def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.snn = None self._spiking_layers = {} self._input_images = None self._binary_activation = None
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.layers = [] self._conns = [] # Temporary container for layer connections. self._biases = [] # Temporary container for layer biases. self.connections = [] # Final container for all layers. self.cellparams = {key: config.getfloat('cell', key) for key in cellparams_pyNN}
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.snn = None self._spiking_layers = {} self._input_images = None self._binary_activation = None self.avg_rate = None self._input_spikecount = None self.latency = None self.acc_at_t = []
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.layers = [] self.connections = [] self.cellparams = {key: config.getfloat('cell', key) for key in config_string_to_set_of_strings(config.get( 'restrictions', 'cellparams_pyNN'))} if 'i_offset' in self.cellparams.keys(): print("SNN toolbox WARNING: The cell parameter 'i_offset' is " "reserved for the biases and should not be set globally.") self.cellparams.pop('i_offset') self.change_padding = False
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.layers = [] self.connections = [] # Final container for all layers. self.threshold = 'v >= v_thresh' self.v_reset = 'v = v_reset' self.eqs = 'v : 1' self.spikemonitors = [] self.statemonitors = [] self.snn = None self._input_layer = None self._cell_params = None # Track the output layer spikes. self.output_spikemonitor = None
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.layers = [] self._conns = [ ] # Temporary container for layer connections (excitatory neuron). self._inconns = [ ] # Temporary container for layer connections (inhibitory neuron). self._con_exconns = [ ] # Temporary container for convolution layer connections (excitatory neuron). self._con_inconns = [ ] # Temporary container for convolution layer connections (inhibitory neuron). self._biases = [] # Temporary container for layer biases. self.connections = [] # Final container for all layers. self.cellparams = { key: config.getfloat('cell', key) for key in cellparams_pyNN }
def __init__(self, config, queue=None): AbstractSNN.__init__(self, config, queue) self.layers = [] self.connections = [] # Final container for all layers. self.threshold = 'v >= v_thresh' if 'subtraction' in config.get('cell', 'reset'): self.v_reset = 'v = v - v_thresh' else: self.v_reset = 'v = v_reset' self.eqs = '''dv/dt = bias : 1 bias : hertz''' self.spikemonitors = [] self.statemonitors = [] self.snn = None self._input_layer = None self._cell_params = None # Track the output layer spikes. self.output_spikemonitor = None
def set_spiketrain_stats_input(self): AbstractSNN.set_spiketrain_stats_input(self)
def get_spiketrains_input(self): # Added this here because PyCharm complains about not all abstract # methods being implemented (even though this is not abstract). AbstractSNN.get_spiketrains_input(self)