Ejemplo n.º 1
0
def send_tx(node, utxo, feerate):
    """Broadcast a 1in-1out transaction with a specific input and feerate (sat/vb)."""
    tx = CTransaction()
    tx.vin = [
        CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), REDEEM_SCRIPT)
    ]
    tx.vout = [CTxOut(int(utxo["amount"] * COIN), P2SH)]

    # vbytes == bytes as we are using legacy transactions
    fee = tx.get_vsize() * feerate
    tx.vout[0].nValue -= fee

    return node.sendrawtransaction(tx.serialize().hex())
Ejemplo n.º 2
0
    def test_rbf(self):
        node = self.nodes[0]
        coin = self.coins.pop()
        inputs = [{"txid": coin["txid"], "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}]
        fee = Decimal('0.00125000')
        output = {node.get_deterministic_priv_key().address: 50 - fee}
        raw_replaceable_tx = node.createrawtransaction(inputs, output)
        signed_replaceable_tx = node.signrawtransactionwithkey(hexstring=raw_replaceable_tx, privkeys=self.privkeys)
        testres_replaceable = node.testmempoolaccept([signed_replaceable_tx["hex"]])
        replaceable_tx = CTransaction()
        replaceable_tx.deserialize(BytesIO(hex_str_to_bytes(signed_replaceable_tx["hex"])))
        assert_equal(testres_replaceable, [
            {"txid": replaceable_tx.rehash(), "wtxid": replaceable_tx.getwtxid(),
            "allowed": True, "vsize": replaceable_tx.get_vsize(), "fees": { "base": fee }}
        ])

        # Replacement transaction is identical except has double the fee
        replacement_tx = CTransaction()
        replacement_tx.deserialize(BytesIO(hex_str_to_bytes(signed_replaceable_tx["hex"])))
        replacement_tx.vout[0].nValue -= int(fee * COIN)  # Doubled fee
        signed_replacement_tx = node.signrawtransactionwithkey(replacement_tx.serialize().hex(), self.privkeys)
        replacement_tx.deserialize(BytesIO(hex_str_to_bytes(signed_replacement_tx["hex"])))

        self.log.info("Test that transactions within a package cannot replace each other")
        testres_rbf_conflicting = node.testmempoolaccept([signed_replaceable_tx["hex"], signed_replacement_tx["hex"]])
        assert_equal(testres_rbf_conflicting, [
            {"txid": replaceable_tx.rehash(), "wtxid": replaceable_tx.getwtxid(), "package-error": "conflict-in-package"},
            {"txid": replacement_tx.rehash(), "wtxid": replacement_tx.getwtxid(), "package-error": "conflict-in-package"}
        ])

        self.log.info("Test that packages cannot conflict with mempool transactions, even if a valid BIP125 RBF")
        node.sendrawtransaction(signed_replaceable_tx["hex"])
        testres_rbf_single = node.testmempoolaccept([signed_replacement_tx["hex"]])
        # This transaction is a valid BIP125 replace-by-fee
        assert testres_rbf_single[0]["allowed"]
        testres_rbf_package = self.independent_txns_testres_blank + [{
            "txid": replacement_tx.rehash(), "wtxid": replacement_tx.getwtxid(), "allowed": False, "reject-reason": "txn-mempool-conflict"
        }]
        self.assert_testres_equal(self.independent_txns_hex + [signed_replacement_tx["hex"]], testres_rbf_package)
Ejemplo n.º 3
0
    def create_self_transfer(self, *, fee_rate=Decimal("0.003"), fee=Decimal("0"), utxo_to_spend=None, locktime=0, sequence=0, target_weight=0):
        """Create and return a tx with the specified fee. If fee is 0, use fee_rate, where the resulting fee may be exact or at most one satoshi higher than needed."""
        utxo_to_spend = utxo_to_spend or self.get_utxo()
        assert fee_rate >= 0
        assert fee >= 0
        if self._mode in (MiniWalletMode.RAW_OP_TRUE, MiniWalletMode.ADDRESS_OP_TRUE):
            vsize = Decimal(104)  # anyone-can-spend
        elif self._mode == MiniWalletMode.RAW_P2PK:
            vsize = Decimal(168)  # P2PK (73 bytes scriptSig + 35 bytes scriptPubKey + 60 bytes other)
        else:
            assert False
        send_value = utxo_to_spend["value"] - (fee or (fee_rate * vsize / 1000))
        assert send_value > 0

