Ejemplo n.º 1
0
 def cast(self):
     # generate line
     line = Line(self.current, self.direction)
     shortest_ray = None
     intersecting_segment = None
     intersection_point = None
     l = math.inf
     for segment in self.mirrors:
         # intersect line with segments from triangle
         mirror_point = line.intersection(segment)
         if mirror_point != []:
             mirror_point = mirror_point[0]
             ray = Segment(self.current, mirror_point)
             if isinstance(ray, Segment):
                 if ray.length < l:
                     l = ray.length                    
                     shortest_ray = ray 
                     intersecting_segment = segment
                     intersection_point = mirror_point
     
     # calculate angle between ray and segment
     next_ray = None
     if intersecting_segment is not None:
         incidenting_angle = shortest_ray.angle_between(intersecting_segment)
         corrected_incidenting_angle = incidenting_angle % (pi/2)
         print("ray is intersecting with an angle: ", math.degrees(incidenting_angle), "corrected", math.degrees(corrected_incidenting_angle))
         next_ray = shortest_ray.rotate((math.pi/2-corrected_incidenting_angle)*2, pt=intersection_point)
         self.current = next_ray.points[0]
         self.direction = next_ray.points[1]
     return [shortest_ray, next_ray]
Ejemplo n.º 2
0
def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length
    assert test_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert t.area == -t.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m)))
    # test entity overrides
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area
    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    poly_pent = Polygon(*pent.vertices)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point(-0.586, 4.27), Point(-1.69, 4.66), '
        'Point(-2.41, 3.73), Point(-1.74, 2.76), '
        'Point(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
Ejemplo n.º 3
0
def test_projection():
    p1 = Point(0, 0)
    p2 = Point3D(0, 0, 0)
    p3 = Point(-x1, x1)

    l1 = Line(p1, Point(1, 1))
    l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
    l3 = Line3D(p2, Point3D(1, 1, 1))

    r1 = Ray(Point(1, 1), Point(2, 2))

    assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
    assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
    assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
    assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
    assert l1.projection(p3) == p1
    assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(Ray(p1, Point(-1, 1))) == p1
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))

    assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3))
    assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3))
    assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
    assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
Ejemplo n.º 4
0
def test_are_concurrent_2d():
    l1 = Line(Point(0, 0), Point(1, 1))
    l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l2)
    assert Line.are_concurrent(l1, l1, l1, l2)
    assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(-Rational(3, 5), x1)))
    assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
Ejemplo n.º 5
0
def test_symbolic_intersect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    z = Symbol('z', real=True)
    k = Symbol('k', real=True)
    # Issue 7814.
    circle = Circle(Point(x, 0), y)
    line = Line(Point(k, z), slope=0)
    assert line.intersection(circle) == [
        Point(x - sqrt(y**2 - z**2), z), Point(x + sqrt(y**2 - z**2), z)]
Ejemplo n.º 6
0
 def intersection_of_vector_with_triangle(self):
     A,B,C = self.get_trinangle_points()
     S_AB = Segment(A,B)
     S_AC = Segment(A,C)
     S_BC = Segment(B,C)
     
     P1, P2 = self.two_points_from_vector(self.vector())
     L_vector = Line(P1, P2)
     
     mirror_point = L_vector.intersection(S_AB)
     return mirror_point
Ejemplo n.º 7
0
def test_arbitrary_point():
    l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
    l2 = Line(Point(x1, x1), Point(y1, y1))
    assert l2.arbitrary_point() in l2
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
           Point(t + 1, t + 1)
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
    assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
    assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
           Point3D(t + 1, 2 * t + 1, 3 * t + 1)
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
           Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
    assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
    assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
           Point3D(t + 1, 2 * t + 1, 3 * t + 1)
Ejemplo n.º 8
0
def test_angle_between():
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
                                  Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
    assert Line(a, o).angle_between(Line(b, o)) == pi / 2
    assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
                                Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))), acos(sqrt(3) / 3)
Ejemplo n.º 9
0
def test_is_perpendicular():
    p1 = Point(0, 0)
    p2 = Point(1, 1)

    l1 = Line(p1, p2)
    l2 = Line(Point(x1, x1), Point(y1, y1))
    l1_1 = Line(p1, Point(-x1, x1))
    # 2D
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p
    # 3D
    assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
                                   Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
    assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
                                   Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
    assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
                                   Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
Ejemplo n.º 10
0
def test_contains():
    p1 = Point(0, 0)

    r = Ray(p1, Point(4, 4))
    r1 = Ray3D(p1, Point3D(0, 0, -1))
    r2 = Ray3D(p1, Point3D(0, 1, 0))
    r3 = Ray3D(p1, Point3D(0, 0, 1))

    l = Line(Point(0, 1), Point(3, 4))
    # Segment contains
    assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
    assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
    assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
    assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
        Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
    # Line contains
    assert l.contains(Point(0, 1)) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False
    # Ray contains
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    assert r.contains(Segment((1, 1), (2, 2))) is True
    assert r.contains(Segment((1, 2), (2, 5))) is False
    assert r.contains(Ray((2, 2), (3, 3))) is True
    assert r.contains(Ray((2, 2), (3, 5))) is False
    assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
    assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
    assert r2.contains(Point3D(0, 0, 0)) is True
    assert r3.contains(Point3D(0, 0, 0)) is True
    assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
    assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
    with warnings.catch_warnings(record=True) as w:
        assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
        assert len(w) == 1

    with warnings.catch_warnings(record=True) as w:
        assert r3.contains(Point(1.0, 1.0)) is False
        assert len(w) == 1
Ejemplo n.º 11
0
 def get_angle_between(self, line1, line2):
     """
     Uses SymPy to calculate the angle between two lines. Assumes input formatted as Shapely lines.
     :param: line 1
     :param: line 2
     :return: angle between two lines
     """
     return SymLine.angle_between(
         SymLine(SymPoint(*line1.coords[0]), SymPoint(*line1.coords[1])),
         SymLine(SymPoint(*line2.coords[0]), SymPoint(*line2.coords[1]))
     )
Ejemplo n.º 12
0
def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
Ejemplo n.º 13
0
def test_equation():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)
    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
    assert Line(p1, Point(0, 1)).equation() == x
    assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
    assert Line(p2, Point(2, 1)).equation() == y - 1

    assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
        ).equation() == (-x + y, -x + z)
    assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
        ).equation() == (-x + y - 1, -x + z - 2)
    assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
        ).equation() == (x - 1, -y + z - 1)
    assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
        ).equation() == (y - 2, -x + z - 2)
    assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
        ).equation() == (-x + y - 1, z - 3)
    assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
        ).equation() == (x - 1, y - 2)
    assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
        ).equation() == (x - 1, z - 3)
    assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
        ).equation() == (y - 2, z - 3)
Ejemplo n.º 14
0
def test_is_parallel():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(x1, x1, x1)

    l2 = Line(Point(x1, x1), Point(y1, y1))
    l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
    assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
    assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
    assert Line3D(p1, p2).is_parallel(Line3D(p1, p2))  # same as in 2D
    assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
    assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
                                                      Point3D(x1 + 1, x1 + 1, x1 + 1))
    assert Line3D(p1, p2).parallel_line(p3.args) == \
           Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
    assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
Ejemplo n.º 15
0
def test_equals():
    p1 = Point(0, 0)
    p2 = Point(1, 1)

    l1 = Line(p1, p2)
    l2 = Line((0, 5), slope=m)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
    assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
    assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
        equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
    assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
    assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
    assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
    assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
        Line3D(Point3D(0, 1, 0), Point3D(1 / 2, 1 / 2, 0)))
    assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (1 / 2, 1 / 2)))
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
Ejemplo n.º 16
0
def test_equation():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)
    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
    assert Line(p1, Point(0, 1)).equation() == x
    assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
    assert Line(p2, Point(2, 1)).equation() == y - 1

    assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).equation() == (x, y, z, k)
    assert Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).equation() == \
           ((x - x1) / (-x1 + y1), (-x1 + y) / (-x1 + y1), (-x1 + z) / (-x1 + y1), k)
Ejemplo n.º 17
0
    def json_to_rdkit(self, json_data, map={}, mol_type='reactant'):

        m0 = Chem.MolFromSmarts('')
        mw = Chem.RWMol(m0)

        atoms_cd = {}
        query_atoms = []

        for atom in json_data['a']:
            atom_id = atom['i']
            # Query atoms
            if 'q' in atom:
                q = atom['q']
                v = q['as']['v']
                if 'a' in v:
                    smarts = '[*]'
                    a_defaut = 'C'
                else:
                    smarts = v
                    # Manage aromaticity
                    if 'A' in q:
                        if not q['A']['n']:
                            smarts = []
                        if q['A']['v']:
                            smarts = smarts + [a_.lower() for a_ in v ]
                    smarts = '[{0}]'.format(','.join([a_ for a_ in smarts ]))
                    a_defaut = v[0]
                query_atoms.append((atom_id,smarts))
                a = Chem.Atom(a_defaut)
            # Non-query atoms
            else:
                symbol = 'C' if 'l' not in atom else atom['l']
                a = Chem.Atom(symbol)
                if 'c' in atom:
                    a.SetFormalCharge(atom['c'])
            atoms_cd[atom_id] = mw.AddAtom(a)

        if not 'b' in json_data:
            json_data['b'] = []

        for bond in json_data['b']:
            bond_id = bond['i']
            if 'o' in bond:
                bond_type = self.bond_type(bond['o'])
            else:
                bond_type = self.bond_type(1)
            mw.AddBond(bond['b'], bond['e'],bond_type) - 1

        bonds_cd1 = {
            i: mw.GetBondBetweenAtoms(b_cd['b'],b_cd['e']).GetIdx()
            for i,b_cd in enumerate(json_data['b'])
        }

        bonds_cd = {
            '{0}-{1}'.format(b_cd['b'], b_cd['e']): i
            for i,b_cd in enumerate(json_data['b'])
        }

        atoms_rd = {v: k for k, v in atoms_cd.items()}
        bonds_rd = {v: k for k, v in bonds_cd.items()}

        def a_point(atom_rd):
            x, y = ( json_data['a'][atom_rd][d] for d in ['x','y'] )
            return Point( x,y )

        def mol_atom(idx):
            return mw.GetAtoms()[idx]

        ### Manage chirality

        for atom in mw.GetAtoms():
            if atom.GetSymbol() == 'C':
                s = []
                for b in atom.GetBonds():
                    id_1 = '{0}-{1}'.format(
                                        b.GetBeginAtomIdx(),
                                        b.GetEndAtomIdx() )
                    if id_1 in bonds_cd:
                        b_cd = json_data['b'][ bonds_cd[id_1] ]
                    else:
                        b_cd = json_data['b'][ bonds_cd['{1}-{0}'.format(
                                            b.GetBeginAtomIdx(),
                                            b.GetEndAtomIdx() )] ]
                    if 's' in b_cd:
                        s.append(b_cd['s'])
                    else:
                        s.append('')
                if len(s) == 4 and s.count('protruding')*s.count('recessed') == 1:
                    points = []
                    for i,b in enumerate(atom.GetBonds()):
                        if  b.GetBeginAtomIdx() != atom.GetIdx():
                            a = b.GetBeginAtomIdx()
                        else:
                            a = b.GetEndAtomIdx()

                        if s[i] == 'protruding':
                            z = 1
                        elif s[i] == 'recessed':
                            z = - 1
                        else:
                            z = 0
                        points.append( Point( [i for i in a_point(a)] + [z] ) )
                    int = Line( points[2].midpoint(points[3]), points[1] )\
                            .intersection(
                                Line( points[1].midpoint(points[2]), points[3] ) )[0]
                    N = CoordSys3D('N')
                    coords = [N.i,N.j,N.k]
                    vectors = []
                    for p in points:
                        v = Vector.zero
                        for v_ in [ n*coords[v] for v,n in enumerate(p-int) ]:
                            v += v_
                        vectors.append(v)
                    if vectors[1].cross(vectors[3]).dot(vectors[0]) > 0:
                        atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW)
                    else:
                        atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW)

        ### Manage stereo

        for bond in mw.GetBonds():
            if bond.GetBondType() == Chem.rdchem.BondType.DOUBLE \
                and bond.GetBeginAtom().GetSymbol() == 'C' \
                and bond.GetEndAtom().GetSymbol() == 'C':
                carbons = [ bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() ]
                # Check if stero can be applied
                if True in [ len(mol_atom(c).GetBonds()) > 1 for c in carbons ]:
                    sa = [ \
                            [b.GetBeginAtomIdx() \
                                if b.GetBeginAtomIdx() != c \
                                else b.GetEndAtomIdx()#,
                                for b in mol_atom(c).GetBonds() \
                                    if b.GetBondType() == Chem.rdchem.BondType.SINGLE ] \
                            for c in carbons ]
                    if not [] in sa:
                        sa = [ sa[i][0] for i in range(2) ]
                        bond.SetStereoAtoms (sa[0], sa[1])

