Ejemplo n.º 1
0
def test_viterbi(T=1000, K=20, D=2):
    # Create a true HMM
    A = npr.rand(K, K)
    A /= A.sum(axis=1, keepdims=True)
    A = 0.75 * np.eye(K) + 0.25 * A
    C = npr.randn(K, D)
    sigma = 0.01

    # Sample from the true HMM
    z = np.zeros(T, dtype=int)
    y = np.zeros((T, D))
    for t in range(T):
        if t > 0:
            z[t] = np.random.choice(K, p=A[z[t - 1]])
        y[t] = C[z[t]] + np.sqrt(sigma) * npr.randn(D)

    # Compare to pyhsmm answer
    from pyhsmm.models import HMM as OldHMM
    from pyhsmm.basic.distributions import Gaussian
    oldhmm = OldHMM(
        [Gaussian(mu=C[k], sigma=sigma * np.eye(D)) for k in range(K)],
        trans_matrix=A,
        init_state_distn="uniform")
    oldhmm.add_data(y)
    states = oldhmm.states_list.pop()
    states.Viterbi()
    z_star = states.stateseq

    # Make an HMM with these parameters
    hmm = HMM(K, D, observations="diagonal_gaussian")
    hmm.transitions.log_Ps = np.log(A)
    hmm.observations.mus = C
    hmm.observations.sigmasq = sigma * np.ones((K, D))
    z_star2 = hmm.most_likely_states(y)

    assert np.allclose(z_star, z_star2)
Ejemplo n.º 2
0
]

# Fit with both SGD and EM
methods = ["sgd", "em"]

results = {}
for obs in observations:
    for method in methods:
        print("Fitting {} HMM with {}".format(obs, method))
        model = HMM(K, D, observations=obs)
        train_lls = model.fit(y, method=method)
        test_ll = model.log_likelihood(y_test)
        smoothed_y = model.smooth(y)

        # Permute to match the true states
        model.permute(find_permutation(z, model.most_likely_states(y)))
        smoothed_z = model.most_likely_states(y)
        results[(obs, method)] = (model, train_lls, test_ll, smoothed_z,
                                  smoothed_y)

# Plot the inferred states
fig, axs = plt.subplots(len(observations) + 1, 1, figsize=(12, 8))

# Plot the true states
plt.sca(axs[0])
plt.imshow(z[None, :], aspect="auto", cmap="jet")
plt.title("true")
plt.xticks()

# Plot the inferred states
for i, obs in enumerate(observations):
Ejemplo n.º 3
0
# In[7]:

N_iters = 50
hmm = HMM(K, D, observations="gaussian")
hmm_lls = hmm.fit(y, method="em", num_em_iters=N_iters, verbose=True)

plt.plot(hmm_lls, label="EM")
plt.plot([0, N_iters], true_ll * np.ones(2), ':k', label="True")
plt.xlabel("EM Iteration")
plt.ylabel("Log Probability")
plt.legend(loc="lower right")

# In[8]:

# Find a permutation of the states that best matches the true and inferred states
hmm.permute(find_permutation(z, hmm.most_likely_states(y)))

# In[11]:

# Plot the true and inferred discrete states
hmm_z = hmm.most_likely_states(y)

plt.figure(figsize=(8, 4))
plt.subplot(211)
plt.imshow(z[None, :], aspect="auto", cmap=cmap, vmin=0, vmax=len(colors) - 1)
plt.xlim(0, T)
plt.ylabel("$z_{\\mathrm{true}}$")
plt.yticks([])

plt.subplot(212)
plt.imshow(hmm_z[None, :],
             color=colors[1],
             label="Struct" if n == 0 else None)
plt.legend()
plt.xlabel("time")

# # Fit an HMM to the LDS states

# In[13]:

from ssm.models import HMM

N_iters = 50
K = 15
hmm = HMM(K, D, observations="gaussian")
hmm_lls = hmm.fit(x, method="em", num_em_iters=N_iters, verbose=True)
z = hmm.most_likely_states(x)

# In[14]:

plt.plot(hmm_lls, label="EM")
plt.xlabel("EM Iteration")
plt.ylabel("Log Probability")
plt.legend(loc="lower right")