        tx = CTransaction()
        tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']), nSequence=sequence)]
        tx.vout = [CTxOut(int(COIN * send_value), bytearray(self._scriptPubKey))]
        tx.nLockTime = locktime
        if self._mode == MiniWalletMode.RAW_P2PK:
            self.sign_tx(tx)
        elif self._mode == MiniWalletMode.RAW_OP_TRUE:
            tx.vin[0].scriptSig = CScript([OP_NOP] * 43)  # pad to identical size
        elif self._mode == MiniWalletMode.ADDRESS_OP_TRUE:
            tx.wit.vtxinwit = [CTxInWitness()]
            tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE]), bytes([LEAF_VERSION_TAPSCRIPT]) + self._internal_key]
        else:
            assert False

        assert_equal(tx.get_vsize(), vsize)

        if target_weight:
            self._bulk_tx(tx, target_weight)

        tx_hex = tx.serialize().hex()
        new_utxo = self._create_utxo(txid=tx.rehash(), vout=0, value=send_value, height=0)

        return {"txid": new_utxo["txid"], "wtxid": tx.getwtxid(), "hex": tx_hex, "tx": tx, "new_utxo": new_utxo}
Ejemplo n.º 4
0
    def run_test(self):
        node = self.nodes[0]

        self.log.info('Start with empty mempool, and 200 blocks')
        self.mempool_size = 0
        assert_equal(node.getblockcount(), 200)
        assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
        coins = node.listunspent()

        self.log.info('Should not accept garbage to testmempoolaccept')
        assert_raises_rpc_error(
            -3, 'Expected type array, got string',
            lambda: node.testmempoolaccept(rawtxs='ff00baar'))
        assert_raises_rpc_error(
            -8, 'Array must contain exactly one raw transaction for now',
            lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
        assert_raises_rpc_error(
            -22, 'TX decode failed',
            lambda: node.testmempoolaccept(rawtxs=['ff00baar']))

        self.log.info('A transaction already in the blockchain')
        coin = coins.pop()  # Pick a random coin(base) to spend
        raw_tx_in_block = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': coin['txid'],
                    'vout': coin['vout']
                }],
                outputs=[{
                    node.getnewaddress(): 0.3
                }, {
                    node.getnewaddress(): 49
                }],
            ))['hex']
        txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block,
                                                maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_in_block,
                'allowed': False,
                'reject-reason': 'txn-already-known'
            }],
            rawtxs=[raw_tx_in_block],
        )

        self.log.info('A transaction not in the mempool')
        fee = Decimal('0.000007')
        raw_tx_0 = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    "txid": txid_in_block,
                    "vout": 0,
                    "sequence": BIP125_SEQUENCE_NUMBER
                }],  # RBF is used later
                outputs=[{
                    node.getnewaddress(): Decimal('0.3') - fee
                }],
            ))['hex']
        tx = CTransaction()
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': True,
                'vsize': tx.get_vsize(),
                'fees': {
                    'base': fee
                }
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A final transaction not in the mempool')
        coin = coins.pop()  # Pick a random coin(base) to spend
        output_amount = Decimal('0.025')
        raw_tx_final = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': coin['txid'],
                    'vout': coin['vout'],
                    "sequence": 0xffffffff
                }],  # SEQUENCE_FINAL
                outputs=[{
                    node.getnewaddress(): output_amount
                }],
                locktime=node.getblockcount() + 2000,  # Can be anything
            ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
        fee_expected = coin['amount'] - output_amount
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': True,
                'vsize': tx.get_vsize(),
                'fees': {
                    'base': fee_expected
                }
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
        node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
        self.mempool_size += 1

        self.log.info('A transaction in the mempool')
        node.sendrawtransaction(hexstring=raw_tx_0)
        self.mempool_size += 1
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': False,
                'reject-reason': 'txn-already-in-mempool'
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that replaces a mempool transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(fee * COIN)  # Double the fee
        tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1  # Now, opt out of RBF
        raw_tx_0 = node.signrawtransactionwithwallet(
            tx.serialize().hex())['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        txid_0 = tx.rehash()
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': True,
                'vsize': tx.get_vsize(),
                'fees': {
                    'base': (2 * fee)
                }
            }],
            rawtxs=[raw_tx_0],
        )