                        if len( intersection(
                                Segment( a_point(sa[0]), a_point(sa[1]) ),
                                Line( a_point(carbons[0]), a_point(carbons[1]) )
                            )) > 0:
                            bond.SetStereo(Chem.rdchem.BondStereo.STEREOTRANS)
                        else:
                            bond.SetStereo(Chem.rdchem.BondStereo.STEREOCIS)

        # replace query_atoms
        if len(query_atoms) > 0:
            for id, smarts in query_atoms:
                m_a = Chem.MolFromSmarts(smarts)
                Chem.SanitizeMol(m_a)
                mw.ReplaceAtom(atoms_cd[id],m_a.GetAtoms()[0])

        # Map atoms
        i = 1
        for m in map:
            if m['t'] == 'AtomMapping':
                a_rd_id = None
                for a in ['a1', 'a2']:
                    if m[a] in atoms_cd:
                        a_rd_id = atoms_cd[ m[a] ]
                if a_rd_id is not None:
                    mw.GetAtoms()[a_rd_id].SetAtomMapNum(i)
                i += 1


        mol = mw.GetMol()
        RDKit.apply_aromaticity(mol)
        Chem.rdDepictor.Compute2DCoords(mol)

        return mol
Ejemplo n.º 18
0
def draw_humans(npimg, humans, imgcopy=False):
    if imgcopy:
        npimg = np.copy(npimg)
    image_h, image_w = npimg.shape[:2]
    centers = {}
    # hand_direction = {}
    for human in humans:
        # draw point
        for i in range(CocoPart.Background.value):
            if i not in human.body_parts.keys():
                continue

            body_part = human.body_parts[i]
            center = (int(body_part.x * image_w + 0.5),
                      int(body_part.y * image_h + 0.5))
            centers[i] = center
            cv2.circle(npimg,
                       center,
                       3,
                       CocoColors[i],
                       thickness=3,
                       lineType=8,
                       shift=0)

        # draw line
        for pair_order, pair in enumerate(CocoPairsRender):
            if pair[0] not in human.body_parts.keys(
            ) or pair[1] not in human.body_parts.keys():
                continue

            # npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3)
            cv2.line(npimg, centers[pair[0]], centers[pair[1]],
                     CocoColors[pair_order], 3)
        l_line = None
        r_line = None
        if 3 in centers and 4 in centers:
            l_elbow_point = Point(centers[3][0], centers[3][1])
            l_wrist_point = Point(centers[4][0], centers[4][1])
            l_line = Line(l_elbow_point, l_wrist_point)
        if 6 in centers and 7 in centers:
            r_elbow_point = Point(centers[6][0], centers[6][1])
            r_wrist_point = Point(centers[7][0], centers[7][1])
            r_line = Line(r_elbow_point, r_wrist_point)

        t_left = Point(0, 0)
        t_right = Point(image_w, 0)
        b_left = Point(0, image_h)
        b_right = Point(image_w, image_h)
        t_margin = Line(t_left, t_right)
        l_margin = Line(t_left, b_left)
        r_margin = Line(t_right, b_right)
        b_margin = Line(b_left, b_right)

        if l_line:
            intersect_point_1 = l_line.intersection(t_margin)[0]
            x = tuple(l_wrist_point)
            y = tuple(intersect_point_1)
            cv2.line(npimg, x, y, (22, 255, 7), 2)
            print(intersect_point_1)

        if r_line:
            intersect_point_r = r_line.intersection(t_margin)[0]
            x = tuple(r_wrist_point)
            y = tuple(intersect_point_r)
            cv2.line(npimg, x, y, (22, 255, 7), 2)

            print(intersect_point_r)

    return npimg
Ejemplo n.º 19
0
def test_parameter_value():
    t = Symbol('t')
    p1, p2 = Point(0, 1), Point(5, 6)
    l = Line(p1, p2)
    assert l.parameter_value((5, 6), t) == {t: 1}
    raises(ValueError, lambda: l.parameter_value((0, 0), t))
Ejemplo n.º 20
0
def generate_map(): 
 

	screen.fill((0, 0, 0))

	points = generate_random_points(num_points, width, height, buf)


	#for x, y in points:
	#	pygame.draw.circle(screen, WHITE, (x,y), 2, 1)

	voronoi_context = voronoi(points)

	voronoi_point_dict = {}
	point_to_segment_dict = {}
	segments = []
	vertices = []

	top_l =  Point(0,0)
	top_r = Point(width,0)
	bottom_l = Point(0, height)
	bottom_r = Point(width, height) 

	top = Line(top_l, top_r) 
	left = Line(top_l, bottom_l) 
	right = Line(top_r, bottom_r) 
	bottom = Line(bottom_l, bottom_r) 

	boundaries = [top, right, bottom, left]

	for edge in voronoi_context.edges:
		il, i1, i2 = edge # index of line, index of vertex 1, index of vertex 2

		line_color = RED 

		vert1 = None
		vert2 = None
		print_line = True

		if i1 is not -1 and i2 is not -1:
			vert1 = voronoi_context.vertices[i1]
			vert2 = voronoi_context.vertices[i2]

		else:
			line_point = None

			if i1 is -1:
				line_p = voronoi_context.vertices[i2]
			if i2 is -1: 
				line_p = voronoi_context.vertices[i1]

			line_point = Point(line_p[0], line_p[1])
			line = voronoi_context.lines[il] 

			p1 = None
			p2 = None
			if line[1] == 0:
				p1 = line_point
				p2 = Point(line[0]/line[2], 1)
			else: 
				p1 = Point(0, line[2]/line[1])
				p2 = line_point

			l = Line(p1, p2)

			top_intersect = l.intersection(top)
			bottom_intersect = l.intersection(bottom)
			right_intersect = l.intersection(right)
			left_intersect = l.intersection(left)

			distances = []

			top_dist = None
			bottom_dist = None
			right_dist = None
			left_dist = None

			if len(top_intersect) != 0: 
				top_dist = abs(line_point.distance(top_intersect[0]))
				distances.append(top_dist)
			if len(bottom_intersect) != 0 : 
				bottom_dist = abs(line_point.distance(bottom_intersect[0]))
				distances.append(bottom_dist)
			if len(right_intersect) != 0:
				right_dist = abs(line_point.distance(right_intersect[0]))
				distances.append(right_dist)
			if len(left_intersect) != 0: 
				left_dist = abs(line_point.distance(left_intersect[0]))
				distances.append(left_dist)

