Ejemplo n.º 1
0
    lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all(X_scaled,z,n_lambdas,lambdas,k_folds)
    best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)]
    best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)]
    best_lasso_mse[degree] = np.min(lasso_cv_mse)
    best_ridge_mse[degree] = np.min(ridge_cv_mse)
    lasso_lamb_deg_mse[degree] = lasso_cv_mse
    ridge_lamb_deg_mse[degree] = ridge_cv_mse
    ols_cv_mse[degree] = ols_cv_mse_deg

    # All regression bootstraps at once
    lamb_ridge = best_ridge_lambda[degree]
    lamb_lasso = best_lasso_lambda[degree]

    ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \
    stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

    ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \
    ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance

    lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \
    lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance

    ols_boot_mse[degree], ols_boot_bias[degree], \
    ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance

    # Bootstrapping for a selection of lambdas for ridge and lasso
    # subset_lambda_index = 0
    # for lamb in subset_lambdas:
    #
    #     ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
Ejemplo n.º 2
0
def terrain_analysis():
    # Setting up the terrain data:
    terrain_data = imread('../datafiles/SRTM_data_Norway_1.tif')
    x_terrain = np.arange(terrain_data.shape[1])
    y_terrain = np.arange(terrain_data.shape[0])
    X_coord, Y_coord = np.meshgrid(x_terrain, y_terrain)
    z_terrain = terrain_data.flatten()  # the response values
    x_terrain_flat = X_coord.flatten()  # the first degree feature variables
    y_terrain_flat = Y_coord.flatten()  # the first degree feature variables

    max_degree = 20
    n_lambdas = 30
    n_bootstraps = 50
    k_folds = 5
    lambdas = np.logspace(-3, 0, n_lambdas)
    subset_lambdas = lambdas[::5]

    #### Should select a subset in some manner of the terrain points
    #### Should probably also make the feature variables be float that range from [0,1]

    x = x_terrain_flat[::20]
    y = y_terrain_flat[::20]
    z = z_terrain[::20]

    x_train, x_test, y_train, y_test, z_train, z_test = train_test_split(
        x, y, z, test_size=0.2)

    # Quantities of interest:
    mse_ols_test = np.zeros(max_degree)
    mse_ols_train = np.zeros(max_degree)
    ols_cv_mse = np.zeros(max_degree)

    ols_boot_mse = np.zeros(max_degree)
    ols_boot_bias = np.zeros(max_degree)
    ols_boot_variance = np.zeros(max_degree)

    best_ridge_lambda = np.zeros(max_degree)
    best_ridge_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_bias = np.zeros(max_degree)
    ridge_best_lambda_boot_variance = np.zeros(max_degree)

    best_lasso_lambda = np.zeros(max_degree)
    best_lasso_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_bias = np.zeros(max_degree)
    lasso_best_lambda_boot_variance = np.zeros(max_degree)

    ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas))
    lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas))

    ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))

    # Actual computations
    for degree in range(max_degree):
        X = linear_regression.design_matrix_2D(x, y, degree)
        X_train = linear_regression.design_matrix_2D(x_train, y_train, degree)
        X_test = linear_regression.design_matrix_2D(x_test, y_test, degree)
        # Scaling and feeding to CV.

        scaler = StandardScaler()
        scaler.fit(X)
        X_scaled = scaler.transform(X)
        X_scaled[:, 0] = 1  # Probably should not have this.

        # Scaling and feeding to bootstrap and OLS
        scaler_boot = StandardScaler()
        scaler_boot.fit(X_train)
        X_train_scaled = scaler_boot.transform(X_train)
        X_test_scaled = scaler_boot.transform(X_test)
        X_train_scaled[:, 0] = 1  # Probably actually not
        X_test_scaled[:,
                      0] = 1  # Have a bad feeling about how this might affect ridge/lasso.