        self.log.info('A transaction that conflicts with an unconfirmed tx')
        # Send the transaction that replaces the mempool transaction and opts out of replaceability
        node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
        # take original raw_tx_0
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vout[0].nValue -= int(4 * fee * COIN)  # Set more fee
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'txn-mempool-conflict'
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with missing inputs, that never existed')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
        # skip re-signing the tx
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info(
            'A transaction with missing inputs, that existed once in the past')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
        tx.vin[
            0].prevout.n = 1  # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
        raw_tx_1 = node.signrawtransactionwithwallet(
            tx.serialize().hex())['hex']
        txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0)
        # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
        raw_tx_spend_both = node.signrawtransactionwithwallet(
            node.createrawtransaction(inputs=[
                {
                    'txid': txid_0,
                    'vout': 0
                },
                {
                    'txid': txid_1,
                    'vout': 0
                },
            ],
                                      outputs=[{
                                          node.getnewaddress(): 0.1
                                      }]))['hex']
        txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both,
                                                  maxfeerate=0)
        node.generate(1)
        self.mempool_size = 0
        # Now see if we can add the coins back to the utxo set by sending the exact txs again
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_0,
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[raw_tx_0],
        )
        self.check_mempool_result(
            result_expected=[{
                'txid': txid_1,
                'allowed': False,
                'reject-reason': 'missing-inputs'
            }],
            rawtxs=[raw_tx_1],
        )

        self.log.info('Create a signed "reference" tx for later use')
        raw_tx_reference = node.signrawtransactionwithwallet(
            node.createrawtransaction(
                inputs=[{
                    'txid': txid_spend_both,
                    'vout': 0
                }],
                outputs=[{
                    node.getnewaddress(): 0.05
                }],
            ))['hex']
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        # Reference tx should be valid on itself
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': True,
                'vsize': tx.get_vsize(),
                'fees': {
                    'base': Decimal('0.1') - Decimal('0.05')
                }
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )

        self.log.info('A transaction with no outputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = []
        # Skip re-signing the transaction for context independent checks from now on
        # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex'])))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-empty'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A really large transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * math.ceil(
            MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize()))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-oversize'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with negative output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue *= -1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-negative'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        # The following two validations prevent overflow of the output amounts (see CVE-2010-5139).
        self.log.info('A transaction with too large output value')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].nValue = MAX_MONEY + 1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-vout-toolarge'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with too large sum of output values')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout = [tx.vout[0]] * 2
        tx.vout[0].nValue = MAX_MONEY
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-txouttotal-toolarge'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction with duplicate inputs')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin = [tx.vin[0]] * 2
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bad-txns-inputs-duplicate'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A coinbase transaction')
        # Pick the input of the first tx we signed, so it has to be a coinbase tx
        raw_tx_coinbase_spent = node.getrawtransaction(
            txid=node.decoderawtransaction(
                hexstring=raw_tx_in_block)['vin'][0]['txid'])
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'coinbase'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('Some nonstandard transactions')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.nVersion = 3  # A version currently non-standard
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'version'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_0])  # Some non-standard script
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptpubkey'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        key = ECKey()
        key.generate()
        pubkey = key.get_pubkey().get_bytes()
        tx.vout[0].scriptPubKey = CScript(
            [OP_2, pubkey, pubkey, pubkey, OP_3,
             OP_CHECKMULTISIG])  # Some bare multisig script (2-of-3)
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'bare-multisig'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript([OP_HASH160
                                       ])  # Some not-pushonly scriptSig
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptsig-not-pushonly'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[0].scriptSig = CScript(
            [b'a' * 1648])  # Some too large scriptSig (>1650 bytes)
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'scriptsig-size'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        output_p2sh_burn = CTxOut(nValue=540,
                                  scriptPubKey=CScript(
                                      [OP_HASH160,
                                       hash160(b'burn'), OP_EQUAL]))
        num_scripts = 100000 // len(output_p2sh_burn.serialize(
        ))  # Use enough outputs to make the tx too large for our policy
        tx.vout = [output_p2sh_burn] * num_scripts
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'tx-size'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0] = output_p2sh_burn
        tx.vout[
            0].nValue -= 1  # Make output smaller, such that it is dust for our policy
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'dust'
            }],
            rawtxs=[tx.serialize().hex()],
        )
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
        tx.vout = [tx.vout[0]] * 2
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'multi-op-return'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A timelocked transaction')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[
            0].nSequence -= 1  # Should be non-max, so locktime is not ignored
        tx.nLockTime = node.getblockcount() + 1
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'non-final'
            }],
            rawtxs=[tx.serialize().hex()],
        )