			vert1 = line_p 
			v2 = None

			if top_dist == min(distances):
				v2 = top_intersect[0]
			elif bottom_dist == min(distances):
				v2 = bottom_intersect[0]
			elif right_dist == min(distances):
				v2 = right_intersect[0]
			elif left_dist == min(distances):
				v2 = left_intersect[0]
			else: 
				v2 = Point(0, 0)
			
			vert2 = (v2.x, v2.y)

			if vert1[0] < 0 or vert1[1] < 0 or vert2[0] < 0 or vert2[1] < 0 or vert1[0] > width or vert1[1] > height or vert2[0] > width or vert2[1] > height:
				print_line = False

		if print_line:
			vert1, vert2 = adjust_out_of_bounds_points(vert1, vert2, boundaries)

		seg = None
		if vert1 == None or vert2 == None:
			print_line = False 
		if print_line: 
			vert1_p = Point(vert1)
			vert2_p = Point(vert2)
			seg = Segment(vert1_p, vert2_p)
			segments.append(seg)
		
			if not vert1_p in voronoi_point_dict:
				voronoi_point_dict[vert1_p] = []
			if not vert2_p in voronoi_point_dict:
				voronoi_point_dict[vert2_p] = []	

	 		voronoi_point_dict[vert1_p].append(vert2_p)
	 		voronoi_point_dict[vert2_p].append(vert1_p) 

	 		if not vert1_p in point_to_segment_dict:
	 			point_to_segment_dict[vert1_p] = []
	 		if not vert2_p in point_to_segment_dict:
	 			point_to_segment_dict[vert2_p] = []

	 		point_to_segment_dict[vert1_p].append(seg)
	 		point_to_segment_dict[vert2_p].append(seg)
	 	
			pygame.draw.line(screen, line_color, vert1, vert2, 1)

	pygame.display.flip()

	top_intersects = []
	bottom_intersects = [] 
	right_intersects = [] 
	left_intersects = [] 

	for seg in segments:
		if seg.p1.y <= 1:
			top_intersects.append(seg.p1)
		if seg.p2.y <= 1:
			top_intersects.append(seg.p2)
		if seg.p1.x >= width -1: 
			right_intersects.append(seg.p1)
		if seg.p2.x >= width-1: 
			right_intersects.append(seg.p2)
		if seg.p1.x <= 1:
			left_intersects.append(seg.p1)
		if seg.p2.x <= 1:
			left_intersects.append(seg.p2)
		if seg.p1.y >= height-1: 
			bottom_intersects.append(seg.p1)
		if seg.p2.y >= height-1: 
			bottom_intersects.append(seg.p2)

	top_intersects = sorted(top_intersects, key=lambda point: point.x)
	bottom_intersects = sorted(bottom_intersects, key=lambda point: point.x)
	left_intersects = sorted(left_intersects, key=lambda point: point.y)
	right_intersects = sorted(right_intersects, key=lambda point: point.y)

	for i in range(0, 4):
		intersect = None
		prev_vertex = None
		final_vertex = None

		if i == 0:
			prev_vertex = top_l
			intersect = top_intersects
			intersect.append(top_r)
		if i == 1:
			prev_vertex = bottom_l
			intersect = bottom_intersects
			intersect.append(bottom_r)
		if i == 2:
			prev_vertex = top_l
			intersect = left_intersects
			intersect.append(bottom_l)
		if i == 3:
			prev_vertex = top_r
			intersect = right_intersects
			intersect.append(bottom_r)

		if not prev_vertex in voronoi_point_dict:
			voronoi_point_dict[prev_vertex] = []
		if not final_vertex in voronoi_point_dict:
			voronoi_point_dict[final_vertex] = []

		if not prev_vertex in point_to_segment_dict:
	 		point_to_segment_dict[prev_vertex] = []
	 	if not final_vertex in point_to_segment_dict:
	 		point_to_segment_dict[final_vertex] = []

	 		

		for vertex in intersect:
			if not vertex in voronoi_point_dict:
				voronoi_point_dict[vertex] = []
			if not prev_vertex in voronoi_point_dict:
				voronoi_point_dict[prev_vertex] = []	
			s = Segment(prev_vertex, vertex)
		 	voronoi_point_dict[vertex].append(prev_vertex)
		 	voronoi_point_dict[prev_vertex].append(vertex)

		 	if not vertex in point_to_segment_dict:
	 			point_to_segment_dict[vertex] = []
	 		if not prev_vertex in point_to_segment_dict:
	 			point_to_segment_dict[prev_vertex] = []

	 		point_to_segment_dict[vertex].append(s)
	 		point_to_segment_dict[prev_vertex].append(s)

		 	prev_vertex = vertex
	 
	try: 
		polygons, segments_to_polygons = generate_polygons(voronoi_point_dict, segments, points, point_to_segment_dict)
	except Exception as e:
		print e 
		print "crashed"
		while 1:
			""" helllo"""
	for seg, gons in segments_to_polygons.iteritems():
		for gon in gons:
			gon.connect_adjacent_nodes(gons)

	for polygon in polygons:
		for node in polygon.adjacent_nodes:
			s = Segment(node.center, polygon.center)
			draw_segment(s, WHITE)

	highest_points_of_elevation = []
	frontiers = []

	for i in range(0, number_of_peaks):
		p = random.choice(polygons)
		p.elevation = max_elevation
		highest_points_of_elevation.append(p)

		frontiers.append(set(p.adjacent_nodes))

	marked_polygons = set([])	

	elevation = max_elevation
	while len(marked_polygons) < num_points:
		elevation -= 1 
		for i in range(0, number_of_peaks):
			new_frontier = set([])

			while len(frontiers[i]) > 0:
				node = frontiers[i].pop()
				node.elevation = elevation
				draw_point(node.center, ORANGE)

				for n in node.adjacent_nodes:
					if n not in marked_polygons:
						new_frontier.add(n)

				marked_polygons.add(node)
			frontiers[i] = new_frontier


	for polygon in polygons:
		if polygon.elevation <= 0:
			vertices = []
			for edge in polygon.edge_list:
				p = (edge.x, edge.y)
				vertices.append(p)
			pygame.draw.polygon(screen, BLUE, vertices, 0)
			pygame.display.flip()
	pygame.display.flip()
Ejemplo n.º 21
0
    assert len(circles) >= len(points)