        # OLS, get MSE for test and train set.

        betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train)
        z_test_model = X_test_scaled @ betas
        z_train_model = X_train_scaled @ betas
        mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model)
        mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model)

        # CV, find best lambdas and get mse vs lambda for given degree.

        lasso_cv_mse, ridge_cv_mse, ols_cv_mse = stat_tools.k_fold_cv_all(
            X_scaled, z, n_lambdas, lambdas, k_folds)
        best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)]
        best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)]
        best_lasso_mse[degree] = np.min(lasso_cv_mse)
        best_ridge_mse[degree] = np.min(ridge_cv_mse)
        lasso_lamb_deg_mse[degree] = lasso_cv_mse
        ridge_lamb_deg_mse[degree] = ridge_cv_mse

        # All regression bootstraps at once

        lamb_ridge = best_ridge_lambda[degree]
        lamb_lasso = best_lasso_lambda[degree]

        ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \
        stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

        ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \
        ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance

        lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \
        lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance

        ols_boot_mse[degree], ols_boot_bias[degree], \
        ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance

        # Bootstrapping for a selection of lambdas for ridge and lasso
        subset_lambda_index = 0
        for lamb in subset_lambdas:

            ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
            stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

            ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \
            ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance

            lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \
            lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance

            subset_lambda_index += 1


################ All necessary computations should have been done above. Below follows
################ the plotting part.

    return
def terrain_analysis_plots(spacing=100,
                           max_degree=20,
                           n_lambdas=30,
                           k_folds=5,
                           n_bootstraps=50,
                           do_boot=False,
                           do_subset=False):

    # Setting up the terrain data:
    # Note structure! X-coordinates are on the rows of terrain_data
    # Point_selection.flatten() moves most rapidly over the x-coordinates
    # Meshgrids flattened also move most rapidly over the x-coordinates. Thus
    # this should make z(x,y).reshape(length_y,length_x) be consistent with terrain_data

    terrain_data = imread('../datafiles/SRTM_data_Norway_1.tif')
    point_selection = terrain_data[:1801:spacing, :1801:
                                   spacing]  # Make square and downsample
    x_terrain_selection = np.linspace(0, 1, point_selection.shape[1])
    y_terrain_selection = np.linspace(0, 1, point_selection.shape[0])
    X_coord_selection, Y_coord_selection = np.meshgrid(x_terrain_selection,
                                                       y_terrain_selection)
    z_terrain_selection = point_selection.flatten()  # the response values
    x_terrain_selection_flat = X_coord_selection.flatten(
    )  # the first degree feature variables
    y_terrain_selection_flat = Y_coord_selection.flatten(
    )  # the first degree feature variables

    lambdas = np.logspace(-6, 0, n_lambdas)
    subset_lambdas = lambdas[::12]

    x = x_terrain_selection_flat
    y = y_terrain_selection_flat
    z = z_terrain_selection

    x_train, x_test, y_train, y_test, z_train, z_test = train_test_split(
        x, y, z, test_size=0.2)

    # Centering
    z_intercept = np.mean(z)
    z = z - z_intercept

    z_train_intercept = np.mean(z_train)
    z_train = z_train - z_train_intercept
    z_test = z_test - z_train_intercept

    ##### Setup of problem is completede above.

    # Quantities of interest:
    mse_ols_test = np.zeros(max_degree)
    mse_ols_train = np.zeros(max_degree)
    ols_cv_mse = np.zeros(max_degree)

    ols_boot_mse = np.zeros(max_degree)
    ols_boot_bias = np.zeros(max_degree)
    ols_boot_variance = np.zeros(max_degree)

    best_ridge_lambda = np.zeros(max_degree)
    best_ridge_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_bias = np.zeros(max_degree)
    ridge_best_lambda_boot_variance = np.zeros(max_degree)

    best_lasso_lambda = np.zeros(max_degree)
    best_lasso_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_bias = np.zeros(max_degree)
    lasso_best_lambda_boot_variance = np.zeros(max_degree)

    ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas))
    lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas))

    ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))

    # Actual computations
    for degree in range(max_degree):
        X = linear_regression.design_matrix_2D(x, y, degree)
        X_train = linear_regression.design_matrix_2D(x_train, y_train, degree)
        X_test = linear_regression.design_matrix_2D(x_test, y_test, degree)
        # Scaling and feeding to CV.

        scaler = StandardScaler()
        scaler.fit(X)
        X_scaled = scaler.transform(X)
        #    X_scaled[:,0] = 1 # Probably should not have this.

        # Scaling and feeding to bootstrap and OLS
        scaler_boot = StandardScaler()
        scaler_boot.fit(X_train)
        X_train_scaled = scaler_boot.transform(X_train)
        X_test_scaled = scaler_boot.transform(X_test)
        #    X_train_scaled[:,0] = 1 # Probably actually not
        #    X_test_scaled[:,0] = 1 # Have a bad feeling about how this might affect ridge/lasso.