        self.log.info('A transaction that is locked by BIP68 sequence logic')
        tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
        tx.vin[
            0].nSequence = 2  # We could include it in the second block mined from now, but not the very next one
        # Can skip re-signing the tx because of early rejection
        self.check_mempool_result(
            result_expected=[{
                'txid': tx.rehash(),
                'allowed': False,
                'reject-reason': 'non-BIP68-final'
            }],
            rawtxs=[tx.serialize().hex()],
            maxfeerate=0,
        )
Ejemplo n.º 5
0
    def run_test(self):
        self.generate(self.nodes[0], 161)  # block 161

        self.log.info("Verify sigops are counted in GBT with pre-BIP141 rules before the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert_equal(tmpl['sizelimit'], 1000000)
        assert 'weightlimit' not in tmpl
        assert_equal(tmpl['sigoplimit'], 20000)
        assert_equal(tmpl['transactions'][0]['hash'], txid)
        assert_equal(tmpl['transactions'][0]['sigops'], 2)
        assert '!segwit' not in tmpl['rules']
        self.generate(self.nodes[0], 1)  # block 162

        balance_presetup = self.nodes[0].getbalance()
        self.pubkey = []
        p2sh_ids = []  # p2sh_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE embedded in p2sh
        wit_ids = []  # wit_ids[NODE][TYPE] is an array of txids that spend to P2WPKH (TYPE=0) or P2WSH (TYPE=1) scripts to an address for NODE via bare witness
        for i in range(3):
            key = get_generate_key()
            self.pubkey.append(key.pubkey)

            multiscript = keys_to_multisig_script([self.pubkey[-1]])
            p2sh_ms_addr = self.nodes[i].createmultisig(1, [self.pubkey[-1]], 'p2sh-segwit')['address']
            bip173_ms_addr = self.nodes[i].createmultisig(1, [self.pubkey[-1]], 'bech32')['address']
            assert_equal(p2sh_ms_addr, script_to_p2sh_p2wsh(multiscript))
            assert_equal(bip173_ms_addr, script_to_p2wsh(multiscript))

            p2sh_ms_desc = descsum_create(f"sh(wsh(multi(1,{key.privkey})))")
            bip173_ms_desc = descsum_create(f"wsh(multi(1,{key.privkey}))")
            assert_equal(self.nodes[i].deriveaddresses(p2sh_ms_desc)[0], p2sh_ms_addr)
            assert_equal(self.nodes[i].deriveaddresses(bip173_ms_desc)[0], bip173_ms_addr)

            sh_wpkh_desc = descsum_create(f"sh(wpkh({key.privkey}))")
            wpkh_desc = descsum_create(f"wpkh({key.privkey})")
            assert_equal(self.nodes[i].deriveaddresses(sh_wpkh_desc)[0], key.p2sh_p2wpkh_addr)
            assert_equal(self.nodes[i].deriveaddresses(wpkh_desc)[0], key.p2wpkh_addr)

            if self.options.descriptors:
                res = self.nodes[i].importdescriptors([
                {"desc": p2sh_ms_desc, "timestamp": "now"},
                {"desc": bip173_ms_desc, "timestamp": "now"},
                {"desc": sh_wpkh_desc, "timestamp": "now"},
                {"desc": wpkh_desc, "timestamp": "now"},
            ])
            else:
                # The nature of the legacy wallet is that this import results in also adding all of the necessary scripts
                res = self.nodes[i].importmulti([
                    {"desc": p2sh_ms_desc, "timestamp": "now"},
                ])
            assert all([r["success"] for r in res])

            p2sh_ids.append([])
            wit_ids.append([])
            for _ in range(2):
                p2sh_ids[i].append([])
                wit_ids[i].append([])

        for _ in range(5):
            for n in range(3):
                for v in range(2):
                    wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999")))
                    p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999")))