@given(lines(), lines(), lines())
def test_add_entity(line1, line2, line3):
    incremental = EuclideanWorld().\
        add_entity(line1).\
        add_entity(line2).\
        add_entity(line3)
    oner = EuclideanWorld((line1, line2, line3))
    assert oner == incremental
    assert oner.get_points() == incremental.get_points()


@given(lines())
@example(
    Line(
        Point(4, 8 + 4 * sqrt(7)),
        Point(-8 * sqrt(7) / 7 + sqrt(7) * (-4 * sqrt(7) + 8) / 7 + 8,
              -4 * sqrt(7) + 8)))
@example(
    Line(
        Point(4, 8 + 4 * sqrt(7)),
        Point(
            -16 * sqrt(7) / 3 + (-2 / 3 + sqrt(7) / 3) *
            (-3 * sqrt(2) * sqrt(sqrt(7) + 4) - sqrt(7) + 11) + 56 / 3,
            -3 * sqrt(2) * sqrt(sqrt(7) + 4) - sqrt(7) + 11)))
def test_normalise_line(line):
    norm = EuclideanWorld.normalise_line(line)
    assert norm.is_similar(line)
Ejemplo n.º 22
0
from __future__ import print_function, division
from distutils.version import LooseVersion
from sympy import Rational
import sympy
from sympy.geometry import (Line, Point, Polygon)
from random import randint
listOfPolygons = [
    Polygon(Point(0 + w, 0 + w), Point(3 + w, 0 + w), Point(3 + w, 3 + w),
            Point(0 + w, 3 + w)) for w in range(10)
]
cutListOfPolygons = [
    Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2),
            (5, 3), (-1, 3)) for w in range(10)
]
cutLines = [Line((0, 0), (Rational(9, 2), 3)) for w in range(10)]


class PolygonAttributes:
    def time_create(self):
        "Creating Polygon"
        Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5))

    def time_area(self):
        "Polygon.area for w in range(10)"
        [listOfPolygons[w].area for w in range(10)]

    def time_perimeter(self):
        "Polygon.perimeter for w in range(10)"
        [listOfPolygons[w].perimeter for w in range(10)]

    def time_sides(self):
Ejemplo n.º 23
0
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)),
                        Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1,
                        Ray(Point(2, 2),
                            Point(0,
                                  0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(
        2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D(
        (1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D(
        (0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(Segment3D(
        (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(
        1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]
Ejemplo n.º 24
0
def test_dot():
    raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
Ejemplo n.º 25
0
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = S.Half
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1, 0), slope=1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert -p2 == Point(-y1, -y2)
    raises(TypeError, lambda: Point(1))
    raises(ValueError, lambda: Point([1]))
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2 * I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2
    assert p1.origin == Point(0, 0)

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
    raises(TypeError, lambda: Point.distance(p1, 0))
    raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1
    raises(ValueError, lambda: Point.canberra_distance(p3, p3))

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []
    assert p3.intersection(line) == []
    assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]

    x_pos = Symbol('x', positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
    assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0),
                              Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False

    assert p1.is_scalar_multiple(p1)
    assert p1.is_scalar_multiple(2 * p1)
    assert not p1.is_scalar_multiple(p2)
    assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
    assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
    # test when is_scalar_multiple can't be determined
    raises(
        Undecidable, lambda: Point.is_scalar_multiple(
            Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))

    assert Point(0, 1).orthogonal_direction == Point(1, 0)
    assert Point(1, 0).orthogonal_direction == Point(0, 1)

    assert p1.is_zero is None
    assert p3.is_zero
    assert p4.is_zero is False
    assert p1.is_nonzero is None
    assert p3.is_nonzero is False
    assert p4.is_nonzero

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)
    assert 5 * p4 == Point(5, 5)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = S.Half, Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2), evaluate=False)
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test project
    assert Point.project((0, 1), (1, 0)) == Point(0, 0)
    assert Point.project((1, 1), (1, 0)) == Point(1, 0)
    raises(ValueError, lambda: Point.project(p1, Point(0, 0)))

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # test __contains__
    assert 0 in Point(0, 0, 0, 0)
    assert 1 not in Point(0, 0, 0, 0)

    # test affine_rank
    assert Point.affine_rank() == -1
Ejemplo n.º 26
0
def test_plane():
    x, y, z, u, v = symbols("x y z u v", real=True)
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
    pl8 = Plane(p1, normal_vector=(0, 0, 1))
    pl9 = Plane(p1, normal_vector=(0, 12, 0))
    pl10 = Plane(p1, normal_vector=(-2, 0, 0))
    pl11 = Plane(p2, normal_vector=(0, 0, 1))
    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14
    assert pl3.equation(x, y, z) == x - 2 * y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(
        Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
    )
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == Segment3D(
        Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)),
        Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)),
    )
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == Ray3D(
        Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)),
        Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)),
    )
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
    assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
    assert pl6.distance(pl6.arbitrary_point(t)) == 0
    assert pl7.distance(pl7.arbitrary_point(t)) == 0
    assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
    assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
    assert pl3.arbitrary_point(t) == Point3D(
        -sqrt(30) * sin(t) / 30 + 2 * sqrt(5) * cos(t) / 5,
        sqrt(30) * sin(t) / 15 + sqrt(5) * cos(t) / 5,
        sqrt(30) * sin(t) / 6,
    )
    assert pl3.arbitrary_point(u, v) == Point3D(2 * u - v, u + 2 * v, 5 * v)

    assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6
    assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert (
        pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4)))
        == pl6.distance(Point3D(1, 3, 4))
        == 4 * sqrt(3) / 3
    )
    assert (
        pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7)))
        == pl6.distance(Point3D(0, 3, 7))
        == 2 * sqrt(3) / 3
    )
    assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
    assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
    assert (
        pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16)))
        == pl6.distance(Point3D(-2, 3, 13))
        == 2 * sqrt(3) / 3
    )
    assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
    assert (
        pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3]))
        == 4 * sqrt(3) / 3
    )
    assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0

    assert pl6.angle_between(pl3) == pi / 2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == -asin(
        sqrt(3) / 6
    )
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == asin(
        sqrt(7) / 3
    )
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == asin(
        7 * sqrt(246) / 246
    )

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(
        Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2), Point3D(1, 2, 2)
    )
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
    raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(
        Point3D(1, 2, 5), normal_vector=(1, -2, 1)
    )

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == Plane(
        Point3D(1, 0, 1), (0, 0, -1)
    )

