Example #1
0
def test_issue_14291():
    assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1)
        ).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I]
    p = x**4 + 10*x**2 + 1
    ans = [rootof(p, i) for i in range(4)]
    assert Poly(p).all_roots() == ans
    _check(ans)
Example #2
0
def test_issue_8285():
    roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots()
    assert roots == _nsort(roots)
    f = Poly(x**4 + 5*x**2 + 6, x)
    ro = [rootof(f, i) for i in range(4)]
    roots = Poly(x**4 + 5*x**2 + 6, x).all_roots()
    assert roots == ro
    assert roots == _nsort(roots)
    # more than 2 complex roots from which to identify the
    # imaginary ones
    roots = Poly(2*x**8 - 1).all_roots()
    assert roots == _nsort(roots)
    assert len(Poly(2*x**10 - 1).all_roots()) == 10  # doesn't fail
Example #3
0
def test_CRootOf():
    assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
Example #4
0
def test_CRootOf():
    assert str(rootof(x**5 + 2 * x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
Example #5
0
def _get_euler_characteristic_eq_sols(eq, func, match_obj):
    r"""
    Returns the solution of homogeneous part of the linear euler ODE and
    the list of roots of characteristic equation.

    The parameter ``match_obj`` is a dict of order:coeff terms, where order is the order
    of the derivative on each term, and coeff is the coefficient of that derivative.

    """
    x = func.args[0]
    f = func.func

    # First, set up characteristic equation.
    chareq, symbol = S.Zero, Dummy('x')

    for i in match_obj:
        if i >= 0:
            chareq += (match_obj[i] * diff(x**symbol, x, i) *
                       x**-symbol).expand()

    chareq = Poly(chareq, symbol)
    chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
    collectterms = []

    # A generator of constants
    constants = list(get_numbered_constants(eq, num=chareq.degree() * 2))
    constants.reverse()

    # Create a dict root: multiplicity or charroots
    charroots = defaultdict(int)
    for root in chareqroots:
        charroots[root] += 1
    gsol = S.Zero
    ln = log
    for root, multiplicity in charroots.items():
        for i in range(multiplicity):
            if isinstance(root, RootOf):
                gsol += (x**root) * constants.pop()
                if multiplicity != 1:
                    raise ValueError("Value should be 1")
                collectterms = [(0, root, 0)] + collectterms
            elif root.is_real:
                gsol += ln(x)**i * (x**root) * constants.pop()
                collectterms = [(i, root, 0)] + collectterms
            else:
                reroot = re(root)
                imroot = im(root)
                gsol += ln(x)**i * (
                    x**reroot) * (constants.pop() * sin(abs(imroot) * ln(x)) +
                                  constants.pop() * cos(imroot * ln(x)))
                collectterms = [(i, reroot, imroot)] + collectterms

    gsol = Eq(f(x), gsol)

    gensols = []
    # Keep track of when to use sin or cos for nonzero imroot
    for i, reroot, imroot in collectterms:
        if imroot == 0:
            gensols.append(ln(x)**i * x**reroot)
        else:
            sin_form = ln(x)**i * x**reroot * sin(abs(imroot) * ln(x))
            if sin_form in gensols:
                cos_form = ln(x)**i * x**reroot * cos(imroot * ln(x))
                gensols.append(cos_form)
            else:
                gensols.append(sin_form)
    return gsol, gensols
Example #6
0
def _get_const_characteristic_eq_sols(r, func, order):
    r"""
    Returns the roots of characteristic equation of constant coefficient
    linear ODE and list of collectterms which is later on used by simplification
    to use collect on solution.

    The parameter `r` is a dict of order:coeff terms, where order is the order of the
    derivative on each term, and coeff is the coefficient of that derivative.

    """
    x = func.args[0]
    # First, set up characteristic equation.
    chareq, symbol = S.Zero, Dummy('x')

    for i in r.keys():
        if type(i) == str or i < 0:
            pass
        else:
            chareq += r[i] * symbol**i

    chareq = Poly(chareq, symbol)
    # Can't just call roots because it doesn't return rootof for unsolveable
    # polynomials.
    chareqroots = roots(chareq, multiple=True)
    if len(chareqroots) != order:
        chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]

    chareq_is_complex = not all(i.is_real for i in chareq.all_coeffs())

    # Create a dict root: multiplicity or charroots
    charroots = defaultdict(int)
    for root in chareqroots:
        charroots[root] += 1
    # We need to keep track of terms so we can run collect() at the end.
    # This is necessary for constantsimp to work properly.
    collectterms = []
    gensols = []
    conjugate_roots = []  # used to prevent double-use of conjugate roots
    # Loop over roots in theorder provided by roots/rootof...
    for root in chareqroots:
        # but don't repoeat multiple roots.
        if root not in charroots:
            continue
        multiplicity = charroots.pop(root)
        for i in range(multiplicity):
            if chareq_is_complex:
                gensols.append(x**i * exp(root * x))
                collectterms = [(i, root, 0)] + collectterms
                continue
            reroot = re(root)
            imroot = im(root)
            if imroot.has(atan2) and reroot.has(atan2):
                # Remove this condition when re and im stop returning
                # circular atan2 usages.
                gensols.append(x**i * exp(root * x))
                collectterms = [(i, root, 0)] + collectterms
            else:
                if root in conjugate_roots:
                    collectterms = [(i, reroot, imroot)] + collectterms
                    continue
                if imroot == 0:
                    gensols.append(x**i * exp(reroot * x))
                    collectterms = [(i, reroot, 0)] + collectterms
                    continue
                conjugate_roots.append(conjugate(root))
                gensols.append(x**i * exp(reroot * x) * sin(abs(imroot) * x))
                gensols.append(x**i * exp(reroot * x) * cos(imroot * x))

                # This ordering is important
                collectterms = [(i, reroot, imroot)] + collectterms
    return gensols, collectterms