        self.generate(self.nodes[0], 1)  # block 163

        # Make sure all nodes recognize the transactions as theirs
        assert_equal(self.nodes[0].getbalance(), balance_presetup - 60 * 50 + 20 * Decimal("49.999") + 50)
        assert_equal(self.nodes[1].getbalance(), 20 * Decimal("49.999"))
        assert_equal(self.nodes[2].getbalance(), 20 * Decimal("49.999"))

        self.log.info("Verify unsigned p2sh witness txs without a redeem script are invalid")
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_2][P2WPKH][1], sign=False)
        self.fail_accept(self.nodes[2], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_2][P2WSH][1], sign=False)

        self.generate(self.nodes[0], 1)  # block 164

        self.log.info("Verify witness txs are mined as soon as segwit activates")

        send_to_witness(1, self.nodes[2], getutxo(wit_ids[NODE_2][P2WPKH][0]), self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=True)
        send_to_witness(1, self.nodes[2], getutxo(wit_ids[NODE_2][P2WSH][0]), self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=True)
        send_to_witness(1, self.nodes[2], getutxo(p2sh_ids[NODE_2][P2WPKH][0]), self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=True)
        send_to_witness(1, self.nodes[2], getutxo(p2sh_ids[NODE_2][P2WSH][0]), self.pubkey[0], encode_p2sh=False, amount=Decimal("49.998"), sign=True)

        assert_equal(len(self.nodes[2].getrawmempool()), 4)
        blockhash = self.generate(self.nodes[2], 1)[0]  # block 165 (first block with new rules)
        assert_equal(len(self.nodes[2].getrawmempool()), 0)
        segwit_tx_list = self.nodes[2].getblock(blockhash)["tx"]
        assert_equal(len(segwit_tx_list), 5)

        self.log.info("Verify default node can't accept txs with missing witness")
        # unsigned, no scriptsig
        self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program hash mismatch)", wit_ids[NODE_0][P2WPKH][0], sign=False)
        self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program was passed an empty witness)", wit_ids[NODE_0][P2WSH][0], sign=False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_0][P2WPKH][0], sign=False)
        self.fail_accept(self.nodes[0], "mandatory-script-verify-flag-failed (Operation not valid with the current stack size)", p2sh_ids[NODE_0][P2WSH][0], sign=False)
        # unsigned with redeem script
        self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program hash mismatch)", p2sh_ids[NODE_0][P2WPKH][0], sign=False, redeem_script=witness_script(False, self.pubkey[0]))
        self.fail_accept(self.nodes[0], "non-mandatory-script-verify-flag (Witness program was passed an empty witness)", p2sh_ids[NODE_0][P2WSH][0], sign=False, redeem_script=witness_script(True, self.pubkey[0]))

        self.log.info("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag")
        assert self.nodes[2].getblock(blockhash, False) != self.nodes[0].getblock(blockhash, False)
        assert self.nodes[1].getblock(blockhash, False) == self.nodes[2].getblock(blockhash, False)

        for tx_id in segwit_tx_list:
            tx = tx_from_hex(self.nodes[2].gettransaction(tx_id)["hex"])
            assert self.nodes[2].getrawtransaction(tx_id, False, blockhash) != self.nodes[0].getrawtransaction(tx_id, False, blockhash)
            assert self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].getrawtransaction(tx_id, False, blockhash)
            assert self.nodes[0].getrawtransaction(tx_id, False, blockhash) != self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[1].getrawtransaction(tx_id, False, blockhash) == self.nodes[2].gettransaction(tx_id)["hex"]
            assert self.nodes[0].getrawtransaction(tx_id, False, blockhash) == tx.serialize_without_witness().hex()

        # Coinbase contains the witness commitment nonce, check that RPC shows us
        coinbase_txid = self.nodes[2].getblock(blockhash)['tx'][0]
        coinbase_tx = self.nodes[2].gettransaction(txid=coinbase_txid, verbose=True)
        witnesses = coinbase_tx["decoded"]["vin"][0]["txinwitness"]
        assert_equal(len(witnesses), 1)
        assert_is_hex_string(witnesses[0])
        assert_equal(witnesses[0], '00' * 32)

        self.log.info("Verify witness txs without witness data are invalid after the fork")
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch)', wit_ids[NODE_2][P2WPKH][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness)', wit_ids[NODE_2][P2WSH][2], sign=False)
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program hash mismatch)', p2sh_ids[NODE_2][P2WPKH][2], sign=False, redeem_script=witness_script(False, self.pubkey[2]))
        self.fail_accept(self.nodes[2], 'non-mandatory-script-verify-flag (Witness program was passed an empty witness)', p2sh_ids[NODE_2][P2WSH][2], sign=False, redeem_script=witness_script(True, self.pubkey[2]))