        # OLS, get MSE for test and train set.

        betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train)
        z_test_model = X_test_scaled @ betas
        z_train_model = X_train_scaled @ betas
        mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model)
        mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model)

        # CV, find best lambdas and get mse vs lambda for given degree.

        lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all(
            X_scaled, z, n_lambdas, lambdas, k_folds)
        best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)]
        best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)]
        best_lasso_mse[degree] = np.min(lasso_cv_mse)
        best_ridge_mse[degree] = np.min(ridge_cv_mse)
        lasso_lamb_deg_mse[degree] = lasso_cv_mse
        ridge_lamb_deg_mse[degree] = ridge_cv_mse
        ols_cv_mse[degree] = ols_cv_mse_deg

        if do_boot:
            # All regression bootstraps at once

            lamb_ridge = best_ridge_lambda[degree]
            lamb_lasso = best_lasso_lambda[degree]

            ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \
            stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

            ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \
            ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance

            lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \
            lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance

            ols_boot_mse[degree], ols_boot_bias[degree], \
            ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance

        if do_subset:
            # Bootstrapping for a selection of lambdas for ridge and lasso
            subset_lambda_index = 0
            for lamb in subset_lambdas:

                ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
                stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

                ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \
                ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance

                lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \
                lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance

                subset_lambda_index += 1

    # Plots go here.

    plt.figure()
    plt.semilogy(ols_cv_mse, label='ols')
    plt.semilogy(best_ridge_mse, label='ridge')
    plt.semilogy(best_lasso_mse, label='lasso')
    plt.title(
        'CV MSE for OLS, Ridge and Lasso, with the best lambdas for each degree'
    )
    plt.legend()
    plt.show()

    # For a couple of degrees, plot cv mse vs lambda for ridge, will break program if max_degrees < 8

    plt.figure()
    plt.plot(np.log10(lambdas),
             ridge_lamb_deg_mse[max_degree - 1],
             label='degree = {}'.format(max_degree - 1))
    plt.plot(np.log10(lambdas),
             ridge_lamb_deg_mse[max_degree - 2],
             label='degree = {}'.format(max_degree - 2))
    plt.plot(np.log10(lambdas),
             ridge_lamb_deg_mse[max_degree - 3],
             label='degree = {}'.format(max_degree - 3))
    plt.plot(np.log10(lambdas),
             ridge_lamb_deg_mse[max_degree - 5],
             label='degree = {}'.format(max_degree - 5))
    plt.plot(np.log10(lambdas),
             ridge_lamb_deg_mse[max_degree - 7],
             label='degree = {}'.format(max_degree - 7))
    plt.legend()
    plt.show()

    # For a copule of degrees, plot cv mse vs lambda for lasso, will break program if max_degree < 8.

    plt.figure()
    plt.plot(np.log10(lambdas),
             lasso_lamb_deg_mse[max_degree - 1],
             label='degree = {}'.format(max_degree - 1))
    plt.plot(np.log10(lambdas),
             lasso_lamb_deg_mse[max_degree - 2],
             label='degree = {}'.format(max_degree - 2))
    plt.plot(np.log10(lambdas),
             lasso_lamb_deg_mse[max_degree - 3],
             label='degree = {}'.format(max_degree - 3))
    plt.plot(np.log10(lambdas),
             lasso_lamb_deg_mse[max_degree - 5],
             label='degree = {}'.format(max_degree - 5))
    plt.plot(np.log10(lambdas),
             lasso_lamb_deg_mse[max_degree - 7],
             label='degree = {}'.format(max_degree - 7))
    plt.legend()
    plt.show()

    print('best ridge lambdas:')
    print(best_ridge_lambda)
    print('best lasso lambda')
    print(best_lasso_lambda)

    return
Ejemplo n.º 4
0
def franke_analysis():
    n = 1000
    noise_scale = 0.2
    x = np.random.uniform(0, 1, n)
    y = np.random.uniform(0, 1, n)
    z = FrankeFunction(x, y)
    # Adding standard normal noise:
    z = z + noise_scale * np.random.normal(0, 1, len(z))
    max_degree = 20
    n_lambdas = 30
    n_bootstraps = 50
    k_folds = 5
    lambdas = np.logspace(-3, 0, n_lambdas)
    subset_lambdas = lambdas[::5]

    x_train, x_test, y_train, y_test, z_train, z_test = train_test_split(
        x, y, z, test_size=0.2)