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == Plane(
        Point3D(0, 0, 0), (1, 0, 0)
    )
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == Plane(
        Point3D(0, 1, 0), (-1, 0, 0)
    )
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == Plane(
        Point3D(0, 0, 1), (1, 0, 0)
    )

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
    assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D(4, 4, 2))) == [
        Point3D(2, Rational(8, 3), Rational(10, 3))
    ]
    assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))) == [
        Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))
    ]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)
    ]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
    assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
        Point3D(Rational(13, 2), Rational(3, 4), 0)
    ]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))
    ]
    assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
    assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
    assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
    assert pl11.intersection(pl8) == []
    assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
    assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
    assert pl3.random_point() in pl3

    # test geometrical entity using equals
    assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
    assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
    pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
    assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(
        Line((0, 0, 0), (0.1, 1.2, 0))
    )
    assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
    assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(
        Segment3D(p1, (21, 1, 0))
    )
    assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
    assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
        Line3D(p1, direction_ratio=(112 * pi, 0, 0))
    )
    assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
        Line3D(p1, direction_ratio=(0, -11, 0))
    )
    assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
        Line3D(p1, direction_ratio=(0, 11, 0))
    )
    assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
        Line3D(p1, direction_ratio=(1, -1, 0))
    )
    assert pl3.random_point() in pl3
    assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
    # check if two plane are equals
    assert pl6.intersection(pl6)[0].equals(pl6)
    assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
    assert pl8.equals(pl8)
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12 * sqrt(3))))

    # issue 8570
    l2 = Line3D(
        Point3D(
            Rational(50000004459633, 5000000000000),
            Rational(-891926590718643, 1000000000000000),
            Rational(231800966893633, 100000000000000),
        ),
        Point3D(
            Rational(50000004459633, 50000000000000),
            Rational(-222981647679771, 250000000000000),
            Rational(231800966893633, 100000000000000),
        ),
    )

    p2 = Plane(
        Point3D(
            Rational(402775636372767, 100000000000000),
            Rational(-97224357654973, 100000000000000),
            Rational(216793600814789, 100000000000000),
        ),
        (-S("9.00000087501922"), -S("4.81170658872543e-13"), S("0.0")),
    )

    assert str([i.n(2) for i in p2.intersection(l2)]) == "[Point3D(4.0, -0.89, 2.3)]"
Ejemplo n.º 27
0
t = Symbol('t', real=True)
k = Symbol('k', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
x3 = Symbol('x3', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
y3 = Symbol('y3', real=True)
z1 = Symbol('z1', real=True)
z2 = Symbol('z2', real=True)
z3 = Symbol('z3', real=True)
half = Rational(1, 2)

p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
l1 = Line(Point(0,0), Point(1,1))
l2 = Line(Point(half, half), Point(5,5))
l3 = Line(p2, p3)
l4 = Line(p3, p4)
poly1 = Polygon(p1, p2, p3, p4)
poly2 = Polygon(p5, p6, p7)
poly3 = Polygon(p1, p2, p5)

def test_booleans():
    """ test basic unions and intersections """
    assert Union(l1, l2).equals(l1)
    assert Intersection(l1, l2).equals(l1)
    assert Intersection(l1, l4) == FiniteSet(Point(1,1))
    assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(-1/3, -1/3), Point(5, 1))
    assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet()
    assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
Ejemplo n.º 28
0
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = S.Half
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1, 0), slope=1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4 * 5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2 * I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = S.Half, Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2), evaluate=False)
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
Ejemplo n.º 29
0
def test_geometry():
    p = sympify(Point(0, 1))
    assert p == Point(0, 1) and isinstance(p, Point)
    L = sympify(Line(p, (1, 0)))
    assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
Ejemplo n.º 30
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1 # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x-y, y-x)
    assert simplify(l3.equation()) in (x-x1, x1-x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1 , l2) == False

    # Parallelity
    p2_1 = Point(-2*x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1,2), Rational(1,2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10,10), Point(10,10))
    entity2 = Segment(Point(-5,-5), Point(-5,5))
    assert intersection(entity1, entity2) == []
Ejemplo n.º 31
0
def test_equals():
    p1 = Point(0, 0)
    p2 = Point(1, 1)

    l1 = Line(p1, p2)
    l2 = Line((0, 5), slope=m)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
    assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
    assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
        equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
    assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
    assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
    assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
    assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
        Line3D(Point3D(0, 1, 0), Point3D(S(1) / 2, S(1) / 2, 0)))
    assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S(1) / 2, S(1) / 2)))
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
Ejemplo n.º 32
0
def test_line_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(TypeError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in range(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) )
    assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) )
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) )
    assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) )
    assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) )
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l3)
    assert Line.are_concurrent(l1, l1, l1, l3)
    assert Line.are_concurrent(l1, l3, l3_1)
    assert Line.are_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
           .projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert Line(a, o).angle_between(Line(b, o)) == pi/2

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi/4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi/2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0*pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0*pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05*pi) == Ray(Point(1, 1),
               Point(2, -sqrt(5)*sqrt(2*sqrt(5) + 10)/4 - sqrt(2*sqrt(5) + 10)/4 + 2 + sqrt(5)))
    assert Ray((1, 1), angle=4.02*pi) == Ray(Point(1, 1),
               Point(2, 1 + tan(4.02*pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
    raises(TypeError, lambda: Ray((1, 1), 1))

    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3*pi/4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5*pi/4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi/4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi/2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi/2) == Ray((0, 0), (0, -1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)
    r8 = Ray(Point(0, 0), Point(0, 4))
    r9 = Ray(Point(0, 1), Point(0, -1))
    assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))]

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2*t)
    aline = Line(Point(1/2, 1/2), Point(3/2, -1/2))
    assert s1.perpendicular_bisector().equals(aline)
    on_line = Segment(Point(1/2, 1/2), Point(3/2, -1/2)).midpoint
    assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line)
    assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s3]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b', real=True)
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b)/2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b)/2, 0) in s

    raises(Undecidable, lambda: Point(2*a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)
    # Line to point
    p1, p2 = Point(0, 0), Point(1, 1)
    s = Line(p1, p2)
    assert s.distance(Point(-1, 1)) == sqrt(2)
    assert s.distance(Point(1, -1)) == sqrt(2)
    assert s.distance(Point(2, 2)) == 0
    assert s.distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    m = symbols('m', real=True)
    l = Line((0, 5), slope=m)
    p = Point(2, 3)
    assert (l.distance(p) - 2*abs(m + 1)/sqrt(m**2 + 1)).equals(0)
    # Ray to point
    r = Ray(p1, p2)
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3*sqrt(2)/4
    assert r.distance((1, 1)) == 0