# In[15]:

# Plot the observation distributions
from hips.plotting.colormaps import white_to_color_cmap
xmins = x.min(axis=0)
xmaxs = x.max(axis=0)
npts = 100
Ejemplo n.º 5
0
    if regularize:
        arhmm_ses1 = HMM(K,N, observations="ar",
                    transitions="sticky",
                    transition_kwargs=dict(kappa=10),
                    observation_kwargs=dict(regularization_params=dict(type='l2',lambda_A=lambda_reg)))
        regularizestring='_regl2'
    else:
        arhmm_ses1 = HMM(K,N, observations="ar",
                    transitions="sticky",
                    transition_kwargs=dict(kappa=10))
        regularizestring=''

    arhmm_em_lls_ses1 = arhmm_ses1.fit(trialdata_ses1, method="em", num_em_iters=numiters)
    
    # Get the inferred states for session 1
    trialdata_ses1_z=[arhmm_ses1.most_likely_states(trial) for trial in trialdata_ses1]
    trialdata_ses1_z=np.asarray(trialdata_ses1_z)
    As_ses1=[None]*K; 
    for k in np.arange(K):
        As_ses1[k]=arhmm_ses1.params[2][0][k,:,:]; 
    
    fig = plt.figure(figsize=(8, 10))
    plt.imshow(trialdata_ses1_z, aspect="auto", vmin=0, vmax=K)
    plt.plot([54,54],[0,trialdata_ses1_z.shape[0]],'-r')
    plt.ylim([0,trialdata_ses1_z.shape[0]])
    fig.savefig(os.path.join(resultsfolder,'ses1'+cca_str+constring+'K'+str(K)+whitenstring+regularizestring+'.png'))
    
    fig = plt.figure(figsize=(8*K,8))
    for k in np.arange(K):
        ax = plt.subplot(1,K,k+1)
        plt.imshow(As_ses1[k],cmap='jet'); 
Ejemplo n.º 6
0
    sequence=np.array(sequence)
    
    # Divide into training and testing (I didn't really end up using the testing - but can check log likelihoods to decide K)
    traintrials=[trialdata[j] for j in sequence[:int(np.ceil(0.8*len(trialdata)))]]
    testtrials=[trialdata[j] for j in sequence[int(np.ceil(0.8*len(trialdata))):]]
    print(len(traintrials)); print(len(testtrials))              
    
    # Run the ARHMM
    arhmm = HMM(K,N, observations="ar",
                transitions="sticky",
                transition_kwargs=dict(kappa=kappa))
    
    arhmm_em_lls = arhmm.fit(traintrials, method="em", num_em_iters=numiters)
    
    # Get the inferred states for train and test trials
    traintrials_z=[arhmm.most_likely_states(traintrial) for traintrial in traintrials]
    traintrials_z=np.asarray(traintrials_z)
    testtrials_z=[arhmm.most_likely_states(testtrial) for testtrial in testtrials]
    testtrials_z=np.asarray(testtrials_z)


    As=[None]*K; maxvals=[None]*K
    for k in np.arange(K):
        As[k]=arhmm.params[2][0][k,:,:]; 
        maxvals[k]=np.var(As[k])    # Tried to permute the states so that it would be 'no movement' --> 'movement', based on the variance of the values in the A matrix (didn't really work)
    
    # permute the states
    sortorder=np.argsort(maxvals)
    sortedmaxvals=np.sort(maxvals)
    print(sortorder); print(sortedmaxvals)
    As=[As[i] for i in sortorder]
Ejemplo n.º 7
0
# Now create a new HMM and fit it to the data with EM
N_iters = 50
hmm = HMM(K, D, M, 
          observations="categorical", observation_kwargs=dict(C=C),
          transitions="inputdriven")

# Fit
hmm_lps = hmm.fit(y, inputs=inpt, method="em", num_em_iters=N_iters)


# In[5]:


# Find a permutation of the states that best matches the true and inferred states
hmm.permute(find_permutation(z, hmm.most_likely_states(y, input=inpt)))
z_inf = hmm.most_likely_states(y, input=inpt)


# In[6]:


# Plot the log probabilities of the true and fit models
plt.plot(hmm_lps, label="EM")
plt.plot([0, N_iters], true_lp * np.ones(2), ':k', label="True")
plt.legend(loc="lower right")
plt.xlabel("EM Iteration")
plt.xlim(0, N_iters)
plt.ylabel("Log Probability")