def cast(self): # generate line line = Line(self.current, self.direction) shortest_ray = None intersecting_segment = None intersection_point = None l = math.inf for segment in self.mirrors: # intersect line with segments from triangle mirror_point = line.intersection(segment) if mirror_point != []: mirror_point = mirror_point[0] ray = Segment(self.current, mirror_point) if isinstance(ray, Segment): if ray.length < l: l = ray.length shortest_ray = ray intersecting_segment = segment intersection_point = mirror_point # calculate angle between ray and segment next_ray = None if intersecting_segment is not None: incidenting_angle = shortest_ray.angle_between(intersecting_segment) corrected_incidenting_angle = incidenting_angle % (pi/2) print("ray is intersecting with an angle: ", math.degrees(incidenting_angle), "corrected", math.degrees(corrected_incidenting_angle)) next_ray = shortest_ray.rotate((math.pi/2-corrected_incidenting_angle)*2, pt=intersection_point) self.current = next_ray.points[0] self.direction = next_ray.points[1] return [shortest_ray, next_ray]
def test_reflect(): b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert test_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert t.area == -t.reflect(l).area e = Ellipse((1, 0), 1, 2) assert e.area == -e.reflect(Line((1, 0), slope=0)).area assert e.area == -e.reflect(Line((1, 0), slope=oo)).area raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m))) # test entity overrides c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line((0, pi), slope=sqrt(2)) rpent = pent.reflect(l) poly_pent = Polygon(*pent.vertices) assert rpent.center == pent.center.reflect(l) assert str([w.n(3) for w in rpent.vertices]) == ( '[Point(-0.586, 4.27), Point(-1.69, 4.66), ' 'Point(-2.41, 3.73), Point(-1.74, 2.76), ' 'Point(-0.616, 3.10)]') assert pent.area.equals(-rpent.area)
def test_projection(): p1 = Point(0, 0) p2 = Point3D(0, 0, 0) p3 = Point(-x1, x1) l1 = Line(p1, Point(1, 1)) l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) l3 = Line3D(p2, Point3D(1, 1, 1)) r1 = Ray(Point(1, 1), Point(2, 2)) assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1) assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert l1.projection(p3) == p1 assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(Ray(p1, Point(-1, 1))) == p1 assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3)) assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3)) assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0) assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_are_concurrent_2d(): l1 = Line(Point(0, 0), Point(1, 1)) l2 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.are_concurrent(l1) is False assert Line.are_concurrent(l1, l2) assert Line.are_concurrent(l1, l1, l1, l2) assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(-Rational(3, 5), x1))) assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
def test_symbolic_intersect(): x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) k = Symbol('k', real=True) # Issue 7814. circle = Circle(Point(x, 0), y) line = Line(Point(k, z), slope=0) assert line.intersection(circle) == [ Point(x - sqrt(y**2 - z**2), z), Point(x + sqrt(y**2 - z**2), z)]
def intersection_of_vector_with_triangle(self): A,B,C = self.get_trinangle_points() S_AB = Segment(A,B) S_AC = Segment(A,C) S_BC = Segment(B,C) P1, P2 = self.two_points_from_vector(self.vector()) L_vector = Line(P1, P2) mirror_point = L_vector.intersection(S_AB) return mirror_point
def test_arbitrary_point(): l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) l2 = Line(Point(x1, x1), Point(y1, y1)) assert l2.arbitrary_point() in l2 assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \ Point(t + 1, t + 1) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point() assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \ Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2)) assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1)
def test_angle_between(): a = Point(1, 2, 3, 4) b = a.orthogonal_direction o = a.origin assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)), Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4) assert Line(a, o).angle_between(Line(b, o)) == pi / 2 assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))), acos(sqrt(3) / 3)
def test_is_perpendicular(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line(Point(x1, x1), Point(y1, y1)) l1_1 = Line(p1, Point(-x1, x1)) # 2D assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # 3D assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_contains(): p1 = Point(0, 0) r = Ray(p1, Point(4, 4)) r1 = Ray3D(p1, Point3D(0, 0, -1)) r2 = Ray3D(p1, Point3D(0, 1, 0)) r3 = Ray3D(p1, Point3D(0, 0, 1)) l = Line(Point(0, 1), Point(3, 4)) # Segment contains assert Point(0, (a + b) / 2) in Segment((0, a), (0, b)) assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0)) assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0)) assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0)) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains( Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False # Line contains assert l.contains(Point(0, 1)) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False # Ray contains assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False assert r.contains(Segment((1, 1), (2, 2))) is True assert r.contains(Segment((1, 2), (2, 5))) is False assert r.contains(Ray((2, 2), (3, 3))) is True assert r.contains(Ray((2, 2), (3, 5))) is False assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False assert r2.contains(Point3D(0, 0, 0)) is True assert r3.contains(Point3D(0, 0, 0)) is True assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z)) with warnings.catch_warnings(record=True) as w: assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False assert len(w) == 1 with warnings.catch_warnings(record=True) as w: assert r3.contains(Point(1.0, 1.0)) is False assert len(w) == 1
def get_angle_between(self, line1, line2): """ Uses SymPy to calculate the angle between two lines. Assumes input formatted as Shapely lines. :param: line 1 :param: line 2 :return: angle between two lines """ return SymLine.angle_between( SymLine(SymPoint(*line1.coords[0]), SymPoint(*line1.coords[1])), SymLine(SymPoint(*line2.coords[0]), SymPoint(*line2.coords[1])) )
def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
def test_equation(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y assert Line(p1, Point(0, 1)).equation() == x assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2 assert Line(p2, Point(2, 1)).equation() == y - 1 assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1) ).equation() == (-x + y, -x + z) assert Line3D(Point(1, 2, 3), Point(2, 3, 4) ).equation() == (-x + y - 1, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 4) ).equation() == (x - 1, -y + z - 1) assert Line3D(Point(1, 2, 3), Point(2, 2, 4) ).equation() == (y - 2, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(2, 3, 3) ).equation() == (-x + y - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(1, 2, 4) ).equation() == (x - 1, y - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 3) ).equation() == (x - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(2, 2, 3) ).equation() == (y - 2, z - 3)