    #Line contains
    p1, p2 = Point(0, 1), Point(3, 4)
    l = Line(p1, p2)
    assert l.contains(p1) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False

    #Ray contains
    p1, p2 = Point(0, 0), Point(4, 4)
    r = Ray(p1, p2)
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    s = Segment((1, 1), (2, 2))
    assert r.contains(s) is True
    s = Segment((1, 2), (2, 5))
    assert r.contains(s) is False
    r1 = Ray((2, 2), (3, 3))
    assert r.contains(r1) is True
    r1 = Ray((2, 2), (3, 5))
    assert r.contains(r1) is False


    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and \
        p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)
    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
Ejemplo n.º 33
0
def test_equation():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)
    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
    assert Line(p1, Point(0, 1)).equation() == x
    assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
    assert Line(p2, Point(2, 1)).equation() == y - 1

    assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
        ).equation() == (-x + y, -x + z)
    assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
        ).equation() == (-x + y - 1, -x + z - 2)
    assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
        ).equation() == (x - 1, -y + z - 1)
    assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
        ).equation() == (y - 2, -x + z - 2)
    assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
        ).equation() == (-x + y - 1, z - 3)
    assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
        ).equation() == (x - 1, y - 2)
    assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
        ).equation() == (x - 1, z - 3)
    assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
        ).equation() == (y - 2, z - 3)
Ejemplo n.º 34
0
def lines(draw):
    p = points()
    x = draw(p)
    y = draw(p)
    assume(x != y)
    return Line(x, y)
Ejemplo n.º 35
0
def test_geometry():
    p = sympify(Point(0, 1))
    assert p == Point(0, 1) and type(p) == Point
    L = sympify(Line(p, (1, 0)))
    assert L == Line((0, 1), (1, 0)) and type(L) == Line
Ejemplo n.º 36
0
def line(x):
    return Line(Point(x, 0), Point(x, 1000))
Ejemplo n.º 37
0
def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(GeometryError,
           lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * C.Integral(
        sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = S(53) / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(c / 68 + a, -2 * c / 17 + a / 2),
        Point(-c / 68 + a, 2 * c / 17 + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(S(14)/5, S(18)/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi / 3) == e
    assert e.rotate(pi/3, (1, 2)) == \
        Ellipse(Point(S(1)/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1)

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)
Ejemplo n.º 38
0
# 15
assert ((S(3) * x + x) / x) == 4

# 16
a = S(8 * 10**7)
b = S(2 * 10**4)
c = S(8 * 10**2)
assert a / b - c == 3200

# 17
x = Symbol('x')
assert solve(S(2) * (x + 1) - 5 + 2 * x, x) == [S(3) / 4]

####################### Nationellt prov åk 9 2012/2013 C

A = Line(Point(0, 1000), Point(50, 1000))
B = Line(Point(0, 200), Point(40, 1000))
C = Line(Point(0, 0), Point(25, 1000))


def line(x):
    return Line(Point(x, 0), Point(x, 1000))


def cost(l, x):
    return intersection(l, line(x))[0].y


# 18a
assert cost(A, 20) == 1000
assert cost(B, 20) == 600
Ejemplo n.º 39
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) is False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(
        GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(
            Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
                                               Point(2, 1 + C.tan(4.05 * pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b')
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
Ejemplo n.º 40
0
def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length
    assert test_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert t.area == -t.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))

    # test entity overrides
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area
    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    poly_pent = Polygon(*pent.vertices)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices
                ]) == ('[Point(-0.586, 4.27), Point(-1.69, 4.66), '
                       'Point(-2.41, 3.73), Point(-1.74, 2.76), '
                       'Point(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
Ejemplo n.º 41
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1 # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x-y, y-x)
    assert simplify(l3.equation()) in (x-x1, x1-x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1 , l2) == False

    # Parallelity
    p2_1 = Point(-2*x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1,2), Rational(1,2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10,10), Point(10,10))
    entity2 = Segment(Point(-5,-5), Point(-5,5))
    assert intersection(entity1, entity2) == []
Ejemplo n.º 42
0
def test_basic_properties_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p10 = Point(2000, 2000)
    p_r3 = Ray(p1, p2).random_point()
    p_r4 = Ray(p2, p1).random_point()

    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
    l4 = Line(p1, Point(1, 0))

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)

    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()

    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != Line(Point(x1, x1), Point(y1, y1))
    assert l1 != l3
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert s1 in Line(p1, p10)
    assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
    assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
    assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))

    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert Line(p1, Point(0, 1)).slope == oo
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope

    assert l4.coefficients == (0, 1, 0)
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
    assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    for ind in range(0, 5):
        assert l3.random_point() in l3

    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
    assert hash(s1) == hash(Segment(p10, p1))

    assert s1.plot_interval() == [t, 0, 1]
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
Ejemplo n.º 43
0
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = Rational(1, 2)
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1,0), slope = 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
Ejemplo n.º 44
0
def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(GeometryError,
           lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * Integral(
        sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [
        Line(Point(3 / 2, 1), Point(3 / 2, 1 / 2))
    ]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5 / 4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
     Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # for numerical calculations, we shouldn't demand exact equality,
    # so only test up to the desired precision
    def lines_close(l1, l2, prec):
        """ tests whether l1 and 12 are within 10**(-prec)
        of each other """
        return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 -
                                                        l2.p2) < 10**(-prec)

    def line_list_close(ll1, ll2, prec):
        return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert line_list_close(e.normal_lines(Point(1, 1), 2), [
        Line(Point(-51 / 26, -1 / 5), Point(-25 / 26, 17 / 83)),
        Line(Point(28 / 29, -7 / 8), Point(57 / 29, -9 / 2))
    ], 2)
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert line_list_close(e.normal_lines(p, 2), [
        Line(Point(-341 / 171, -1 / 13), Point(-170 / 171, 5 / 64)),
        Line(Point(26 / 15, -1 / 2), Point(41 / 15, -43 / 26))
    ], 2)
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3)
    assert line_list_close(e.normal_lines((1, 1), 2), [
        Line(Point(-64 / 33, -20 / 71), Point(-31 / 33, 2 / 13)),
        Line(Point(1, -1), Point(2, -4))
    ], 2)
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert intersection(Ellipse(Point(0, 0), 2, 1),
                        Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0),
                                                       1)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
    assert intersection(Ellipse(Point(0, 0), 5, 17),
                        Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
    assert intersection(Ellipse(Point(0, 0), 5, 17),
                        Ellipse(Point(4, 0), 0.999, 0.2)) == []
    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53 / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(-c / 68 + a, 2 * c / 17 + a / 2),
        Point(c / 68 + a, -2 * c / 17 + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi / 3))