    # Quantities of interest:
    mse_ols_test = np.zeros(max_degree)
    mse_ols_train = np.zeros(max_degree)
    ols_cv_mse = np.zeros(max_degree)

    ols_boot_mse = np.zeros(max_degree)
    ols_boot_bias = np.zeros(max_degree)
    ols_boot_variance = np.zeros(max_degree)

    best_ridge_lambda = np.zeros(max_degree)
    best_ridge_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_bias = np.zeros(max_degree)
    ridge_best_lambda_boot_variance = np.zeros(max_degree)

    best_lasso_lambda = np.zeros(max_degree)
    best_lasso_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_bias = np.zeros(max_degree)
    lasso_best_lambda_boot_variance = np.zeros(max_degree)

    ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas))
    lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas))

    ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_variance = np.zeros(
        (max_degree, len(subset_lambdas)))

    # Actual computations
    for degree in range(max_degree):
        X = linear_regression.design_matrix_2D(x, y, degree)
        X_train = linear_regression.design_matrix_2D(x_train, y_train, degree)
        X_test = linear_regression.design_matrix_2D(x_test, y_test, degree)
        # Scaling and feeding to CV.
        scaler = StandardScaler()
        scaler.fit(X)
        X_scaled = scaler.transform(X)
        X_scaled[:,
                 0] = 1  # Maybe not for ridge+lasso. Don't want to penalize constants...

        # Scaling and feeding to bootstrap and OLS
        scaler_boot = StandardScaler()
        scaler_boot.fit(X_train)
        X_train_scaled = scaler_boot.transform(X_train)
        X_test_scaled = scaler_boot.transform(X_test)
        X_train_scaled[:, 0] = 1  #maybe not for ridge+lasso
        X_test_scaled[:, 0] = 1  #maybe not for ridge+lasso

        # OLS, get MSE for test and train set.

        betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train)
        z_test_model = X_test_scaled @ betas
        z_train_model = X_train_scaled @ betas
        mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model)
        mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model)

        # CV, find best lambdas and get mse vs lambda for given degree. Also, gets
        # ols_CV_MSE

        lasso_cv_mse, ridge_cv_mse, ols_cv_mse = stat_tools.k_fold_cv_all(
            X_scaled, z, n_lambdas, lambdas, k_folds)
        best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)]
        best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)]
        best_lasso_mse[degree] = np.min(lasso_cv_mse)
        best_ridge_mse[degree] = np.min(ridge_cv_mse)
        lasso_lamb_deg_mse[degree] = lasso_cv_mse
        ridge_lamb_deg_mse[degree] = ridge_cv_mse

        # All regressions bootstraps at once
        lamb_ridge = best_ridge_lambda[degree]
        lamb_lasso = best_lasso_lambda[degree]

        ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \
        stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

        ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \
        ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance

        lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \
        lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance

        ols_boot_mse[degree], ols_boot_bias[degree], \
        ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance

        # Bootstrapping for a selection of lambdas for ridge and lasso
        subset_lambda_index = 0
        for lamb in subset_lambdas:

            ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
            stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

            ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \
            ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance

            lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \
            lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance

            subset_lambda_index += 1
def franke_analysis_plots(n=1000,noise_scale=0.2,max_degree=20,n_bootstraps=100,k_folds=5,n_lambdas=30, do_boot=True, do_subset=True):


# Note that max_degrees is the number of degrees, i.e. including 0.

    # n = 500
    # noise_scale = 0.2
    x = np.random.uniform(0, 1, n)
    y = np.random.uniform(0, 1, n)
    z = FrankeFunction(x, y)
    # Adding standard normal noise:
    z = z + noise_scale*np.random.normal(0,1,len(z))
    # max_degree = 15
    # n_lambdas = 30
    # n_bootstraps = 100
    # k_folds = 5
    lambdas = np.logspace(-6,0,n_lambdas)
    subset_lambdas = lambdas[::12]

    x_train, x_test, y_train, y_test, z_train, z_test = train_test_split(x, y, z, test_size = 0.2)

    #   Centering the response
    z_intercept = np.mean(z)
    z = z - z_intercept

    #   Centering the response
    z_train_intercept = np.mean(z_train)
    z_train = z_train - z_train_intercept
    z_test = z_test - z_train_intercept

    ########### Setup of problem is completed above.