        self.log.info("Verify default node can now use witness txs")
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WPKH][0], True)
        self.success_mine(self.nodes[0], wit_ids[NODE_0][P2WSH][0], True)
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WPKH][0], True)
        self.success_mine(self.nodes[0], p2sh_ids[NODE_0][P2WSH][0], True)

        self.log.info("Verify sigops are counted in GBT with BIP141 rules after the fork")
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)
        raw_tx = self.nodes[0].getrawtransaction(txid, True)
        tmpl = self.nodes[0].getblocktemplate({'rules': ['segwit']})
        assert_greater_than_or_equal(tmpl['sizelimit'], 3999577)  # actual maximum size is lower due to minimum mandatory non-witness data
        assert_equal(tmpl['weightlimit'], 4000000)
        assert_equal(tmpl['sigoplimit'], 80000)
        assert_equal(tmpl['transactions'][0]['txid'], txid)
        expected_sigops = 9 if 'txinwitness' in raw_tx["vin"][0] else 8
        assert_equal(tmpl['transactions'][0]['sigops'], expected_sigops)
        assert '!segwit' in tmpl['rules']

        self.generate(self.nodes[0], 1)  # Mine a block to clear the gbt cache

        self.log.info("Non-segwit miners are able to use GBT response after activation.")
        # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) ->
        #                      tx2 (segwit input, paying to a non-segwit output) ->
        #                      tx3 (non-segwit input, paying to a non-segwit output).
        # tx1 is allowed to appear in the block, but no others.
        txid1 = send_to_witness(1, self.nodes[0], find_spendable_utxo(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996"))
        hex_tx = self.nodes[0].gettransaction(txid)['hex']
        tx = tx_from_hex(hex_tx)
        assert tx.wit.is_null()  # This should not be a segwit input
        assert txid1 in self.nodes[0].getrawmempool()

        tx1_hex = self.nodes[0].gettransaction(txid1)['hex']
        tx1 = tx_from_hex(tx1_hex)

        # Check that wtxid is properly reported in mempool entry (txid1)
        assert_equal(int(self.nodes[0].getmempoolentry(txid1)["wtxid"], 16), tx1.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid1)
        assert_equal(self.nodes[0].getmempoolentry(txid1)["vsize"], tx1.get_vsize())
        assert_equal(self.nodes[0].getmempoolentry(txid1)["weight"], tx1.get_weight())

        # Now create tx2, which will spend from txid1.
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b''))
        tx.vout.append(CTxOut(int(49.99 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))
        tx2_hex = self.nodes[0].signrawtransactionwithwallet(tx.serialize().hex())['hex']
        txid2 = self.nodes[0].sendrawtransaction(tx2_hex)
        tx = tx_from_hex(tx2_hex)
        assert not tx.wit.is_null()

        # Check that wtxid is properly reported in mempool entry (txid2)
        assert_equal(int(self.nodes[0].getmempoolentry(txid2)["wtxid"], 16), tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid2)
        assert_equal(self.nodes[0].getmempoolentry(txid2)["vsize"], tx.get_vsize())
        assert_equal(self.nodes[0].getmempoolentry(txid2)["weight"], tx.get_weight())

        # Now create tx3, which will spend from txid2
        tx = CTransaction()
        tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b""))
        tx.vout.append(CTxOut(int(49.95 * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])))  # Huge fee
        tx.calc_sha256()
        txid3 = self.nodes[0].sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
        assert tx.wit.is_null()
        assert txid3 in self.nodes[0].getrawmempool()

        # Check that getblocktemplate includes all transactions.
        template = self.nodes[0].getblocktemplate({"rules": ["segwit"]})
        template_txids = [t['txid'] for t in template['transactions']]
        assert txid1 in template_txids
        assert txid2 in template_txids
        assert txid3 in template_txids

        # Check that wtxid is properly reported in mempool entry (txid3)
        assert_equal(int(self.nodes[0].getmempoolentry(txid3)["wtxid"], 16), tx.calc_sha256(True))

