input["concat_rate"])

        t.start()

        return t
    def exec(self, task_input, task_output):
        self.headders = task_input["headders"]

        res_loc = task_output["res_loc"]

        folder_res = op.dir_res_list(res_loc)

        for folder_res_elem in folder_res:
            target_res = op.path_join(res_loc, folder_res_elem)

            try:
                self._apply_headders(target_res)
            except Exception as e:
                print(e)
Ejemplo n.º 14
0
    def get_min_readings(self, path):
        resources = os.dir_res_list(path)

        readings = []

        for elem in resources:
            readings.append(self.count(os.path_join(path, elem)))

        min_reading = readings[0]

        for elem in readings:
            if elem < min_reading:
                min_reading = elem

        return min_reading - 1
Ejemplo n.º 15
0
    def append_training_set(self, file, path, ressources):
        for res_elem in ressources:
            training_data = ""

            if not self._is_ecg(res_elem):
                continue

            res_path = os.path_join(path, res_elem)

            temp_data = loader.load_data(res_path)

            if self._is_missing_inputs(len(temp_data.values)):
                os.remove_file(res_path)
                continue

            training_data = self._append_data_set(training_data, temp_data)
            file.write(training_data)

            os.remove_file(res_path)
Ejemplo n.º 16
0
    def exec(self, task_input, task_output):
        ressources, training_data, backup = self._setup(task_output)

        with open(training_data, 'w') as training:
            if backup is not None and os.is_path_file(backup):
                self._merge_training(training, backup)
            else:
                headders = self._get_headders(task_output["readings"])
                training.write(headders)

            for split_folder in ressources:
                split_dir = os.path_join(task_output["res_loc"], split_folder)

                if os.is_path_file(split_dir) and not os.is_dir(split_dir):
                    continue

                self.append_training_set(training, split_dir,
                                         os.dir_res_list(split_dir))

                os.remove_dir(split_dir)
Ejemplo n.º 17
0
    def exec(self, task_input, task_output):
        min_readings = self.get_min_readings(task_output["res_loc"])

        index = 0

        resources = os.dir_res_list(task_output["res_loc"])

        workers = []

        for elem in resources:
            path = os.path_join(task_output["res_loc"], elem)

            worker = NormalizeReadingsCountWorker(path, min_readings, index)

            worker.start()

            workers.append(worker)

            index += 1

        for worker in workers:
            worker.join()
    def exec(self, task_input, task_output):
        sampling_frequency = task_input["sampled_frequency"]
        target_frequency = task_input["target_frequency"]

        doubling_rate = math.ceil(sampling_frequency / (((target_frequency / sampling_frequency) - 1) * sampling_frequency))

        res_elems = os.dir_res_list(task_output["res_loc"])

        for res_elem in res_elems:
            origin_path = os.path_join(task_output["res_loc"], res_elem)
            if os.is_path_file(origin_path):
                backup_path = os.copy_file(origin_path, f"{task_input['name']}_bakup.bak")

            with open(origin_path, 'w') as file:
                with open(backup_path) as backup_file:
                    temp_reading = backup_file.readline()

                    sampling_nr = 1

                    while temp_reading != "":
                        temp_reading = backup_file.readline()

                        if temp_reading != "":
                            splitted = temp_reading.split(',')

                            file.write(f"{sampling_nr},{splitted[1]},{splitted[2]}")

                            if "f2" in res_elem:
                                file.write("\n")

                        sampling_nr += 1

                        for _ in range(1, doubling_rate):
                            temp_reading = backup_file.readline()

                            if temp_reading != "":
                                splitted = temp_reading.split(',')

                                file.write(f"{sampling_nr},{splitted[1]},{splitted[2]}")
                                
                                if "f2" in res_elem:
                                    file.write("\n")

                            sampling_nr += 1
                        
                        if temp_reading != "":
                            splitted = temp_reading.split(',')
                            file.write(f"{sampling_nr},{splitted[1]},{splitted[2]}")
                            
                            if "f2" in res_elem:
                                file.write("\n")

                            sampling_nr += 1
                            splitted = temp_reading.split(',')
                            file.write(f"{sampling_nr},{splitted[1]},{splitted[2]}")

                            
                            if "f2" in res_elem:
                                file.write("\n")

                            sampling_nr += 1
                        
                        temp_reading = backup_file.readline()
        
            os.remove_file(backup_path)