    # Quantities of interest:
    mse_ols_test = np.zeros(max_degree)
    mse_ols_train = np.zeros(max_degree)
    ols_cv_mse = np.zeros(max_degree)

    ols_boot_mse = np.zeros(max_degree)
    ols_boot_bias = np.zeros(max_degree)
    ols_boot_variance = np.zeros(max_degree)

    best_ridge_lambda = np.zeros(max_degree)
    best_ridge_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_mse = np.zeros(max_degree)
    ridge_best_lambda_boot_bias = np.zeros(max_degree)
    ridge_best_lambda_boot_variance = np.zeros(max_degree)

    best_lasso_lambda = np.zeros(max_degree)
    best_lasso_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_mse = np.zeros(max_degree)
    lasso_best_lambda_boot_bias = np.zeros(max_degree)
    lasso_best_lambda_boot_variance = np.zeros(max_degree)

    ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas))
    lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas))

    ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    ridge_subset_lambda_boot_variance = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas)))
    lasso_subset_lambda_boot_variance = np.zeros((max_degree, len(subset_lambdas)))

    # Actual computations
    for degree in range(max_degree):
        X = linear_regression.design_matrix_2D(x,y,degree)
        X_train = linear_regression.design_matrix_2D(x_train, y_train, degree)
        X_test = linear_regression.design_matrix_2D(x_test, y_test, degree)
        # Scaling and feeding to CV.
        scaler = StandardScaler()
        scaler.fit(X)
        X_scaled = scaler.transform(X)
    #    X_scaled[:,0] = 1 # Maybe not for ridge+lasso. Don't want to penalize constants...




        # Scaling and feeding to bootstrap and OLS
        scaler_boot = StandardScaler()
        scaler_boot.fit(X_train)
        X_train_scaled = scaler_boot.transform(X_train)
        X_test_scaled = scaler_boot.transform(X_test)
    #    X_train_scaled[:,0] = 1 #maybe not for ridge+lasso
    #    X_test_scaled[:,0] = 1 #maybe not for ridge+lasso


        # OLS, get MSE for test and train set.

        betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train)
        z_test_model = X_test_scaled @ betas
        z_train_model = X_train_scaled @ betas
        mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model)
        mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model)


        # CV, find best lambdas and get mse vs lambda for given degree. Also, gets
        # ols_CV_MSE

        lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all(X_scaled,z,n_lambdas,lambdas,k_folds)
        best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)]
        best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)]
        best_lasso_mse[degree] = np.min(lasso_cv_mse)
        best_ridge_mse[degree] = np.min(ridge_cv_mse)
        lasso_lamb_deg_mse[degree] = lasso_cv_mse
        ridge_lamb_deg_mse[degree] = ridge_cv_mse
        ols_cv_mse[degree] = ols_cv_mse_deg

        if do_boot:
            # All regression bootstraps at once
            lamb_ridge = best_ridge_lambda[degree]
            lamb_lasso = best_lasso_lambda[degree]

            ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \
            stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

            ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \
            ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance

            lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \
            lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance

            ols_boot_mse[degree], ols_boot_bias[degree], \
            ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance

        if do_subset:
            # Bootstrapping for a selection of lambdas for ridge and lasso
            subset_lambda_index = 0
            for lamb in subset_lambdas:

                ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
                stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge)

                ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \
                ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance

                lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \
                lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance

                subset_lambda_index  += 1

    # Plots go here.

    # CV MSE for OLS:
    plt.figure()
    plt.semilogy(ols_cv_mse)
    plt.title('OLS CV MSE')
    plt.show()

    # Bootstrap for OLS:
    plt.figure()
    plt.semilogy(ols_boot_mse,label='mse')
    plt.semilogy(ols_boot_bias,label='bias')
    plt.semilogy(ols_boot_variance, label='variance')
    plt.title('OLS bias-variance-MSE by bootstrap')
    plt.legend()
    plt.show()

    # CV for Ridge, best+low+middle+high lambdas
    plt.figure()
    plt.semilogy(best_ridge_mse, label='best for each degree')
    plt.semilogy(ridge_lamb_deg_mse[:,0], label='lambda={}'.format(lambdas[0]))
    plt.semilogy(ridge_lamb_deg_mse[:,12], label='lambda={}'.format(lambdas[12]))
    plt.semilogy(ridge_lamb_deg_mse[:,24], label='lambda={}'.format(lambdas[24]))
    plt.title('Ridge CV MSE for best lambda at each degree, plus for given lambdas across all degrees')
    plt.legend()
    plt.show()

    # Bootstrap for the best ridge lambdas:
    plt.figure()
    plt.semilogy(ridge_best_lambda_boot_mse, label='mse')
    plt.semilogy(ridge_best_lambda_boot_bias, label ='bias')
    plt.semilogy(ridge_best_lambda_boot_variance, label='variance')
    plt.title('Best ridge lambdas for each degree bootstrap')
    plt.legend()
    plt.show()