        # Check that weight and vsize are properly reported in mempool entry (txid3)
        assert_equal(self.nodes[0].getmempoolentry(txid3)["vsize"], tx.get_vsize())
        assert_equal(self.nodes[0].getmempoolentry(txid3)["weight"], tx.get_weight())

        # Mine a block to clear the gbt cache again.
        self.generate(self.nodes[0], 1)

        if not self.options.descriptors:
            self.log.info("Verify behaviour of importaddress and listunspent")

            # Some public keys to be used later
            pubkeys = [
                "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242",  # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb
                "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF",  # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97
                "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E",  # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV
                "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538",  # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd
                "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228",  # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66
                "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC",  # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K
                "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84",  # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ
            ]

            # Import a compressed key and an uncompressed key, generate some multisig addresses
            self.nodes[0].importprivkey("92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn")
            uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"]
            self.nodes[0].importprivkey("cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR")
            compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"]
            assert not self.nodes[0].getaddressinfo(uncompressed_spendable_address[0])['iscompressed']
            assert self.nodes[0].getaddressinfo(compressed_spendable_address[0])['iscompressed']

            self.nodes[0].importpubkey(pubkeys[0])
            compressed_solvable_address = [key_to_p2pkh(pubkeys[0])]
            self.nodes[0].importpubkey(pubkeys[1])
            compressed_solvable_address.append(key_to_p2pkh(pubkeys[1]))
            self.nodes[0].importpubkey(pubkeys[2])
            uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])]

            spendable_anytime = []                      # These outputs should be seen anytime after importprivkey and addmultisigaddress
            spendable_after_importaddress = []          # These outputs should be seen after importaddress
            solvable_after_importaddress = []           # These outputs should be seen after importaddress but not spendable
            unsolvable_after_importaddress = []         # These outputs should be unsolvable after importaddress
            solvable_anytime = []                       # These outputs should be solvable after importpubkey
            unseen_anytime = []                         # These outputs should never be seen

            uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
            uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
            compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
            uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])['address'])
            compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])
            compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])['address'])

            # Test multisig_without_privkey
            # We have 2 public keys without private keys, use addmultisigaddress to add to wallet.
            # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address.

            multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]])['address']
            script = keys_to_multisig_script([pubkeys[3], pubkeys[4]])
            solvable_after_importaddress.append(script_to_p2sh_script(script))

            for i in compressed_spendable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    # p2sh multisig with compressed keys should always be spendable
                    spendable_anytime.extend([p2sh])
                    # bare multisig can be watched and signed, but is not treated as ours
                    solvable_after_importaddress.extend([bare])
                    # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress
                    spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh])
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # normal P2PKH and P2PK with compressed keys should always be spendable
                    spendable_anytime.extend([p2pkh, p2pk])
                    # P2SH_P2PK, P2SH_P2PKH with compressed keys are spendable after direct importaddress
                    spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])
                    # P2WPKH and P2SH_P2WPKH with compressed keys should always be spendable
                    spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

            for i in uncompressed_spendable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    # p2sh multisig with uncompressed keys should always be spendable
                    spendable_anytime.extend([p2sh])
                    # bare multisig can be watched and signed, but is not treated as ours
                    solvable_after_importaddress.extend([bare])
                    # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                    unseen_anytime.extend([p2wsh, p2sh_p2wsh])
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # normal P2PKH and P2PK with uncompressed keys should always be spendable
                    spendable_anytime.extend([p2pkh, p2pk])
                    # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress
                    spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                    # Witness output types with uncompressed keys are never seen
                    unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

            for i in compressed_solvable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    # Multisig without private is not seen after addmultisigaddress, but seen after importaddress
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh])
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # normal P2PKH, P2PK, P2WPKH and P2SH_P2WPKH with compressed keys should always be seen
                    solvable_anytime.extend([p2pkh, p2pk, p2wpkh, p2sh_p2wpkh])
                    # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after direct importaddress
                    solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

            for i in uncompressed_solvable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress
                    solvable_after_importaddress.extend([bare, p2sh])
                    # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                    unseen_anytime.extend([p2wsh, p2sh_p2wsh])
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # normal P2PKH and P2PK with uncompressed keys should always be seen
                    solvable_anytime.extend([p2pkh, p2pk])
                    # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress
                    solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh])
                    # Witness output types with uncompressed keys are never seen
                    unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh])

