def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.snn = None
        self._spiking_layers = {}
        self._input_images = None
        self._binary_activation = None
Ejemplo n.º 2
0
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.layers = []
        self._conns = []  # Temporary container for layer connections.
        self._biases = []  # Temporary container for layer biases.
        self.connections = []  # Final container for all layers.
        self.cellparams = {key: config.getfloat('cell', key) for key in
                           cellparams_pyNN}
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.snn = None
        self._spiking_layers = {}
        self._input_images = None
        self._binary_activation = None
        self.avg_rate = None
        self._input_spikecount = None

        self.latency = None
        self.acc_at_t = []
Ejemplo n.º 4
0
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.layers = []
        self.connections = []
        self.cellparams = {key: config.getfloat('cell', key) for key in
                           config_string_to_set_of_strings(config.get(
                               'restrictions', 'cellparams_pyNN'))}
        if 'i_offset' in self.cellparams.keys():
            print("SNN toolbox WARNING: The cell parameter 'i_offset' is "
                  "reserved for the biases and should not be set globally.")
            self.cellparams.pop('i_offset')
        self.change_padding = False
Ejemplo n.º 5
0
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.layers = []
        self.connections = []  # Final container for all layers.
        self.threshold = 'v >= v_thresh'
        self.v_reset = 'v = v_reset'
        self.eqs = 'v : 1'
        self.spikemonitors = []
        self.statemonitors = []
        self.snn = None
        self._input_layer = None
        self._cell_params = None

        # Track the output layer spikes.
        self.output_spikemonitor = None
Ejemplo n.º 6
0
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.layers = []
        self._conns = [
        ]  # Temporary container for layer connections (excitatory neuron).
        self._inconns = [
        ]  # Temporary container for layer connections (inhibitory neuron).
        self._con_exconns = [
        ]  # Temporary container for convolution layer connections (excitatory neuron).
        self._con_inconns = [
        ]  # Temporary container for  convolution layer connections (inhibitory neuron).
        self._biases = []  # Temporary container for layer biases.
        self.connections = []  # Final container for all layers.
        self.cellparams = {
            key: config.getfloat('cell', key)
            for key in cellparams_pyNN
        }
Ejemplo n.º 7
0
    def __init__(self, config, queue=None):

        AbstractSNN.__init__(self, config, queue)

        self.layers = []
        self.connections = []  # Final container for all layers.
        self.threshold = 'v >= v_thresh'
        if 'subtraction' in config.get('cell', 'reset'):
            self.v_reset = 'v = v - v_thresh'
        else:
            self.v_reset = 'v = v_reset'
        self.eqs = '''dv/dt = bias : 1
                      bias : hertz'''
        self.spikemonitors = []
        self.statemonitors = []
        self.snn = None
        self._input_layer = None
        self._cell_params = None

        # Track the output layer spikes.
        self.output_spikemonitor = None
Ejemplo n.º 8
0
 def set_spiketrain_stats_input(self):
     AbstractSNN.set_spiketrain_stats_input(self)
 def get_spiketrains_input(self):
     # Added this here because PyCharm complains about not all abstract
     # methods being implemented (even though this is not abstract).
     AbstractSNN.get_spiketrains_input(self)