def test_issue_14291(): assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1) ).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I] p = x**4 + 10*x**2 + 1 ans = [rootof(p, i) for i in range(4)] assert Poly(p).all_roots() == ans _check(ans)
def test_issue_8285(): roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots() assert roots == _nsort(roots) f = Poly(x**4 + 5*x**2 + 6, x) ro = [rootof(f, i) for i in range(4)] roots = Poly(x**4 + 5*x**2 + 6, x).all_roots() assert roots == ro assert roots == _nsort(roots) # more than 2 complex roots from which to identify the # imaginary ones roots = Poly(2*x**8 - 1).all_roots() assert roots == _nsort(roots) assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail
def test_CRootOf(): assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_CRootOf(): assert str(rootof(x**5 + 2 * x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def _get_euler_characteristic_eq_sols(eq, func, match_obj): r""" Returns the solution of homogeneous part of the linear euler ODE and the list of roots of characteristic equation. The parameter ``match_obj`` is a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. """ x = func.args[0] f = func.func # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in match_obj: if i >= 0: chareq += (match_obj[i] * diff(x**symbol, x, i) * x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] collectterms = [] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree() * 2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S.Zero ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i * (x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * ( x**reroot) * (constants.pop() * sin(abs(imroot) * ln(x)) + constants.pop() * cos(imroot * ln(x))) collectterms = [(i, reroot, imroot)] + collectterms gsol = Eq(f(x), gsol) gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i * x**reroot) else: sin_form = ln(x)**i * x**reroot * sin(abs(imroot) * ln(x)) if sin_form in gensols: cos_form = ln(x)**i * x**reroot * cos(imroot * ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) return gsol, gensols
def _get_const_characteristic_eq_sols(r, func, order): r""" Returns the roots of characteristic equation of constant coefficient linear ODE and list of collectterms which is later on used by simplification to use collect on solution. The parameter `r` is a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. """ x = func.args[0] # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i] * symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all(i.is_real for i in chareq.all_coeffs()) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i * exp(root * x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i * exp(root * x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i * exp(reroot * x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i * exp(reroot * x) * sin(abs(imroot) * x)) gensols.append(x**i * exp(reroot * x) * cos(imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms return gensols, collectterms