    # Circle rotation tests (Issue #11743)
    # Link - https://github.com/sympy/sympy/issues/11743
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi / 3) == Circle(Point(1 / 2, sqrt(3) / 2), 1)
    assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 3, Point(0, 1)) == Circle(
        Point(1 / 2 + sqrt(3) / 2, 1 / 2 + sqrt(3) / 2), 1)
Ejemplo n.º 45
0
def test_basic_properties_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p10 = Point(2000, 2000)
    p_r3 = Ray(p1, p2).random_point()
    p_r4 = Ray(p2, p1).random_point()

    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
    l4 = Line(p1, Point(1, 0))

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)

    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()

    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != Line(Point(x1, x1), Point(y1, y1))
    assert l1 != l3
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert s1 in Line(p1, p10)
    assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
    assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
    assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
    assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
    assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
    assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
    assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
    assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
    assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
    assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))

    assert l1.slope == 1
    assert l3.slope is oo
    assert l4.slope == 0
    assert Line(p1, Point(0, 1)).slope is oo
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope

    assert l4.coefficients == (0, 1, 0)
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
    assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    for ind in range(0, 5):
        assert l3.random_point() in l3

    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
    assert hash(s1) != hash(Segment(p10, p1))

    assert s1.plot_interval() == [t, 0, 1]
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
Ejemplo n.º 46
0
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]
Ejemplo n.º 47
0
def test_object_from_equation():
    from sympy.abc import x, y, a, b
    assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
    assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
    assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21))
    assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
    assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
    assert Line(Eq(3*a + b, -18), x='a', y=b) == Line2D(Point2D(0, -18), Point2D(1, -21))
    raises(ValueError, lambda: Line(x))
    raises(ValueError, lambda: Line(y))
    raises(ValueError, lambda: Line(x/y))
    raises(ValueError, lambda: Line(a/b, x='a', y='b'))
    raises(ValueError, lambda: Line(y/x))
    raises(ValueError, lambda: Line(b/a, x='a', y='b'))
    raises(ValueError, lambda: Line((x + 1)**2 + y))
Ejemplo n.º 48
0
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]

    assert asa(120, 8, 52) == \
           Triangle(
               Point(0, 0),
               Point(8, 0),
               Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
                     4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
    assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
    assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
    assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]

    # 16628 - this should be fast
    p0 = Point2D(S(249)/5, S(497999)/10000)
    p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
        20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
        /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
        + 1991998000*sqrt(630547164901) + 1622561172902000),
        (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
        90004251917891999 +
        496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
        + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
        8112805864510000))
    p2 = Point2D(S(497)/10, -S(497)/10)
    p3 = Point2D(-S(497)/10, -S(497)/10)
    l = Line(p0, p1)
    s = Segment(p2, p3)
    n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
        9803028531*sqrt(630547164901) +
        33200*sqrt(255775022850776494562626))
    d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
        630547164901) + sqrt(255775022850776494562626)
    assert intersection(l, s) == [
        Point2D(n/d*S(3)/2000, -S(497)/10)]
Ejemplo n.º 49
0
def test_equation():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)
    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
    assert Line(p1, Point(0, 1)).equation() == x
    assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
    assert Line(p2, Point(2, 1)).equation() == y - 1

    assert Line3D(Point3D(0, 0, 0), Point3D(1, 1,
                                            1)).equation() == (x, y, z, k)
    assert Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).equation() == \
           ((x - x1) / (-x1 + y1), (-x1 + y) / (-x1 + y1), (-x1 + z) / (-x1 + y1), k)
Ejemplo n.º 50
0
def test_is_parallel():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(x1, x1, x1)

    l2 = Line(Point(x1, x1), Point(y1, y1))
    l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
    assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
    assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
    assert Line3D(p1, p2).is_parallel(Line3D(p1, p2))  # same as in 2D
    assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
    assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
                                                      Point3D(x1 + 1, x1 + 1, x1 + 1))
    assert Line3D(p1, p2).parallel_line(p3.args) == \
           Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
    assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
Ejemplo n.º 51
0
def test_length():
    s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
    assert Line(Point(0, 0), Point(1, 1)).length == oo
    assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo
Ejemplo n.º 52
0
def test_symbolic_intersect():
    # Issue 7814.
    circle = Circle(Point(x, 0), y)
    line = Line(Point(k, z), slope=0)
    assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
Ejemplo n.º 53
0
def test_symbolic_intersect():
    # Issue 7814.
    circle = Circle(Point(x, 0), y)
    line = Line(Point(k, z), slope=0)
    assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
Ejemplo n.º 54
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, "Line((1, 1), 1)")
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, "Ray((1, 1), 1)")

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s
    assert (Point(2 * a, 0) in s) is False  # XXX should be None?

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []
Ejemplo n.º 55
0
def test_parameter_value():
    t = Symbol('t')
    p1, p2 = Point(0, 1), Point(5, 6)
    l = Line(p1, p2)
    assert l.parameter_value((5, 6), t) == {t: 1}
    raises(ValueError, lambda: l.parameter_value((0, 0), t))
Ejemplo n.º 56
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
Ejemplo n.º 57
0
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]

    assert asa(120, 8, 52) == \
           Triangle(
               Point(0, 0),
               Point(8, 0),
               Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
                     4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
    assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
    assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))

    # 16628 - this should be fast
    p0 = Point2D(S(249)/5, S(497999)/10000)
    p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
        20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
        /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
        + 1991998000*sqrt(630547164901) + 1622561172902000),
        (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
        90004251917891999 +
        496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
        + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
        8112805864510000))
    p2 = Point2D(S(497)/10, -S(497)/10)
    p3 = Point2D(-S(497)/10, -S(497)/10)
    l = Line(p0, p1)
    s = Segment(p2, p3)
    n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
        9803028531*sqrt(630547164901) +
        33200*sqrt(255775022850776494562626))
    d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
        630547164901) + sqrt(255775022850776494562626)
    assert intersection(l, s) == [
        Point2D(n/d*S(3)/2000, -S(497)/10)]