def test_is_parallel(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) l2 = Line(Point(x1, x1), Point(y1, y1)) l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2) assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1))) assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0))) assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(p1, p2).parallel_line(p3.args) == \ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(1 / 2, 1 / 2, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (1 / 2, 1 / 2))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_equation(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y assert Line(p1, Point(0, 1)).equation() == x assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2 assert Line(p2, Point(2, 1)).equation() == y - 1 assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).equation() == (x, y, z, k) assert Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).equation() == \ ((x - x1) / (-x1 + y1), (-x1 + y) / (-x1 + y1), (-x1 + z) / (-x1 + y1), k)
def json_to_rdkit(self, json_data, map={}, mol_type='reactant'): m0 = Chem.MolFromSmarts('') mw = Chem.RWMol(m0) atoms_cd = {} query_atoms = [] for atom in json_data['a']: atom_id = atom['i'] # Query atoms if 'q' in atom: q = atom['q'] v = q['as']['v'] if 'a' in v: smarts = '[*]' a_defaut = 'C' else: smarts = v # Manage aromaticity if 'A' in q: if not q['A']['n']: smarts = [] if q['A']['v']: smarts = smarts + [a_.lower() for a_ in v ] smarts = '[{0}]'.format(','.join([a_ for a_ in smarts ])) a_defaut = v[0] query_atoms.append((atom_id,smarts)) a = Chem.Atom(a_defaut) # Non-query atoms else: symbol = 'C' if 'l' not in atom else atom['l'] a = Chem.Atom(symbol) if 'c' in atom: a.SetFormalCharge(atom['c']) atoms_cd[atom_id] = mw.AddAtom(a) if not 'b' in json_data: json_data['b'] = [] for bond in json_data['b']: bond_id = bond['i'] if 'o' in bond: bond_type = self.bond_type(bond['o']) else: bond_type = self.bond_type(1) mw.AddBond(bond['b'], bond['e'],bond_type) - 1 bonds_cd1 = { i: mw.GetBondBetweenAtoms(b_cd['b'],b_cd['e']).GetIdx() for i,b_cd in enumerate(json_data['b']) } bonds_cd = { '{0}-{1}'.format(b_cd['b'], b_cd['e']): i for i,b_cd in enumerate(json_data['b']) } atoms_rd = {v: k for k, v in atoms_cd.items()} bonds_rd = {v: k for k, v in bonds_cd.items()} def a_point(atom_rd): x, y = ( json_data['a'][atom_rd][d] for d in ['x','y'] ) return Point( x,y ) def mol_atom(idx): return mw.GetAtoms()[idx] ### Manage chirality for atom in mw.GetAtoms(): if atom.GetSymbol() == 'C': s = [] for b in atom.GetBonds(): id_1 = '{0}-{1}'.format( b.GetBeginAtomIdx(), b.GetEndAtomIdx() ) if id_1 in bonds_cd: b_cd = json_data['b'][ bonds_cd[id_1] ] else: b_cd = json_data['b'][ bonds_cd['{1}-{0}'.format( b.GetBeginAtomIdx(), b.GetEndAtomIdx() )] ] if 's' in b_cd: s.append(b_cd['s']) else: s.append('') if len(s) == 4 and s.count('protruding')*s.count('recessed') == 1: points = [] for i,b in enumerate(atom.GetBonds()): if b.GetBeginAtomIdx() != atom.GetIdx(): a = b.GetBeginAtomIdx() else: a = b.GetEndAtomIdx() if s[i] == 'protruding': z = 1 elif s[i] == 'recessed': z = - 1 else: z = 0 points.append( Point( [i for i in a_point(a)] + [z] ) ) int = Line( points[2].midpoint(points[3]), points[1] )\ .intersection( Line( points[1].midpoint(points[2]), points[3] ) )[0] N = CoordSys3D('N') coords = [N.i,N.j,N.k] vectors = [] for p in points: v = Vector.zero for v_ in [ n*coords[v] for v,n in enumerate(p-int) ]: v += v_ vectors.append(v) if vectors[1].cross(vectors[3]).dot(vectors[0]) > 0: atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW) else: atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW) ### Manage stereo for bond in mw.GetBonds(): if bond.GetBondType() == Chem.rdchem.BondType.DOUBLE \ and bond.GetBeginAtom().GetSymbol() == 'C' \ and bond.GetEndAtom().GetSymbol() == 'C': carbons = [ bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() ] # Check if stero can be applied if True in [ len(mol_atom(c).GetBonds()) > 1 for c in carbons ]: sa = [ \ [b.GetBeginAtomIdx() \ if b.GetBeginAtomIdx() != c \ else b.GetEndAtomIdx()#, for b in mol_atom(c).GetBonds() \ if b.GetBondType() == Chem.rdchem.BondType.SINGLE ] \ for c in carbons ] if not [] in sa: sa = [ sa[i][0] for i in range(2) ] bond.SetStereoAtoms (sa[0], sa[1]) if len( intersection( Segment( a_point(sa[0]), a_point(sa[1]) ), Line( a_point(carbons[0]), a_point(carbons[1]) ) )) > 0: bond.SetStereo(Chem.rdchem.BondStereo.STEREOTRANS) else: bond.SetStereo(Chem.rdchem.BondStereo.STEREOCIS) # replace query_atoms if len(query_atoms) > 0: for id, smarts in query_atoms: m_a = Chem.MolFromSmarts(smarts) Chem.SanitizeMol(m_a) mw.ReplaceAtom(atoms_cd[id],m_a.GetAtoms()[0]) # Map atoms i = 1 for m in map: if m['t'] == 'AtomMapping': a_rd_id = None for a in ['a1', 'a2']: if m[a] in atoms_cd: a_rd_id = atoms_cd[ m[a] ] if a_rd_id is not None: mw.GetAtoms()[a_rd_id].SetAtomMapNum(i) i += 1 mol = mw.GetMol() RDKit.apply_aromaticity(mol) Chem.rdDepictor.Compute2DCoords(mol) return mol
def draw_humans(npimg, humans, imgcopy=False): if imgcopy: npimg = np.copy(npimg) image_h, image_w = npimg.shape[:2] centers = {} # hand_direction = {} for human in humans: # draw point for i in range(CocoPart.Background.value): if i not in human.body_parts.keys(): continue body_part = human.body_parts[i] center = (int(body_part.x * image_w + 0.5), int(body_part.y * image_h + 0.5)) centers[i] = center cv2.circle(npimg, center, 3, CocoColors[i], thickness=3, lineType=8, shift=0) # draw line for pair_order, pair in enumerate(CocoPairsRender): if pair[0] not in human.body_parts.keys( ) or pair[1] not in human.body_parts.keys(): continue # npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3) cv2.line(npimg, centers[pair[0]], centers[pair[1]], CocoColors[pair_order], 3) l_line = None r_line = None if 3 in centers and 4 in centers: l_elbow_point = Point(centers[3][0], centers[3][1]) l_wrist_point = Point(centers[4][0], centers[4][1]) l_line = Line(l_elbow_point, l_wrist_point) if 6 in centers and 7 in centers: r_elbow_point = Point(centers[6][0], centers[6][1]) r_wrist_point = Point(centers[7][0], centers[7][1]) r_line = Line(r_elbow_point, r_wrist_point) t_left = Point(0, 0) t_right = Point(image_w, 0) b_left = Point(0, image_h) b_right = Point(image_w, image_h) t_margin = Line(t_left, t_right) l_margin = Line(t_left, b_left) r_margin = Line(t_right, b_right) b_margin = Line(b_left, b_right) if l_line: intersect_point_1 = l_line.intersection(t_margin)[0] x = tuple(l_wrist_point) y = tuple(intersect_point_1) cv2.line(npimg, x, y, (22, 255, 7), 2) print(intersect_point_1) if r_line: intersect_point_r = r_line.intersection(t_margin)[0] x = tuple(r_wrist_point) y = tuple(intersect_point_r) cv2.line(npimg, x, y, (22, 255, 7), 2) print(intersect_point_r) return npimg
def test_parameter_value(): t = Symbol('t') p1, p2 = Point(0, 1), Point(5, 6) l = Line(p1, p2) assert l.parameter_value((5, 6), t) == {t: 1} raises(ValueError, lambda: l.parameter_value((0, 0), t))
def generate_map(): screen.fill((0, 0, 0)) points = generate_random_points(num_points, width, height, buf) #for x, y in points: # pygame.draw.circle(screen, WHITE, (x,y), 2, 1) voronoi_context = voronoi(points) voronoi_point_dict = {} point_to_segment_dict = {} segments = [] vertices = [] top_l = Point(0,0) top_r = Point(width,0) bottom_l = Point(0, height) bottom_r = Point(width, height) top = Line(top_l, top_r) left = Line(top_l, bottom_l) right = Line(top_r, bottom_r) bottom = Line(bottom_l, bottom_r) boundaries = [top, right, bottom, left] for edge in voronoi_context.edges: il, i1, i2 = edge # index of line, index of vertex 1, index of vertex 2 line_color = RED vert1 = None vert2 = None print_line = True if i1 is not -1 and i2 is not -1: vert1 = voronoi_context.vertices[i1] vert2 = voronoi_context.vertices[i2] else: line_point = None if i1 is -1: line_p = voronoi_context.vertices[i2] if i2 is -1: line_p = voronoi_context.vertices[i1] line_point = Point(line_p[0], line_p[1]) line = voronoi_context.lines[il] p1 = None p2 = None if line[1] == 0: p1 = line_point p2 = Point(line[0]/line[2], 1) else: p1 = Point(0, line[2]/line[1]) p2 = line_point l = Line(p1, p2) top_intersect = l.intersection(top) bottom_intersect = l.intersection(bottom) right_intersect = l.intersection(right) left_intersect = l.intersection(left) distances = [] top_dist = None bottom_dist = None right_dist = None left_dist = None if len(top_intersect) != 0: top_dist = abs(line_point.distance(top_intersect[0])) distances.append(top_dist) if len(bottom_intersect) != 0 : bottom_dist = abs(line_point.distance(bottom_intersect[0])) distances.append(bottom_dist) if len(right_intersect) != 0: right_dist = abs(line_point.distance(right_intersect[0])) distances.append(right_dist) if len(left_intersect) != 0: left_dist = abs(line_point.distance(left_intersect[0])) distances.append(left_dist) vert1 = line_p v2 = None if top_dist == min(distances): v2 = top_intersect[0] elif bottom_dist == min(distances): v2 = bottom_intersect[0] elif right_dist == min(distances): v2 = right_intersect[0] elif left_dist == min(distances): v2 = left_intersect[0] else: v2 = Point(0, 0) vert2 = (v2.x, v2.y) if vert1[0] < 0 or vert1[1] < 0 or vert2[0] < 0 or vert2[1] < 0 or vert1[0] > width or vert1[1] > height or vert2[0] > width or vert2[1] > height: print_line = False if print_line: vert1, vert2 = adjust_out_of_bounds_points(vert1, vert2, boundaries) seg = None if vert1 == None or vert2 == None: print_line = False if print_line: vert1_p = Point(vert1) vert2_p = Point(vert2) seg = Segment(vert1_p, vert2_p) segments.append(seg) if not vert1_p in voronoi_point_dict: voronoi_point_dict[vert1_p] = [] if not vert2_p in voronoi_point_dict: voronoi_point_dict[vert2_p] = [] voronoi_point_dict[vert1_p].append(vert2_p) voronoi_point_dict[vert2_p].append(vert1_p) if not vert1_p in point_to_segment_dict: point_to_segment_dict[vert1_p] = [] if not vert2_p in point_to_segment_dict: point_to_segment_dict[vert2_p] = [] point_to_segment_dict[vert1_p].append(seg) point_to_segment_dict[vert2_p].append(seg) pygame.draw.line(screen, line_color, vert1, vert2, 1) pygame.display.flip() top_intersects = [] bottom_intersects = [] right_intersects = [] left_intersects = [] for seg in segments: if seg.p1.y <= 1: top_intersects.append(seg.p1) if seg.p2.y <= 1: top_intersects.append(seg.p2) if seg.p1.x >= width -1: right_intersects.append(seg.p1) if seg.p2.x >= width-1: right_intersects.append(seg.p2) if seg.p1.x <= 1: left_intersects.append(seg.p1) if seg.p2.x <= 1: left_intersects.append(seg.p2) if seg.p1.y >= height-1: bottom_intersects.append(seg.p1) if seg.p2.y >= height-1: bottom_intersects.append(seg.p2) top_intersects = sorted(top_intersects, key=lambda point: point.x) bottom_intersects = sorted(bottom_intersects, key=lambda point: point.x) left_intersects = sorted(left_intersects, key=lambda point: point.y) right_intersects = sorted(right_intersects, key=lambda point: point.y) for i in range(0, 4): intersect = None prev_vertex = None final_vertex = None if i == 0: prev_vertex = top_l intersect = top_intersects intersect.append(top_r) if i == 1: prev_vertex = bottom_l intersect = bottom_intersects intersect.append(bottom_r) if i == 2: prev_vertex = top_l intersect = left_intersects intersect.append(bottom_l) if i == 3: prev_vertex = top_r intersect = right_intersects intersect.append(bottom_r) if not prev_vertex in voronoi_point_dict: voronoi_point_dict[prev_vertex] = [] if not final_vertex in voronoi_point_dict: voronoi_point_dict[final_vertex] = [] if not prev_vertex in point_to_segment_dict: point_to_segment_dict[prev_vertex] = [] if not final_vertex in point_to_segment_dict: point_to_segment_dict[final_vertex] = [] for vertex in intersect: if not vertex in voronoi_point_dict: voronoi_point_dict[vertex] = [] if not prev_vertex in voronoi_point_dict: voronoi_point_dict[prev_vertex] = [] s = Segment(prev_vertex, vertex) voronoi_point_dict[vertex].append(prev_vertex) voronoi_point_dict[prev_vertex].append(vertex) if not vertex in point_to_segment_dict: point_to_segment_dict[vertex] = [] if not prev_vertex in point_to_segment_dict: point_to_segment_dict[prev_vertex] = [] point_to_segment_dict[vertex].append(s) point_to_segment_dict[prev_vertex].append(s) prev_vertex = vertex try: polygons, segments_to_polygons = generate_polygons(voronoi_point_dict, segments, points, point_to_segment_dict) except Exception as e: print e print "crashed" while 1: """ helllo""" for seg, gons in segments_to_polygons.iteritems(): for gon in gons: gon.connect_adjacent_nodes(gons) for polygon in polygons: for node in polygon.adjacent_nodes: s = Segment(node.center, polygon.center) draw_segment(s, WHITE) highest_points_of_elevation = [] frontiers = [] for i in range(0, number_of_peaks): p = random.choice(polygons) p.elevation = max_elevation highest_points_of_elevation.append(p) frontiers.append(set(p.adjacent_nodes)) marked_polygons = set([]) elevation = max_elevation while len(marked_polygons) < num_points: elevation -= 1 for i in range(0, number_of_peaks): new_frontier = set([]) while len(frontiers[i]) > 0: node = frontiers[i].pop() node.elevation = elevation draw_point(node.center, ORANGE) for n in node.adjacent_nodes: if n not in marked_polygons: new_frontier.add(n) marked_polygons.add(node) frontiers[i] = new_frontier for polygon in polygons: if polygon.elevation <= 0: vertices = [] for edge in polygon.edge_list: p = (edge.x, edge.y) vertices.append(p) pygame.draw.polygon(screen, BLUE, vertices, 0) pygame.display.flip() pygame.display.flip()
assert len(circles) >= len(points) @given(lines(), lines(), lines()) def test_add_entity(line1, line2, line3): incremental = EuclideanWorld().\ add_entity(line1).\ add_entity(line2).\ add_entity(line3) oner = EuclideanWorld((line1, line2, line3)) assert oner == incremental assert oner.get_points() == incremental.get_points() @given(lines()) @example( Line( Point(4, 8 + 4 * sqrt(7)), Point(-8 * sqrt(7) / 7 + sqrt(7) * (-4 * sqrt(7) + 8) / 7 + 8, -4 * sqrt(7) + 8))) @example( Line( Point(4, 8 + 4 * sqrt(7)), Point( -16 * sqrt(7) / 3 + (-2 / 3 + sqrt(7) / 3) * (-3 * sqrt(2) * sqrt(sqrt(7) + 4) - sqrt(7) + 11) + 56 / 3, -3 * sqrt(2) * sqrt(sqrt(7) + 4) - sqrt(7) + 11))) def test_normalise_line(line): norm = EuclideanWorld.normalise_line(line) assert norm.is_similar(line)
from __future__ import print_function, division from distutils.version import LooseVersion from sympy import Rational import sympy from sympy.geometry import (Line, Point, Polygon) from random import randint listOfPolygons = [ Polygon(Point(0 + w, 0 + w), Point(3 + w, 0 + w), Point(3 + w, 3 + w), Point(0 + w, 3 + w)) for w in range(10) ] cutListOfPolygons = [ Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3)) for w in range(10) ] cutLines = [Line((0, 0), (Rational(9, 2), 3)) for w in range(10)] class PolygonAttributes: def time_create(self): "Creating Polygon" Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5)) def time_area(self): "Polygon.area for w in range(10)" [listOfPolygons[w].area for w in range(10)] def time_perimeter(self): "Polygon.perimeter for w in range(10)" [listOfPolygons[w].perimeter for w in range(10)] def time_sides(self):
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point( 2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D( (1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D( (0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection(Segment3D( (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point( 1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2]
