# link the interaction and the dynamical system impactingBar.link(inter,bar); # ------------------ # --- Simulation --- # ------------------ # -- (1) OneStepIntegrators -- OSI = MoreauJeanOSI(theta,0.5) # -- (2) Time discretisation -- t = TimeDiscretisation(t0,h) # -- (3) one step non smooth problem osnspb = LCP() s = TimeStepping(impactingBar, t,OSI,osnspb) k =0 N = int((T-t0)/h) dataPlot = np.zeros((N+1, 5)) q = bar.q() v = bar.velocity() p = bar.p(1) lambda_ = inter.lambda_(1) # time loop while s.hasNextEvent():
def test_bouncing_ball1(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # # save and load data from xml and .dat # try: from siconos.io import save save(bouncingBall, "bouncingBall.xml") save(bouncingBall, "bouncingBall.bin") except: print("Warning : could not import save from siconos.io") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 #print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
# # Simulation # # (1) OneStepIntegrators theta = 0.5 gamma = 0.5 aOSI = EulerMoreauOSI(theta, gamma) aOSI.insertDynamicalSystem(LSDiodeBridge) #aOSI.setUseGammaForRelation(True) # (2) Time discretisation aTiDisc = TimeDiscretisation(t0, h_step) # (3) Non smooth problem aLCP = LCP() # (4) Simulation setup with (1) (2) (3) aTS = TimeStepping(aTiDisc, aOSI, aLCP) # end of model definition # # computation # # simulation initialization DiodeBridge.initialize(aTS) k = 0 h = aTS.timeStep()
def test_diode_bridge(): """Build diode bridge model""" # dynamical system bridge_ds = FirstOrderLinearDS(init_state, A) # interaction diode_bridge_relation = FirstOrderLinearTIR(C, B) diode_bridge_relation.setDPtr(D) nslaw = ComplementarityConditionNSL(4) bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1) # Model diode_bridge = Model(t0, total_time, model_title) # add the dynamical system in the non smooth dynamical system diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds) # link the interaction and the dynamical system diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds) # Simulation # (1) OneStepIntegrators theta = 0.5 integrator = EulerMoreauOSI(theta) integrator.insertDynamicalSystem(bridge_ds) # (2) Time discretisation time_discretisation = TimeDiscretisation(t0, time_step) # (3) Non smooth problem non_smooth_problem = LCP() # (4) Simulation setup with (1) (2) (3) bridge_simulation = TimeStepping(time_discretisation, integrator, non_smooth_problem) # simulation initialization diode_bridge.initialize(bridge_simulation) k = 0 h = bridge_simulation.timeStep() # Number of time steps N = (total_time - t0) / h # Get the values to be plotted # ->saved in a matrix dataPlot data_plot = empty([N, 8]) x = bridge_ds.x() print("Initial state : ", x) y = bridge_interaction.y(0) print("First y : ", y) lambda_ = bridge_interaction.lambda_(0) # For the initial time step: # time data_plot[k, 0] = t0 # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 while k < N: bridge_simulation.computeOneStep() #non_smooth_problem.display() data_plot[k, 0] = bridge_simulation.nextTime() # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 bridge_simulation.nextStep() # # comparison with the reference file # ref = getMatrix( SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref"))) assert norm(data_plot - ref) < 1e-12 return ref, data_plot