Ejemplo n.º 1
0
def merton(base_price: int = 1,
           base_volume: int = 1,
           start_date: str = '2010-01-01',
           start_date_format: str = '%Y-%m-%d',
           times_to_generate: int = 1000,
           time_frame: str = '1h',
           params: ModelParameters = None):

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = geometric_brownian_motion_jump_diffusion_levels(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Ejemplo n.º 2
0
def gbm(base_price: int = 1,
        base_volume: int = 1,
        start_date: str = '2010-01-01',
        start_date_format: str = '%Y-%m-%d',
        times_to_generate: int = 1000,
        time_frame: str = '1h',
        params: 'ModelParameters' = None) -> 'pd.DataFrame':
    """Generates price data from a GBM process.

    Parameters
    ----------
    base_price : int, default 1
        The base price to use for price generation.
    base_volume : int, default 1
        The base volume to use for volume generation.
    start_date : str, default '2010-01-01'
        The start date of the generated data
    start_date_format : str, default '%Y-%m-%d'
        The format for the start date of the generated data.
    times_to_generate : int, default 1000
        The number of bars to make.
    time_frame : str, default '1h'
        The time frame.
    params : `ModelParameters`, optional
        The model parameters.

    Returns
    -------
    `pd.DataFrame`
        The generated data frame containing the OHLCV bars.

    References
    ----------
    [1] https://en.wikipedia.org/wiki/Geometric_Brownian_motion
    """

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = geometric_brownian_motion_levels(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date, periods=times_to_generate, freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame
Ejemplo n.º 3
0
def generate(price_fn: 'Callable[[ModelParameters], np.array]',
             base_price: int = 1,
             base_volume: int = 1,
             start_date: str = '2010-01-01',
             start_date_format: str = '%Y-%m-%d',
             times_to_generate: int = 1000,
             time_frame: str = '1h',
             params: ModelParameters = None) -> 'pd.DataFrame':
    """Generates a data frame of OHLCV data based on the price model specified.

    Parameters
    ----------
    price_fn : `Callable[[ModelParameters], np.array]`
        The price function generate the prices based on the chosen model.
    base_price : int, default 1
        The base price to use for price generation.
    base_volume : int, default 1
        The base volume to use for volume generation.
    start_date : str, default '2010-01-01'
        The start date of the generated data
    start_date_format : str, default '%Y-%m-%d'
        The format for the start date of the generated data.
    times_to_generate : int, default 1000
        The number of bars to make.
    time_frame : str, default '1h'
        The time frame.
    params : `ModelParameters`, optional
        The model parameters.

    Returns
    -------
    `pd.DataFrame`
        The data frame containing the OHLCV bars.
    """

    delta = get_delta(time_frame)
    times_to_generate = scale_times_to_generate(times_to_generate, time_frame)

    params = params or default(base_price, times_to_generate, delta)

    prices = price_fn(params)

    volume_gen = GaussianNoise(t=times_to_generate)
    volumes = volume_gen.sample(times_to_generate) + base_volume

    start_date = pd.to_datetime(start_date, format=start_date_format)
    price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float)
    volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float)

    price_frame['date'] = pd.date_range(start=start_date,
                                        periods=times_to_generate,
                                        freq="1min")
    price_frame['price'] = abs(prices)

    volume_frame['date'] = price_frame['date'].copy()
    volume_frame['volume'] = abs(volumes)

    price_frame.set_index('date')
    price_frame.index = pd.to_datetime(price_frame.index,
                                       unit='m',
                                       origin=start_date)

    volume_frame.set_index('date')
    volume_frame.index = pd.to_datetime(volume_frame.index,
                                        unit='m',
                                        origin=start_date)

    data_frame = price_frame['price'].resample(time_frame).ohlc()
    data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum()

    return data_frame