def merton(base_price: int = 1, base_volume: int = 1, start_date: str = '2010-01-01', start_date_format: str = '%Y-%m-%d', times_to_generate: int = 1000, time_frame: str = '1h', params: ModelParameters = None): delta = get_delta(time_frame) times_to_generate = scale_times_to_generate(times_to_generate, time_frame) params = params or default(base_price, times_to_generate, delta) prices = geometric_brownian_motion_jump_diffusion_levels(params) volume_gen = GaussianNoise(t=times_to_generate) volumes = volume_gen.sample(times_to_generate) + base_volume start_date = pd.to_datetime(start_date, format=start_date_format) price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float) volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float) price_frame['date'] = pd.date_range(start=start_date, periods=times_to_generate, freq="1min") price_frame['price'] = abs(prices) volume_frame['date'] = price_frame['date'].copy() volume_frame['volume'] = abs(volumes) price_frame.set_index('date') price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date) volume_frame.set_index('date') volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date) data_frame = price_frame['price'].resample(time_frame).ohlc() data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum() return data_frame
def gbm(base_price: int = 1, base_volume: int = 1, start_date: str = '2010-01-01', start_date_format: str = '%Y-%m-%d', times_to_generate: int = 1000, time_frame: str = '1h', params: 'ModelParameters' = None) -> 'pd.DataFrame': """Generates price data from a GBM process. Parameters ---------- base_price : int, default 1 The base price to use for price generation. base_volume : int, default 1 The base volume to use for volume generation. start_date : str, default '2010-01-01' The start date of the generated data start_date_format : str, default '%Y-%m-%d' The format for the start date of the generated data. times_to_generate : int, default 1000 The number of bars to make. time_frame : str, default '1h' The time frame. params : `ModelParameters`, optional The model parameters. Returns ------- `pd.DataFrame` The generated data frame containing the OHLCV bars. References ---------- [1] https://en.wikipedia.org/wiki/Geometric_Brownian_motion """ delta = get_delta(time_frame) times_to_generate = scale_times_to_generate(times_to_generate, time_frame) params = params or default(base_price, times_to_generate, delta) prices = geometric_brownian_motion_levels(params) volume_gen = GaussianNoise(t=times_to_generate) volumes = volume_gen.sample(times_to_generate) + base_volume start_date = pd.to_datetime(start_date, format=start_date_format) price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float) volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float) price_frame['date'] = pd.date_range(start=start_date, periods=times_to_generate, freq="1min") price_frame['price'] = abs(prices) volume_frame['date'] = price_frame['date'].copy() volume_frame['volume'] = abs(volumes) price_frame.set_index('date') price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date) volume_frame.set_index('date') volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date) data_frame = price_frame['price'].resample(time_frame).ohlc() data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum() return data_frame
def generate(price_fn: 'Callable[[ModelParameters], np.array]', base_price: int = 1, base_volume: int = 1, start_date: str = '2010-01-01', start_date_format: str = '%Y-%m-%d', times_to_generate: int = 1000, time_frame: str = '1h', params: ModelParameters = None) -> 'pd.DataFrame': """Generates a data frame of OHLCV data based on the price model specified. Parameters ---------- price_fn : `Callable[[ModelParameters], np.array]` The price function generate the prices based on the chosen model. base_price : int, default 1 The base price to use for price generation. base_volume : int, default 1 The base volume to use for volume generation. start_date : str, default '2010-01-01' The start date of the generated data start_date_format : str, default '%Y-%m-%d' The format for the start date of the generated data. times_to_generate : int, default 1000 The number of bars to make. time_frame : str, default '1h' The time frame. params : `ModelParameters`, optional The model parameters. Returns ------- `pd.DataFrame` The data frame containing the OHLCV bars. """ delta = get_delta(time_frame) times_to_generate = scale_times_to_generate(times_to_generate, time_frame) params = params or default(base_price, times_to_generate, delta) prices = price_fn(params) volume_gen = GaussianNoise(t=times_to_generate) volumes = volume_gen.sample(times_to_generate) + base_volume start_date = pd.to_datetime(start_date, format=start_date_format) price_frame = pd.DataFrame([], columns=['date', 'price'], dtype=float) volume_frame = pd.DataFrame([], columns=['date', 'volume'], dtype=float) price_frame['date'] = pd.date_range(start=start_date, periods=times_to_generate, freq="1min") price_frame['price'] = abs(prices) volume_frame['date'] = price_frame['date'].copy() volume_frame['volume'] = abs(volumes) price_frame.set_index('date') price_frame.index = pd.to_datetime(price_frame.index, unit='m', origin=start_date) volume_frame.set_index('date') volume_frame.index = pd.to_datetime(volume_frame.index, unit='m', origin=start_date) data_frame = price_frame['price'].resample(time_frame).ohlc() data_frame['volume'] = volume_frame['volume'].resample(time_frame).sum() return data_frame