def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(TypeError, lambda: Point(1)) raises(ValueError, lambda: Point([1])) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2 * I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert p1.origin == Point(0, 0) assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) raises(TypeError, lambda: Point.distance(p1, 0)) raises(TypeError, lambda: Point.distance(p1, GeometryEntity())) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 raises(ValueError, lambda: Point.canberra_distance(p3, p3)) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p3.intersection(line) == [] assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)] x_pos = Symbol('x', positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False assert p1.is_scalar_multiple(p1) assert p1.is_scalar_multiple(2 * p1) assert not p1.is_scalar_multiple(p2) assert Point.is_scalar_multiple(Point(1, 1), (-1, -1)) assert Point.is_scalar_multiple(Point(0, 0), (0, -1)) # test when is_scalar_multiple can't be determined raises( Undecidable, lambda: Point.is_scalar_multiple( Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1))) assert Point(0, 1).orthogonal_direction == Point(1, 0) assert Point(1, 0).orthogonal_direction == Point(0, 1) assert p1.is_zero is None assert p3.is_zero assert p4.is_zero is False assert p1.is_nonzero is None assert p3.is_nonzero is False assert p4.is_nonzero assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test project assert Point.project((0, 1), (1, 0)) == Point(0, 0) assert Point.project((1, 1), (1, 0)) == Point(1, 0) raises(ValueError, lambda: Point.project(p1, Point(0, 0))) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # test __contains__ assert 0 in Point(0, 0, 0, 0) assert 1 not in Point(0, 0, 0, 0) # test affine_rank assert Point.affine_rank() == -1
def test_plane(): x, y, z, u, v = symbols("x y z u v", real=True) p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(1, 2, 3) pl3 = Plane(p1, p2, p3) pl4 = Plane(p1, normal_vector=(1, 1, 1)) pl4b = Plane(p1, p2) pl5 = Plane(p3, normal_vector=(1, 2, 3)) pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2)) pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1)) pl8 = Plane(p1, normal_vector=(0, 0, 1)) pl9 = Plane(p1, normal_vector=(0, 12, 0)) pl10 = Plane(p1, normal_vector=(-2, 0, 0)) pl11 = Plane(p2, normal_vector=(0, 0, 1)) l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) assert Plane(p1, p2, p3) != Plane(p1, p3, p2) assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2)) assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1)) assert pl3 != pl4 assert pl4 == pl4b assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3)) assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14 assert pl3.equation(x, y, z) == x - 2 * y + z assert pl3.p1 == p1 assert pl4.p1 == p1 assert pl5.p1 == p3 assert pl4.normal_vector == (1, 1, 1) assert pl5.normal_vector == (1, 2, 3) assert p1 in pl3 assert p1 in pl4 assert p3 in pl5 assert pl3.projection(Point(0, 0)) == p1 p = pl3.projection(Point3D(1, 1, 0)) assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)) assert p in pl3 l = pl3.projection_line(Line(Point(0, 0), Point(1, 1))) assert l == Line3D( Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)) ) assert l in pl3 # get a segment that does not intersect the plane which is also # parallel to pl3's normal veector t = Dummy() r = pl3.random_point() a = pl3.perpendicular_line(r).arbitrary_point(t) s = Segment3D(a.subs(t, 1), a.subs(t, 2)) assert s.p1 not in pl3 and s.p2 not in pl3 assert pl3.projection_line(s).equals(r) assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == Segment3D( Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)), ) assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == Ray3D( Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)), ) assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r) assert pl3.is_parallel(pl6) is False assert pl4.is_parallel(pl6) assert pl6.is_parallel(l1) is False assert pl3.is_perpendicular(pl6) assert pl4.is_perpendicular(pl7) assert pl6.is_perpendicular(pl7) assert pl6.is_perpendicular(l1) is False assert pl6.distance(pl6.arbitrary_point(u, v)) == 0 assert pl7.distance(pl7.arbitrary_point(u, v)) == 0 assert pl6.distance(pl6.arbitrary_point(t)) == 0 assert pl7.distance(pl7.arbitrary_point(t)) == 0 assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1 assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1 assert pl3.arbitrary_point(t) == Point3D( -sqrt(30) * sin(t) / 30 + 2 * sqrt(5) * cos(t) / 5, sqrt(30) * sin(t) / 15 + sqrt(5) * cos(t) / 5, sqrt(30) * sin(t) / 6, ) assert pl3.arbitrary_point(u, v) == Point3D(2 * u - v, u + 2 * v, 5 * v) assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6 assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3) assert pl6.distance(pl6.p1) == 0 assert pl7.distance(pl6) == 0 assert pl7.distance(l1) == 0 assert ( pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == pl6.distance(Point3D(1, 3, 4)) == 4 * sqrt(3) / 3 ) assert ( pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == pl6.distance(Point3D(0, 3, 7)) == 2 * sqrt(3) / 3 ) assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0 assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0 assert ( pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == pl6.distance(Point3D(-2, 3, 13)) == 2 * sqrt(3) / 3 ) assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3) assert ( pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4 * sqrt(3) / 3 ) assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0 assert pl6.angle_between(pl3) == pi / 2 assert pl6.angle_between(pl6) == 0 assert pl6.angle_between(pl4) == 0 assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == -asin( sqrt(3) / 6 ) assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == asin( sqrt(7) / 3 ) assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == asin( 7 * sqrt(246) / 246 ) assert are_coplanar(l1, l2, l3) is False assert are_coplanar(l1) is False assert are_coplanar( Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2), Point3D(1, 2, 2) ) assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2)) assert Plane.are_concurrent(pl3, pl4, pl5) is False assert Plane.are_concurrent(pl6) is False raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0))) raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0))) assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane( Point3D(1, 2, 5), normal_vector=(1, -2, 1) ) # perpendicular_plane p = Plane((0, 0, 0), (1, 0, 0)) # default assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0)) # 1 pt assert p.perpendicular_plane(Point3D(1, 0, 1)) == Plane(Point3D(1, 0, 1), (0, 1, 0)) # pts as tuples assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == Plane( Point3D(1, 0, 1), (0, 0, -1) ) a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) Z = (0, 0, 1) p = Plane(a, normal_vector=Z) # case 4 assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0)) n = Point3D(*Z) # case 1 assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0)) # case 2 assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == Plane( Point3D(0, 0, 0), (1, 0, 0) ) # case 1&3 assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == Plane( Point3D(0, 1, 0), (-1, 0, 0) ) # case 2&3 assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == Plane( Point3D(0, 0, 1), (1, 0, 0) ) assert pl6.intersection(pl6) == [pl6] assert pl4.intersection(pl4.p1) == [pl4.p1] assert pl3.intersection(pl6) == [Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))] assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D(4, 4, 2))) == [ Point3D(2, Rational(8, 3), Rational(10, 3)) ] assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))) == [ Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1)) ] assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [ Point3D(-1, 3, 10) ] assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [] assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [ Point3D(Rational(13, 2), Rational(3, 4), 0) ] r = Ray(Point(2, 3), Point(4, 2)) assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [ Ray3D(Point(2, 3), Point(4, 