    # Bootstrap only bias and variance for low+middle+high ridge lambdas

    plt.figure()
    plt.semilogy(ridge_subset_lambda_boot_bias[:,0], label = 'bias, lambda = {}'.format(subset_lambdas[0]))
    plt.semilogy(ridge_subset_lambda_boot_variance[:,0], label = 'variance, lambda = {}'.format(subset_lambdas[0]))
    plt.semilogy(ridge_subset_lambda_boot_bias[:,1],label = 'bias, lambda = {}'.format(subset_lambdas[1]))
    plt.semilogy(ridge_subset_lambda_boot_variance[:,1],label = 'variance, lambda = {}'.format(subset_lambdas[1]))
    plt.semilogy(ridge_subset_lambda_boot_bias[:,2],label = 'bias, lambda = {}'.format(subset_lambdas[2]))
    plt.semilogy(ridge_subset_lambda_boot_variance[:,2],label = 'variance, lambda = {}'.format(subset_lambdas[2]))
    plt.title('Bias+variance for low, middle, high ridge lambdas')
    plt.legend()
    plt.show()

    # CV for lasso, best+low+middle+high lambdas
    plt.figure()
    plt.semilogy(best_lasso_mse,label='best lambda for each degree')
    plt.semilogy(lasso_lamb_deg_mse[:,0],label='lambda={}'.format(lambdas[0]))
    plt.semilogy(lasso_lamb_deg_mse[:,12],label='lambda={}'.format(lambdas[12]))
    plt.semilogy(lasso_lamb_deg_mse[:,24],label='lambda={}'.format(lambdas[24]))
    plt.title('Lasso CV MSE for best lambda at each degree, plus for given lambdas across all degrees')
    plt.legend()
    plt.show()

    # Bootstrap for the best lasso lambdas:
    plt.figure()
    plt.semilogy(lasso_best_lambda_boot_mse, label='mse')
    plt.semilogy(lasso_best_lambda_boot_bias, label='bias')
    plt.semilogy(lasso_best_lambda_boot_variance, label='variance')
    plt.title('Best lasso lambdas for each degree bootstrap')
    plt.legend()
    plt.show()

    # Bootstrap only bias and variance for low+middle+high lasso lambdas

    plt.figure()
    plt.semilogy(lasso_subset_lambda_boot_bias[:,0],label = 'bias, lambda = {}'.format(subset_lambdas[0]))
    plt.semilogy(lasso_subset_lambda_boot_variance[:,0],label = 'variance, lambda = {}'.format(subset_lambdas[0]))
    plt.semilogy(lasso_subset_lambda_boot_bias[:,1],label = 'bias, lambda = {}'.format(subset_lambdas[1]))
    plt.semilogy(lasso_subset_lambda_boot_variance[:,1],label = 'variance, lambda = {}'.format(subset_lambdas[1]))
    plt.semilogy(lasso_subset_lambda_boot_bias[:,2],label = 'bias, lambda = {}'.format(subset_lambdas[2]))
    plt.semilogy(lasso_subset_lambda_boot_variance[:,2],label = 'variance, lambda = {}'.format(subset_lambdas[2]))
    plt.title('Bias+variance for low, middle, high lasso lambdas')
    plt.legend()
    plt.show()

    # For a couple of degrees, plot cv mse vs lambda for ridge, will break program if max_degrees < 8

    plt.figure()
    plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-1], label = 'degree = {}'.format(max_degree-1))
    plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-2], label = 'degree = {}'.format(max_degree-2))
    plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-3], label = 'degree = {}'.format(max_degree-3))
    plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-5], label = 'degree = {}'.format(max_degree-5))
    plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-7], label = 'degree = {}'.format(max_degree-7))
    plt.legend()
    plt.show()

    # For a copule of degrees, plot cv mse vs lambda for lasso, will break program if max_degree < 8.

    plt.figure()
    plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-1], label = 'degree = {}'.format(max_degree-1))
    plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-2], label = 'degree = {}'.format(max_degree-2))
    plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-3], label = 'degree = {}'.format(max_degree-3))
    plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-5], label = 'degree = {}'.format(max_degree-5))
    plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-7], label = 'degree = {}'.format(max_degree-7))
    plt.legend()
    plt.show()

    print('best ridge lambda:')
    print(best_ridge_lambda)
    print('best lasso lambda:')
    print(best_lasso_lambda)
    return