lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all(X_scaled,z,n_lambdas,lambdas,k_folds) best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)] best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)] best_lasso_mse[degree] = np.min(lasso_cv_mse) best_ridge_mse[degree] = np.min(ridge_cv_mse) lasso_lamb_deg_mse[degree] = lasso_cv_mse ridge_lamb_deg_mse[degree] = ridge_cv_mse ols_cv_mse[degree] = ols_cv_mse_deg # All regression bootstraps at once lamb_ridge = best_ridge_lambda[degree] lamb_lasso = best_lasso_lambda[degree] ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \ stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \ ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \ lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance ols_boot_mse[degree], ols_boot_bias[degree], \ ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance # Bootstrapping for a selection of lambdas for ridge and lasso # subset_lambda_index = 0 # for lamb in subset_lambdas: # # ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \
def terrain_analysis(): # Setting up the terrain data: terrain_data = imread('../datafiles/SRTM_data_Norway_1.tif') x_terrain = np.arange(terrain_data.shape[1]) y_terrain = np.arange(terrain_data.shape[0]) X_coord, Y_coord = np.meshgrid(x_terrain, y_terrain) z_terrain = terrain_data.flatten() # the response values x_terrain_flat = X_coord.flatten() # the first degree feature variables y_terrain_flat = Y_coord.flatten() # the first degree feature variables max_degree = 20 n_lambdas = 30 n_bootstraps = 50 k_folds = 5 lambdas = np.logspace(-3, 0, n_lambdas) subset_lambdas = lambdas[::5] #### Should select a subset in some manner of the terrain points #### Should probably also make the feature variables be float that range from [0,1] x = x_terrain_flat[::20] y = y_terrain_flat[::20] z = z_terrain[::20] x_train, x_test, y_train, y_test, z_train, z_test = train_test_split( x, y, z, test_size=0.2) # Quantities of interest: mse_ols_test = np.zeros(max_degree) mse_ols_train = np.zeros(max_degree) ols_cv_mse = np.zeros(max_degree) ols_boot_mse = np.zeros(max_degree) ols_boot_bias = np.zeros(max_degree) ols_boot_variance = np.zeros(max_degree) best_ridge_lambda = np.zeros(max_degree) best_ridge_mse = np.zeros(max_degree) ridge_best_lambda_boot_mse = np.zeros(max_degree) ridge_best_lambda_boot_bias = np.zeros(max_degree) ridge_best_lambda_boot_variance = np.zeros(max_degree) best_lasso_lambda = np.zeros(max_degree) best_lasso_mse = np.zeros(max_degree) lasso_best_lambda_boot_mse = np.zeros(max_degree) lasso_best_lambda_boot_bias = np.zeros(max_degree) lasso_best_lambda_boot_variance = np.zeros(max_degree) ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) # Actual computations for degree in range(max_degree): X = linear_regression.design_matrix_2D(x, y, degree) X_train = linear_regression.design_matrix_2D(x_train, y_train, degree) X_test = linear_regression.design_matrix_2D(x_test, y_test, degree) # Scaling and feeding to CV. scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) X_scaled[:, 0] = 1 # Probably should not have this. # Scaling and feeding to bootstrap and OLS scaler_boot = StandardScaler() scaler_boot.fit(X_train) X_train_scaled = scaler_boot.transform(X_train) X_test_scaled = scaler_boot.transform(X_test) X_train_scaled[:, 0] = 1 # Probably actually not X_test_scaled[:, 0] = 1 # Have a bad feeling about how this might affect ridge/lasso. # OLS, get MSE for test and train set. betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train) z_test_model = X_test_scaled @ betas z_train_model = X_train_scaled @ betas mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model) mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model) # CV, find best lambdas and get mse vs lambda for given degree. lasso_cv_mse, ridge_cv_mse, ols_cv_mse = stat_tools.k_fold_cv_all( X_scaled, z, n_lambdas, lambdas, k_folds) best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)] best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)] best_lasso_mse[degree] = np.min(lasso_cv_mse) best_ridge_mse[degree] = np.min(ridge_cv_mse) lasso_lamb_deg_mse[degree] = lasso_cv_mse ridge_lamb_deg_mse[degree] = ridge_cv_mse # All regression bootstraps at once lamb_ridge = best_ridge_lambda[degree] lamb_lasso = best_lasso_lambda[degree] ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \ stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \ ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \ lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance ols_boot_mse[degree], ols_boot_bias[degree], \ ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance # Bootstrapping for a selection of lambdas for ridge and lasso subset_lambda_index = 0 for lamb in subset_lambdas: ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \ stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \ ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \ lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance subset_lambda_index += 1 ################ All necessary computations should have been done above. Below follows ################ the plotting part. return
def terrain_analysis_plots(spacing=100, max_degree=20, n_lambdas=30, k_folds=5, n_bootstraps=50, do_boot=False, do_subset=False): # Setting up the terrain data: # Note structure! X-coordinates are on the rows of terrain_data # Point_selection.flatten() moves most rapidly over the x-coordinates # Meshgrids flattened also move most rapidly over the x-coordinates. Thus # this should make z(x,y).reshape(length_y,length_x) be consistent with terrain_data terrain_data = imread('../datafiles/SRTM_data_Norway_1.tif') point_selection = terrain_data[:1801:spacing, :1801: spacing] # Make square and downsample x_terrain_selection = np.linspace(0, 1, point_selection.shape[1]) y_terrain_selection = np.linspace(0, 1, point_selection.shape[0]) X_coord_selection, Y_coord_selection = np.meshgrid(x_terrain_selection, y_terrain_selection) z_terrain_selection = point_selection.flatten() # the response values x_terrain_selection_flat = X_coord_selection.flatten( ) # the first degree feature variables y_terrain_selection_flat = Y_coord_selection.flatten( ) # the first degree feature variables lambdas = np.logspace(-6, 0, n_lambdas) subset_lambdas = lambdas[::12] x = x_terrain_selection_flat y = y_terrain_selection_flat z = z_terrain_selection x_train, x_test, y_train, y_test, z_train, z_test = train_test_split( x, y, z, test_size=0.2) # Centering z_intercept = np.mean(z) z = z - z_intercept z_train_intercept = np.mean(z_train) z_train = z_train - z_train_intercept z_test = z_test - z_train_intercept ##### Setup of problem is completede above. # Quantities of interest: mse_ols_test = np.zeros(max_degree) mse_ols_train = np.zeros(max_degree) ols_cv_mse = np.zeros(max_degree) ols_boot_mse = np.zeros(max_degree) ols_boot_bias = np.zeros(max_degree) ols_boot_variance = np.zeros(max_degree) best_ridge_lambda = np.zeros(max_degree) best_ridge_mse = np.zeros(max_degree) ridge_best_lambda_boot_mse = np.zeros(max_degree) ridge_best_lambda_boot_bias = np.zeros(max_degree) ridge_best_lambda_boot_variance = np.zeros(max_degree) best_lasso_lambda = np.zeros(max_degree) best_lasso_mse = np.zeros(max_degree) lasso_best_lambda_boot_mse = np.zeros(max_degree) lasso_best_lambda_boot_bias = np.zeros(max_degree) lasso_best_lambda_boot_variance = np.zeros(max_degree) ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) # Actual computations for degree in range(max_degree): X = linear_regression.design_matrix_2D(x, y, degree) X_train = linear_regression.design_matrix_2D(x_train, y_train, degree) X_test = linear_regression.design_matrix_2D(x_test, y_test, degree) # Scaling and feeding to CV. scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) # X_scaled[:,0] = 1 # Probably should not have this. # Scaling and feeding to bootstrap and OLS scaler_boot = StandardScaler() scaler_boot.fit(X_train) X_train_scaled = scaler_boot.transform(X_train) X_test_scaled = scaler_boot.transform(X_test) # X_train_scaled[:,0] = 1 # Probably actually not # X_test_scaled[:,0] = 1 # Have a bad feeling about how this might affect ridge/lasso. # OLS, get MSE for test and train set. betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train) z_test_model = X_test_scaled @ betas z_train_model = X_train_scaled @ betas mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model) mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model) # CV, find best lambdas and get mse vs lambda for given degree. lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all( X_scaled, z, n_lambdas, lambdas, k_folds) best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)] best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)] best_lasso_mse[degree] = np.min(lasso_cv_mse) best_ridge_mse[degree] = np.min(ridge_cv_mse) lasso_lamb_deg_mse[degree] = lasso_cv_mse ridge_lamb_deg_mse[degree] = ridge_cv_mse ols_cv_mse[degree] = ols_cv_mse_deg if do_boot: # All regression bootstraps at once lamb_ridge = best_ridge_lambda[degree] lamb_lasso = best_lasso_lambda[degree] ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \ stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \ ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \ lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance ols_boot_mse[degree], ols_boot_bias[degree], \ ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance if do_subset: # Bootstrapping for a selection of lambdas for ridge and lasso subset_lambda_index = 0 for lamb in subset_lambdas: ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \ stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \ ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \ lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance subset_lambda_index += 1 # Plots go here. plt.figure() plt.semilogy(ols_cv_mse, label='ols') plt.semilogy(best_ridge_mse, label='ridge') plt.semilogy(best_lasso_mse, label='lasso') plt.title( 'CV MSE for OLS, Ridge and Lasso, with the best lambdas for each degree' ) plt.legend() plt.show() # For a couple of degrees, plot cv mse vs lambda for ridge, will break program if max_degrees < 8 plt.figure() plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree - 1], label='degree = {}'.format(max_degree - 1)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree - 2], label='degree = {}'.format(max_degree - 2)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree - 3], label='degree = {}'.format(max_degree - 3)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree - 5], label='degree = {}'.format(max_degree - 5)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree - 7], label='degree = {}'.format(max_degree - 7)) plt.legend() plt.show() # For a copule of degrees, plot cv mse vs lambda for lasso, will break program if max_degree < 8. plt.figure() plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree - 1], label='degree = {}'.format(max_degree - 1)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree - 2], label='degree = {}'.format(max_degree - 2)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree - 3], label='degree = {}'.format(max_degree - 3)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree - 5], label='degree = {}'.format(max_degree - 5)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree - 7], label='degree = {}'.format(max_degree - 7)) plt.legend() plt.show() print('best ridge lambdas:') print(best_ridge_lambda) print('best lasso lambda') print(best_lasso_lambda) return
def franke_analysis(): n = 1000 noise_scale = 0.2 x = np.random.uniform(0, 1, n) y = np.random.uniform(0, 1, n) z = FrankeFunction(x, y) # Adding standard normal noise: z = z + noise_scale * np.random.normal(0, 1, len(z)) max_degree = 20 n_lambdas = 30 n_bootstraps = 50 k_folds = 5 lambdas = np.logspace(-3, 0, n_lambdas) subset_lambdas = lambdas[::5] x_train, x_test, y_train, y_test, z_train, z_test = train_test_split( x, y, z, test_size=0.2) # Quantities of interest: mse_ols_test = np.zeros(max_degree) mse_ols_train = np.zeros(max_degree) ols_cv_mse = np.zeros(max_degree) ols_boot_mse = np.zeros(max_degree) ols_boot_bias = np.zeros(max_degree) ols_boot_variance = np.zeros(max_degree) best_ridge_lambda = np.zeros(max_degree) best_ridge_mse = np.zeros(max_degree) ridge_best_lambda_boot_mse = np.zeros(max_degree) ridge_best_lambda_boot_bias = np.zeros(max_degree) ridge_best_lambda_boot_variance = np.zeros(max_degree) best_lasso_lambda = np.zeros(max_degree) best_lasso_mse = np.zeros(max_degree) lasso_best_lambda_boot_mse = np.zeros(max_degree) lasso_best_lambda_boot_bias = np.zeros(max_degree) lasso_best_lambda_boot_variance = np.zeros(max_degree) ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_variance = np.zeros( (max_degree, len(subset_lambdas))) # Actual computations for degree in range(max_degree): X = linear_regression.design_matrix_2D(x, y, degree) X_train = linear_regression.design_matrix_2D(x_train, y_train, degree) X_test = linear_regression.design_matrix_2D(x_test, y_test, degree) # Scaling and feeding to CV. scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) X_scaled[:, 0] = 1 # Maybe not for ridge+lasso. Don't want to penalize constants... # Scaling and feeding to bootstrap and OLS scaler_boot = StandardScaler() scaler_boot.fit(X_train) X_train_scaled = scaler_boot.transform(X_train) X_test_scaled = scaler_boot.transform(X_test) X_train_scaled[:, 0] = 1 #maybe not for ridge+lasso X_test_scaled[:, 0] = 1 #maybe not for ridge+lasso # OLS, get MSE for test and train set. betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train) z_test_model = X_test_scaled @ betas z_train_model = X_train_scaled @ betas mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model) mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model) # CV, find best lambdas and get mse vs lambda for given degree. Also, gets # ols_CV_MSE lasso_cv_mse, ridge_cv_mse, ols_cv_mse = stat_tools.k_fold_cv_all( X_scaled, z, n_lambdas, lambdas, k_folds) best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)] best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)] best_lasso_mse[degree] = np.min(lasso_cv_mse) best_ridge_mse[degree] = np.min(ridge_cv_mse) lasso_lamb_deg_mse[degree] = lasso_cv_mse ridge_lamb_deg_mse[degree] = ridge_cv_mse # All regressions bootstraps at once lamb_ridge = best_ridge_lambda[degree] lamb_lasso = best_lasso_lambda[degree] ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \ stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \ ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \ lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance ols_boot_mse[degree], ols_boot_bias[degree], \ ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance # Bootstrapping for a selection of lambdas for ridge and lasso subset_lambda_index = 0 for lamb in subset_lambdas: ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \ stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \ ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \ lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance subset_lambda_index += 1
def franke_analysis_plots(n=1000,noise_scale=0.2,max_degree=20,n_bootstraps=100,k_folds=5,n_lambdas=30, do_boot=True, do_subset=True): # Note that max_degrees is the number of degrees, i.e. including 0. # n = 500 # noise_scale = 0.2 x = np.random.uniform(0, 1, n) y = np.random.uniform(0, 1, n) z = FrankeFunction(x, y) # Adding standard normal noise: z = z + noise_scale*np.random.normal(0,1,len(z)) # max_degree = 15 # n_lambdas = 30 # n_bootstraps = 100 # k_folds = 5 lambdas = np.logspace(-6,0,n_lambdas) subset_lambdas = lambdas[::12] x_train, x_test, y_train, y_test, z_train, z_test = train_test_split(x, y, z, test_size = 0.2) # Centering the response z_intercept = np.mean(z) z = z - z_intercept # Centering the response z_train_intercept = np.mean(z_train) z_train = z_train - z_train_intercept z_test = z_test - z_train_intercept ########### Setup of problem is completed above. # Quantities of interest: mse_ols_test = np.zeros(max_degree) mse_ols_train = np.zeros(max_degree) ols_cv_mse = np.zeros(max_degree) ols_boot_mse = np.zeros(max_degree) ols_boot_bias = np.zeros(max_degree) ols_boot_variance = np.zeros(max_degree) best_ridge_lambda = np.zeros(max_degree) best_ridge_mse = np.zeros(max_degree) ridge_best_lambda_boot_mse = np.zeros(max_degree) ridge_best_lambda_boot_bias = np.zeros(max_degree) ridge_best_lambda_boot_variance = np.zeros(max_degree) best_lasso_lambda = np.zeros(max_degree) best_lasso_mse = np.zeros(max_degree) lasso_best_lambda_boot_mse = np.zeros(max_degree) lasso_best_lambda_boot_bias = np.zeros(max_degree) lasso_best_lambda_boot_variance = np.zeros(max_degree) ridge_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) lasso_lamb_deg_mse = np.zeros((max_degree, n_lambdas)) ridge_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) ridge_subset_lambda_boot_variance = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_mse = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_bias = np.zeros((max_degree, len(subset_lambdas))) lasso_subset_lambda_boot_variance = np.zeros((max_degree, len(subset_lambdas))) # Actual computations for degree in range(max_degree): X = linear_regression.design_matrix_2D(x,y,degree) X_train = linear_regression.design_matrix_2D(x_train, y_train, degree) X_test = linear_regression.design_matrix_2D(x_test, y_test, degree) # Scaling and feeding to CV. scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) # X_scaled[:,0] = 1 # Maybe not for ridge+lasso. Don't want to penalize constants... # Scaling and feeding to bootstrap and OLS scaler_boot = StandardScaler() scaler_boot.fit(X_train) X_train_scaled = scaler_boot.transform(X_train) X_test_scaled = scaler_boot.transform(X_test) # X_train_scaled[:,0] = 1 #maybe not for ridge+lasso # X_test_scaled[:,0] = 1 #maybe not for ridge+lasso # OLS, get MSE for test and train set. betas = linear_regression.OLS_SVD_2D(X_train_scaled, z_train) z_test_model = X_test_scaled @ betas z_train_model = X_train_scaled @ betas mse_ols_train[degree] = stat_tools.MSE(z_train, z_train_model) mse_ols_test[degree] = stat_tools.MSE(z_test, z_test_model) # CV, find best lambdas and get mse vs lambda for given degree. Also, gets # ols_CV_MSE lasso_cv_mse, ridge_cv_mse, ols_cv_mse_deg = stat_tools.k_fold_cv_all(X_scaled,z,n_lambdas,lambdas,k_folds) best_lasso_lambda[degree] = lambdas[np.argmin(lasso_cv_mse)] best_ridge_lambda[degree] = lambdas[np.argmin(ridge_cv_mse)] best_lasso_mse[degree] = np.min(lasso_cv_mse) best_ridge_mse[degree] = np.min(ridge_cv_mse) lasso_lamb_deg_mse[degree] = lasso_cv_mse ridge_lamb_deg_mse[degree] = ridge_cv_mse ols_cv_mse[degree] = ols_cv_mse_deg if do_boot: # All regression bootstraps at once lamb_ridge = best_ridge_lambda[degree] lamb_lasso = best_lasso_lambda[degree] ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance, ols_mse, ols_bias, ols_variance = \ stat_tools.bootstrap_all(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_best_lambda_boot_mse[degree], ridge_best_lambda_boot_bias[degree], \ ridge_best_lambda_boot_variance[degree] = ridge_mse, ridge_bias, ridge_variance lasso_best_lambda_boot_mse[degree], lasso_best_lambda_boot_bias[degree], \ lasso_best_lambda_boot_variance[degree] = lasso_mse, lasso_bias, lasso_variance ols_boot_mse[degree], ols_boot_bias[degree], \ ols_boot_variance[degree] = ols_mse, ols_bias, ols_variance if do_subset: # Bootstrapping for a selection of lambdas for ridge and lasso subset_lambda_index = 0 for lamb in subset_lambdas: ridge_mse, ridge_bias, ridge_variance, lasso_mse, lasso_bias, lasso_variance = \ stat_tools.bootstrap_ridge_lasso(X_train_scaled, X_test_scaled, z_train, z_test, n_bootstraps, lamb_lasso, lamb_ridge) ridge_subset_lambda_boot_mse[degree, subset_lambda_index ], ridge_subset_lambda_boot_bias[degree, subset_lambda_index ], \ ridge_subset_lambda_boot_variance[degree, subset_lambda_index ] = ridge_mse, ridge_bias, ridge_variance lasso_subset_lambda_boot_mse[degree, subset_lambda_index ], lasso_subset_lambda_boot_bias[degree, subset_lambda_index ], \ lasso_subset_lambda_boot_variance[degree, subset_lambda_index ] = lasso_mse, lasso_bias, lasso_variance subset_lambda_index += 1 # Plots go here. # CV MSE for OLS: plt.figure() plt.semilogy(ols_cv_mse) plt.title('OLS CV MSE') plt.show() # Bootstrap for OLS: plt.figure() plt.semilogy(ols_boot_mse,label='mse') plt.semilogy(ols_boot_bias,label='bias') plt.semilogy(ols_boot_variance, label='variance') plt.title('OLS bias-variance-MSE by bootstrap') plt.legend() plt.show() # CV for Ridge, best+low+middle+high lambdas plt.figure() plt.semilogy(best_ridge_mse, label='best for each degree') plt.semilogy(ridge_lamb_deg_mse[:,0], label='lambda={}'.format(lambdas[0])) plt.semilogy(ridge_lamb_deg_mse[:,12], label='lambda={}'.format(lambdas[12])) plt.semilogy(ridge_lamb_deg_mse[:,24], label='lambda={}'.format(lambdas[24])) plt.title('Ridge CV MSE for best lambda at each