2)) ] assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))] assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))] assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))] assert pl11.intersection(pl8) == [] assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))] assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))] assert pl3.random_point() in pl3 # test geometrical entity using equals assert pl4.intersection(pl4.p1)[0].equals(pl4.p1) assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))) pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1)) assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals( Line((0, 0, 0), (0.1, 1.2, 0)) ) assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0))) assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals( Segment3D(p1, (21, 1, 0)) ) assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8) assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals( Line3D(p1, direction_ratio=(112 * pi, 0, 0)) ) assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals( Line3D(p1, direction_ratio=(0, -11, 0)) ) assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals( Line3D(p1, direction_ratio=(0, 11, 0)) ) assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals( Line3D(p1, direction_ratio=(1, -1, 0)) ) assert pl3.random_point() in pl3 assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0 # check if two plane are equals assert pl6.intersection(pl6)[0].equals(pl6) assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False assert pl8.equals(pl8) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12))) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12 * sqrt(3)))) # issue 8570 l2 = Line3D( Point3D( Rational(50000004459633, 5000000000000), Rational(-891926590718643, 1000000000000000), Rational(231800966893633, 100000000000000), ), Point3D( Rational(50000004459633, 50000000000000), Rational(-222981647679771, 250000000000000), Rational(231800966893633, 100000000000000), ), ) p2 = Plane( Point3D( Rational(402775636372767, 100000000000000), Rational(-97224357654973, 100000000000000), Rational(216793600814789, 100000000000000), ), (-S("9.00000087501922"), -S("4.81170658872543e-13"), S("0.0")), ) assert str([i.n(2) for i in p2.intersection(l2)]) == "[Point3D(4.0, -0.89, 2.3)]"
t = Symbol('t', real=True) k = Symbol('k', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) z1 = Symbol('z1', real=True) z2 = Symbol('z2', real=True) z3 = Symbol('z3', real=True) half = Rational(1, 2) p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) l1 = Line(Point(0,0), Point(1,1)) l2 = Line(Point(half, half), Point(5,5)) l3 = Line(p2, p3) l4 = Line(p3, p4) poly1 = Polygon(p1, p2, p3, p4) poly2 = Polygon(p5, p6, p7) poly3 = Polygon(p1, p2, p5) def test_booleans(): """ test basic unions and intersections """ assert Union(l1, l2).equals(l1) assert Intersection(l1, l2).equals(l1) assert Intersection(l1, l4) == FiniteSet(Point(1,1)) assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(-1/3, -1/3), Point(5, 1)) assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet() assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2 * I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and isinstance(p, Point) L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) # Basic stuff assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l3.slope == oo assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert simplify(l1.equation()) in (x-y, y-x) assert simplify(l3.equation()) in (x-x1, x1-x) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1 , l2) == False # Parallelity p2_1 = Point(-2*x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) == False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1)) assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) == False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4) # Testing Rays and Segments (very similar to Lines) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1,2), Rational(1,2)) assert s2.length == sqrt( 2*(x1**2) ) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10,10), Point(10,10)) entity2 = Segment(Point(-5,-5), Point(-5,5)) assert intersection(entity1, entity2) == []
def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(S(1) / 2, S(1) / 2, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S(1) / 2, S(1) / 2))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_line_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) y1 = Symbol('y1', real=True) half = Rational(1, 2) p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(TypeError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in range(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) ) assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) ) assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) ) assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) ) assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) ) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) is False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.are_concurrent(l1) is False assert Line.are_concurrent(l1, l3) assert Line.are_concurrent(l1, l1, l1, l3) assert Line.are_concurrent(l1, l3, l3_1) assert Line.are_concurrent(l1, l1_1, l3) is False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)) .projection(Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4) a = Point(1, 2, 3, 4) b = a.orthogonal_direction o = a.origin assert Line(a, o).angle_between(Line(b, o)) == pi/2 # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi/4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi/2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0*pi/2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0*pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0*pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05*pi) == Ray(Point(1, 1), Point(2, -sqrt(5)*sqrt(2*sqrt(5) + 10)/4 - sqrt(2*sqrt(5) + 10)/4 + 2 + sqrt(5))) assert Ray((1, 1), angle=4.02*pi) == Ray(Point(1, 1), Point(2, 1 + tan(4.02*pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5))) raises(TypeError, lambda: Ray((1, 1), 1)) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3*pi/4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5*pi/4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi/4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi/2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi/2) == Ray((0, 0), (0, -1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol('t', real=True) assert Ray((1, 1), angle=pi/4).arbitrary_point() == \ Point(t + 1, t + 1) r8 = Ray(Point(0, 0), Point(0, 4)) r9 = Ray(Point(0, 1), Point(0, -1)) assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))] s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt( 2*(x1**2) ) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2*t) aline = Line(Point(1/2, 1/2), Point(3/2, -1/2)) assert s1.perpendicular_bisector().equals(aline) on_line = Segment(Point(1/2, 1/2), Point(3/2, -1/2)).midpoint assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line) assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s3] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols('a,b', real=True) s = Segment((0, a), (0, b)) assert Point(0, (a + b)/2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b)/2, 0) in s raises(Undecidable, lambda: Point(2*a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3)/2, Rational(3)/2) assert s1.distance(pt1) == 0 assert s1.distance((0, 0)) == 0 assert s2.distance(pt1) == 2**(half)/2 assert s2.distance(pt2) == 2**(half) # Line to point p1, p2 = Point(0, 0), Point(1, 1) s = Line(p1, p2) assert s.distance(Point(-1, 1)) == sqrt(2) assert s.distance(Point(1, -1)) == sqrt(2) assert s.distance(Point(2, 2)) == 0 assert s.distance((-1, 1)) == sqrt(2) assert Line((0, 0), (0, 1)).distance(p1) == 0 assert Line((0, 0), (0, 1)).distance(p2) == 1 assert Line((0, 0), (1, 0)).distance(p1) == 0 assert Line((0, 0), (1, 0)).distance(p2) == 1 m = symbols('m', real=True) l = Line((0, 5), slope=m) p = Point(2, 3) assert (l.distance(p) - 2*abs(m + 1)/sqrt(m**2 + 1)).equals(0) # Ray to point r = Ray(p1, p2) assert r.distance(Point(-1, -1)) == sqrt(2) assert r.distance(Point(1, 1)) == 0 assert r.distance(Point(-1, 1)) == sqrt(2) assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3*sqrt(2)/4 assert r.distance((1, 1)) == 0 #Line contains p1, p2 = Point(0, 1), Point(3, 4) l = Line(p1, p2) assert l.contains(p1) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False #Ray contains p1, p2 = Point(0, 0), Point(4, 4) r = Ray(p1, p2) assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False s = Segment((1, 1), (2, 2)) assert r.contains(s) is True s = Segment((1, 2), (2, 5)) assert r.contains(s) is False r1 = Ray((2, 2), (3, 3)) assert r.contains(r1) is True r1 = Ray((2, 2), (3, 5)) assert r.contains(r1) is False # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and \ p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) is False assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi/4).plot_interval() == \ [t, 0, 10]
def lines(draw): p = points() x = draw(p) y = draw(p) assume(x != y) return Line(x, y)
def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and type(p) == Point L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and type(L) == Line
def line(x): return Line(Point(x, 0), Point(x, 1000))
def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2))) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * y1 * abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2 * pi assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == 4 * M * C.Integral( sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))] assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))] assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(S(77)/25, S(132)/25)), Line(Point(0, 0), Point(S(33)/5, S(22)/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse( Point(5, 0), 1, 1, )) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = S(53) / 17 c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [ Point(c / 68 + a, -2 * c / 17 + a / 2), Point(-c / 68 + a, 2 * c / 17 + a / 2) ] assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(S(14)/5, S(18)/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi / 3) == e assert e.rotate(pi/3, (1, 2)) == \ Ellipse(Point(S(1)/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1) # transformations c = Circle((1, 1), 2) assert c.scale(-1) == Circle((-1, 1), 2) assert c.scale(y=-1) == Circle((1, -1), 2) assert c.scale(2) == Ellipse((2, 1), 4, 2)
# 15 assert ((S(3) * x + x) / x) == 4 # 16 a = S(8 * 10**7) b = S(2 * 10**4) c = S(8 * 10**2) assert a / b - c == 3200 # 17 x = Symbol('x') assert solve(S(2) * (x + 1) - 5 + 2 * x, x) == [S(3) / 4] ####################### Nationellt prov åk 9 2012/2013 C A = Line(Point(0, 1000), Point(50, 1000)) B = Line(Point(0, 200), Point(40, 1000)) C = Line(Point(0, 0), Point(25, 1000)) def line(x): return Line(Point(x, 0), Point(x, 1000)) def cost(l, x): return intersection(l, line(x))[0].y # 18a assert cost(A, 20) == 1000 assert cost(B, 20) == 600
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(ValueError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity p2_1 = Point(-2 * x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) is False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.is_concurrent(l1) is False assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) is False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises( GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection( Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4) # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1), Point(2, 1 + C.tan(4.05 * pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5))) raises(ValueError, lambda: Ray((1, 1), 1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol('t', real=True) assert Ray((1, 1), angle=pi/4).arbitrary_point() == \ Point(t + 1, t + 1) s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(2 * (x1**2)) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s1] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \ [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols('a,b') s = Segment((0, a), (0, b)) assert Point(0, (a + b) / 2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b) / 2, 0) in s raises(Undecidable, lambda: Point(2 * a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2**(half) / 2 assert s2.distance(pt2) == 2**(half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) is False assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) == Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi/4).plot_interval() == \ [t, 0, 10]
def test_reflect(): b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert test_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert t.area == -t.reflect(l).area e = Ellipse((1, 0), 1, 2) assert e.area == -e.reflect(Line((1, 0), slope=0)).area assert e.area == -e.reflect(Line((1, 0), slope=oo)).area raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m))) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2)) # test entity overrides c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line((0, pi), slope=sqrt(2)) rpent = pent.reflect(l) poly_pent = Polygon(*pent.vertices) assert rpent.center == pent.center.reflect(l) assert str([w.n(3) for w in rpent.vertices ]) == ('[Point(-0.586, 4.27), Point(-1.69, 4.66), ' 'Point(-2.41, 3.73), Point(-1.74, 2.76), ' 'Point(-0.616, 3.10)]') assert pent.area.equals(-rpent.area)
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) # Basic stuff assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l3.slope == oo assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert simplify(l1.equation()) in (x-y, y-x) assert simplify(l3.equation()) in (x-x1, x1-x) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1 , l2) == False # Parallelity p2_1 = Point(-2*x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) == False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1)) assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) == False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4) # Testing Rays and Segments (very similar to Lines) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1,2), Rational(1,2)) assert s2.length == sqrt( 2*(x1**2) ) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3)/2, Rational(3)/2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2**(half)/2 assert s2.distance(pt2) == 2**(half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10,10), Point(10,10)) entity2 = Segment(Point(-5,-5), Point(-5,5)) assert intersection(entity1, entity2) == []