degree, plus for given lambdas across all degrees') plt.legend() plt.show() # Bootstrap for the best ridge lambdas: plt.figure() plt.semilogy(ridge_best_lambda_boot_mse, label='mse') plt.semilogy(ridge_best_lambda_boot_bias, label ='bias') plt.semilogy(ridge_best_lambda_boot_variance, label='variance') plt.title('Best ridge lambdas for each degree bootstrap') plt.legend() plt.show() # Bootstrap only bias and variance for low+middle+high ridge lambdas plt.figure() plt.semilogy(ridge_subset_lambda_boot_bias[:,0], label = 'bias, lambda = {}'.format(subset_lambdas[0])) plt.semilogy(ridge_subset_lambda_boot_variance[:,0], label = 'variance, lambda = {}'.format(subset_lambdas[0])) plt.semilogy(ridge_subset_lambda_boot_bias[:,1],label = 'bias, lambda = {}'.format(subset_lambdas[1])) plt.semilogy(ridge_subset_lambda_boot_variance[:,1],label = 'variance, lambda = {}'.format(subset_lambdas[1])) plt.semilogy(ridge_subset_lambda_boot_bias[:,2],label = 'bias, lambda = {}'.format(subset_lambdas[2])) plt.semilogy(ridge_subset_lambda_boot_variance[:,2],label = 'variance, lambda = {}'.format(subset_lambdas[2])) plt.title('Bias+variance for low, middle, high ridge lambdas') plt.legend() plt.show() # CV for lasso, best+low+middle+high lambdas plt.figure() plt.semilogy(best_lasso_mse,label='best lambda for each degree') plt.semilogy(lasso_lamb_deg_mse[:,0],label='lambda={}'.format(lambdas[0])) plt.semilogy(lasso_lamb_deg_mse[:,12],label='lambda={}'.format(lambdas[12])) plt.semilogy(lasso_lamb_deg_mse[:,24],label='lambda={}'.format(lambdas[24])) plt.title('Lasso CV MSE for best lambda at each degree, plus for given lambdas across all degrees') plt.legend() plt.show() # Bootstrap for the best lasso lambdas: plt.figure() plt.semilogy(lasso_best_lambda_boot_mse, label='mse') plt.semilogy(lasso_best_lambda_boot_bias, label='bias') plt.semilogy(lasso_best_lambda_boot_variance, label='variance') plt.title('Best lasso lambdas for each degree bootstrap') plt.legend() plt.show() # Bootstrap only bias and variance for low+middle+high lasso lambdas plt.figure() plt.semilogy(lasso_subset_lambda_boot_bias[:,0],label = 'bias, lambda = {}'.format(subset_lambdas[0])) plt.semilogy(lasso_subset_lambda_boot_variance[:,0],label = 'variance, lambda = {}'.format(subset_lambdas[0])) plt.semilogy(lasso_subset_lambda_boot_bias[:,1],label = 'bias, lambda = {}'.format(subset_lambdas[1])) plt.semilogy(lasso_subset_lambda_boot_variance[:,1],label = 'variance, lambda = {}'.format(subset_lambdas[1])) plt.semilogy(lasso_subset_lambda_boot_bias[:,2],label = 'bias, lambda = {}'.format(subset_lambdas[2])) plt.semilogy(lasso_subset_lambda_boot_variance[:,2],label = 'variance, lambda = {}'.format(subset_lambdas[2])) plt.title('Bias+variance for low, middle, high lasso lambdas') plt.legend() plt.show() # For a couple of degrees, plot cv mse vs lambda for ridge, will break program if max_degrees < 8 plt.figure() plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-1], label = 'degree = {}'.format(max_degree-1)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-2], label = 'degree = {}'.format(max_degree-2)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-3], label = 'degree = {}'.format(max_degree-3)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-5], label = 'degree = {}'.format(max_degree-5)) plt.plot(np.log10(lambdas), ridge_lamb_deg_mse[max_degree-7], label = 'degree = {}'.format(max_degree-7)) plt.legend() plt.show() # For a copule of degrees, plot cv mse vs lambda for lasso, will break program if max_degree < 8. plt.figure() plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-1], label = 'degree = {}'.format(max_degree-1)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-2], label = 'degree = {}'.format(max_degree-2)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-3], label = 'degree = {}'.format(max_degree-3)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-5], label = 'degree = {}'.format(max_degree-5)) plt.plot(np.log10(lambdas), lasso_lamb_deg_mse[max_degree-7], label = 'degree = {}'.format(max_degree-7)) plt.legend() plt.show() print('best ridge lambda:') print(best_ridge_lambda) print('best lasso lambda:') print(best_lasso_lambda) return