def test_basic_properties_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p10 = Point(2000, 2000) p_r3 = Ray(p1, p2).random_point() p_r4 = Ray(p2, p1).random_point() l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) l4 = Line(p1, Point(1, 0)) r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != Line(Point(x1, x1), Point(y1, y1)) assert l1 != l3 assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert s1 in Line(p1, p10) assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2)) assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1)) assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5)) assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2)) assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2)) assert l1.slope == 1 assert l3.slope == oo assert l4.slope == 0 assert Line(p1, Point(0, 1)).slope == oo assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope assert l4.coefficients == (0, 1, 0) assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1)) for ind in range(0, 5): assert l3.random_point() in l3 assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y assert hash(s1) == hash(Segment(p10, p1)) assert s1.plot_interval() == [t, 0, 1] assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = Rational(1, 2) p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1,0), slope = 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_ellipse_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) y1 = Symbol('y1', real=True) half = Rational(1, 2) p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) l1 = Line(p1, p2) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2))) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert e1 != l1 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * y1 * abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2 * pi assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == 4 * M * Integral( sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [ Line(Point(3 / 2, 1), Point(3 / 2, 1 / 2)) ] assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5 / 4, 2))] assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(77/25, 132/25)), Line(Point(0, 0), Point(33/5, 22/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # for numerical calculations, we shouldn't demand exact equality, # so only test up to the desired precision def lines_close(l1, l2, prec): """ tests whether l1 and 12 are within 10**(-prec) of each other """ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec) def line_list_close(ll1, ll2, prec): return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2)) e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert line_list_close(e.normal_lines(Point(1, 1), 2), [ Line(Point(-51 / 26, -1 / 5), Point(-25 / 26, 17 / 83)), Line(Point(28 / 29, -7 / 8), Point(57 / 29, -9 / 2)) ], 2) # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), S.Half) assert p in e assert line_list_close(e.normal_lines(p, 2), [ Line(Point(-341 / 171, -1 / 13), Point(-170 / 171, 5 / 64)), Line(Point(26 / 15, -1 / 2), Point(41 / 15, -43 / 26)) ], 2) # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3) assert line_list_close(e.normal_lines((1, 1), 2), [ Line(Point(-64 / 33, -20 / 71), Point(-31 / 33, 2 / 13)), Line(Point(1, -1), Point(2, -4)) ], 2) # general ellipse fails except under certain conditions e = Ellipse((0, 0), x, 1) assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse( Point(5, 0), 1, 1, )) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == [] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == [] # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = 53 / 17 c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [ Point(-c / 68 + a, 2 * c / 17 + a / 2), Point(c / 68 + a, -2 * c / 17 + a / 2) ] assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(14/5, 18/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi) == e assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) raises(NotImplementedError, lambda: e.rotate(pi / 3)) # Circle rotation tests (Issue #11743) # Link - https://github.com/sympy/sympy/issues/11743 cir = Circle(Point(1, 0), 1) assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1) assert cir.rotate(pi / 3) == Circle(Point(1 / 2, sqrt(3) / 2), 1) assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1) assert cir.rotate(pi / 3, Point(0, 1)) == Circle( Point(1 / 2 + sqrt(3) / 2, 1 / 2 + sqrt(3) / 2), 1)
def test_basic_properties_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p10 = Point(2000, 2000) p_r3 = Ray(p1, p2).random_point() p_r4 = Ray(p2, p1).random_point() l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) l4 = Line(p1, Point(1, 0)) r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != Line(Point(x1, x1), Point(y1, y1)) assert l1 != l3 assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert s1 in Line(p1, p10) assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2)) assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1)) assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5)) assert Segment(p1, p2).midpoint == Point(S.Half, S.Half) assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2)) assert l1.slope == 1 assert l3.slope is oo assert l4.slope == 0 assert Line(p1, Point(0, 1)).slope is oo assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope assert l4.coefficients == (0, 1, 0) assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1)) for ind in range(0, 5): assert l3.random_point() in l3 assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y assert hash(s1) != hash(Segment(p10, p1)) assert s1.plot_interval() == [t, 0, 1] assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection( Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2]
def test_object_from_equation(): from sympy.abc import x, y, a, b assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5))) assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3)) assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1)) assert Line(Eq(3*a + b, -18), x='a', y=b) == Line2D(Point2D(0, -18), Point2D(1, -21)) raises(ValueError, lambda: Line(x)) raises(ValueError, lambda: Line(y)) raises(ValueError, lambda: Line(x/y)) raises(ValueError, lambda: Line(a/b, x='a', y='b')) raises(ValueError, lambda: Line(y/x)) raises(ValueError, lambda: Line(b/a, x='a', y='b')) raises(ValueError, lambda: Line((x + 1)**2 + y))
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection( Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2] assert asa(120, 8, 52) == \ Triangle( Point(0, 0), Point(8, 0), Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45), 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45))) assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10)) assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)] # 16628 - this should be fast p0 = Point2D(S(249)/5, S(497999)/10000) p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 + 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626)) /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226) + 1991998000*sqrt(630547164901) + 1622561172902000), (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) + 90004251917891999 + 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626) + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) + 8112805864510000)) p2 = Point2D(S(497)/10, -S(497)/10) p3 = Point2D(-S(497)/10, -S(497)/10) l = Line(p0, p1) s = Segment(p2, p3) n = (-52673223862*sqrt(405639795226) - 15764156209307469 - 9803028531*sqrt(630547164901) + 33200*sqrt(255775022850776494562626)) d = sqrt(405639795226) + 315274080450 + 498000*sqrt( 630547164901) + sqrt(255775022850776494562626) assert intersection(l, s) == [ Point2D(n/d*S(3)/2000, -S(497)/10)]
def test_length(): s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)) assert Line(Point(0, 0), Point(1, 1)).length == oo assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo
def test_symbolic_intersect(): # Issue 7814. circle = Circle(Point(x, 0), y) line = Line(Point(k, z), slope=0) assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)]
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(ValueError, "Line((1, 1), 1)") assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) == False # Parallelity p2_1 = Point(-2 * x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) == False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) == False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4) # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) # XXX don't know why this fails without str assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi)))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5))) raises(ValueError, "Ray((1, 1), 1)") r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol("t", real=True) assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t)) s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(2 * (x1 ** 2)) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) # Segment contains a, b = symbols("a,b") s = Segment((0, a), (0, b)) assert Point(0, (a + b) / 2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b) / 2, 0) in s assert (Point(2 * a, 0) in s) is False # XXX should be None? # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2 ** (half) / 2 assert s2.distance(pt2) == 2 ** (half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == []
def test_line(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) p5 = Point(x1, 1 + x1) p6 = Point(1, 0) p7 = Point(0, 1) p8 = Point(2, 0) p9 = Point(2, 1) l1 = Line(p1, p2) l2 = Line(p3, p4) l3 = Line(p3, p5) l4 = Line(p1, p6) l5 = Line(p1, p7) l6 = Line(p8, p9) l7 = Line(p2, p9) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) # Basic stuff assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) raises(ValueError, lambda: Line((1, 1), 1)) assert Line(p1, p2) == Line(p2, p1) assert l1 == l2 assert l1 != l3 assert l1.slope == 1 assert l1.length == oo assert l3.slope == oo assert l4.slope == 0 assert l4.coefficients == (0, 1, 0) assert l4.equation(x=x, y=y) == y assert l5.slope == oo assert l5.coefficients == (1, 0, 0) assert l5.equation() == x assert l6.equation() == x - 2 assert l7.equation() == y - 1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, p2).scale(2, 1) == Line(p1, p9) assert l2.arbitrary_point() in l2 for ind in xrange(0, 5): assert l3.random_point() in l3 # Orthogonality p1_1 = Point(-x1, x1) l1_1 = Line(p1, p1_1) assert l1.perpendicular_line(p1) == l1_1 assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) == False p = l1.random_point() assert l1.perpendicular_segment(p) == p # Parallelity p2_1 = Point(-2 * x1, 0) l2_1 = Line(p3, p5) assert l2.parallel_line(p1_1) == Line(p2_1, p1_1) assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2)) assert Line.is_parallel(l1, l2) assert Line.is_parallel(l2, l3) == False assert Line.is_parallel(l2, l2.parallel_line(p1_1)) assert Line.is_parallel(l2_1, l2_1.parallel_line(p1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l2) in [[l1], [l2]] assert intersection(l1, l1.parallel_line(p5)) == [] # Concurrency l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1)) assert Line.is_concurrent(l1) == False assert Line.is_concurrent(l1, l3) assert Line.is_concurrent(l1, l3, l3_1) assert Line.is_concurrent(l1, l1_1, l3) == False # Projection assert l2.projection(p4) == p4 assert l1.projection(p1_1) == p1 assert l3.projection(p2) == Point(x1, 1) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1))) # Finding angles l1_1 = Line(p1, Point(5, 0)) assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4) # Testing Rays and Segments (very similar to Lines) assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) # XXX don't know why this fails without str assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi)))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5))) raises(ValueError, lambda: Ray((1, 1), 1)) r1 = Ray(p1, Point(-1, 5)) r2 = Ray(p1, Point(-1, 1)) r3 = Ray(p3, p5) r4 = Ray(p1, p2) r5 = Ray(p2, p1) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) assert l1.projection(r1) == Ray(p1, p2) assert l1.projection(r2) == p1 assert r3 != r1 t = Symbol("t", real=True) assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t)) s1 = Segment(p1, p2) s2 = Segment(p1, p1_1) assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(2 * (x1 ** 2)) assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0)) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) # intersections assert s1.intersection(Line(p6, p9)) == [] s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) assert s1.intersection(s3) == [s1] assert s3.intersection(s1) == [s3] assert r4.intersection(s3) == [s3] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] s3 = Segment(Point(1, 1), Point(2, 2)) assert s1.intersection(s3) == [Point(1, 1)] s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5)) assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(r5) == [s1] assert r5.intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] # Segment contains a, b = symbols("a,b") s = Segment((0, a), (0, b)) assert Point(0, (a + b) / 2) in s s = Segment((a, 0), (b, 0)) assert Point((a + b) / 2, 0) in s raises(Undecidable, lambda: Point(2 * a, 0) in s) # Testing distance from a Segment to an object s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) pt1 = Point(0, 0) pt2 = Point(Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == 2 ** (half) / 2 assert s2.distance(pt2) == 2 ** (half) # Special cases of projection and intersection r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(2, 2), Point(0, 0)) r3 = Ray(Point(1, 1), Point(-1, -1)) r4 = Ray(Point(0, 4), Point(-1, -5)) r5 = Ray(Point(2, 2), Point(3, 3)) assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, r3) == [Point(1, 1)] assert r1.projection(r3) == Point(1, 1) assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2)) r5 = Ray(Point(0, 0), Point(0, 1)) r6 = Ray(Point(0, 0), Point(0, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment(Point(0, 0), Point(2, 2)) s2 = Segment(Point(-1, 5), Point(-5, -10)) s3 = Segment(Point(0, 4), Point(-2, 2)) assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))] assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2)) assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3)) l1 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(0, 0), Point(3, 4)) s1 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, l1) == [l1] assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, l1) == [s1] entity1 = Segment(Point(-10, 10), Point(10, 10)) entity2 = Segment(Point(-5, -5), Point(-5, 5)) assert intersection(entity1, entity2) == [] r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) r3 = Ray(p1, p2) r4 = Ray(p2, p1) s1 = Segment(p1, Point(0, 1)) assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope p_r3 = r3.random_point() p_r4 = r4.random_point() assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y p10 = Point(2000, 2000) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y s2 = Segment(p10, p1) assert hash(s1) == hash(s2) p11 = p10.scale(2, 2) assert s1.is_similar(Segment(p10, p11)) assert s1.is_similar(r1) == False assert (r1 in s1) == False assert Segment(p1, p2) in s1 assert s1.plot_interval() == [t, 0, 1] assert s1 in Line(p1, p10) assert Line(p1, p10) == Line(p10, p1) assert Line(p1, p10) != p1 assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection( Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2] assert asa(120, 8, 52) == \ Triangle( Point(0, 0), Point(8, 0), Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45), 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45))) assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10)) # 16628 - this should be fast p0 = Point2D(S(249)/5, S(497999)/10000) p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 + 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626)) /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226) + 1991998000*sqrt(630547164901) + 1622561172902000), (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) + 90004251917891999 + 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626) + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) + 8112805864510000)) p2 = Point2D(S(497)/10, -S(497)/10) p3 = Point2D(-S(497)/10, -S(497)/10) l = Line(p0, p1) s = Segment(p2, p3) n = (-52673223862*sqrt(405639795226) - 15764156209307469 - 9803028531*sqrt(630547164901) + 33200*sqrt(255775022850776494562626)) d = sqrt(405639795226) + 315274080450 + 498000*sqrt( 630547164901) + sqrt(255775022850776494562626) assert intersection(l, s) == [ Point2D(n/d*S(3)/2000, -S(497)/10)]