            op1 = CScript([OP_1])
            op0 = CScript([OP_0])
            # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V
            unsolvable_address_key = bytes.fromhex("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D")
            unsolvablep2pkh = key_to_p2pkh_script(unsolvable_address_key)
            unsolvablep2wshp2pkh = script_to_p2wsh_script(unsolvablep2pkh)
            p2shop0 = script_to_p2sh_script(op0)
            p2wshop1 = script_to_p2wsh_script(op1)
            unsolvable_after_importaddress.append(unsolvablep2pkh)
            unsolvable_after_importaddress.append(unsolvablep2wshp2pkh)
            unsolvable_after_importaddress.append(op1)  # OP_1 will be imported as script
            unsolvable_after_importaddress.append(p2wshop1)
            unseen_anytime.append(op0)  # OP_0 will be imported as P2SH address with no script provided
            unsolvable_after_importaddress.append(p2shop0)

            spendable_txid = []
            solvable_txid = []
            spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2))
            solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1))
            self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0)

            importlist = []
            for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    bare = bytes.fromhex(v['hex'])
                    importlist.append(bare.hex())
                    importlist.append(script_to_p2wsh_script(bare).hex())
                else:
                    pubkey = bytes.fromhex(v['pubkey'])
                    p2pk = key_to_p2pk_script(pubkey)
                    p2pkh = key_to_p2pkh_script(pubkey)
                    importlist.append(p2pk.hex())
                    importlist.append(p2pkh.hex())
                    importlist.append(key_to_p2wpkh_script(pubkey).hex())
                    importlist.append(script_to_p2wsh_script(p2pk).hex())
                    importlist.append(script_to_p2wsh_script(p2pkh).hex())

            importlist.append(unsolvablep2pkh.hex())
            importlist.append(unsolvablep2wshp2pkh.hex())
            importlist.append(op1.hex())
            importlist.append(p2wshop1.hex())

            for i in importlist:
                # import all generated addresses. The wallet already has the private keys for some of these, so catch JSON RPC
                # exceptions and continue.
                try_rpc(-4, "The wallet already contains the private key for this address or script", self.nodes[0].importaddress, i, "", False, True)

            self.nodes[0].importaddress(script_to_p2sh(op0))  # import OP_0 as address only
            self.nodes[0].importaddress(multisig_without_privkey_address)  # Test multisig_without_privkey

            spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
            solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
            self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
            self.mine_and_test_listunspent(unseen_anytime, 0)

            spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2))
            solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1))
            self.mine_and_test_listunspent(unsolvable_after_importaddress, 1)
            self.mine_and_test_listunspent(unseen_anytime, 0)

            # Repeat some tests. This time we don't add witness scripts with importaddress
            # Import a compressed key and an uncompressed key, generate some multisig addresses
            self.nodes[0].importprivkey("927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH")
            uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"]
            self.nodes[0].importprivkey("cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw")
            compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"]

            self.nodes[0].importpubkey(pubkeys[5])
            compressed_solvable_address = [key_to_p2pkh(pubkeys[5])]
            self.nodes[0].importpubkey(pubkeys[6])
            uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])]

            unseen_anytime = []                         # These outputs should never be seen
            solvable_anytime = []                       # These outputs should be solvable after importpubkey
            unseen_anytime = []                         # These outputs should never be seen

            uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])['address'])
            uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])['address'])
            compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])['address'])
            uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])['address'])
            compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])['address'])

            premature_witaddress = []

            for i in compressed_spendable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    premature_witaddress.append(script_to_p2sh(p2wsh))
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # P2WPKH, P2SH_P2WPKH are always spendable
                    spendable_anytime.extend([p2wpkh, p2sh_p2wpkh])

            for i in uncompressed_spendable_address + uncompressed_solvable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen
                    unseen_anytime.extend([p2wsh, p2sh_p2wsh])
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen
                    unseen_anytime.extend([p2wpkh, p2sh_p2wpkh])

            for i in compressed_solvable_address:
                v = self.nodes[0].getaddressinfo(i)
                if v['isscript']:
                    [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v)
                    premature_witaddress.append(script_to_p2sh(p2wsh))
                else:
                    [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v)
                    # P2SH_P2PK, P2SH_P2PKH with compressed keys are always solvable
                    solvable_anytime.extend([p2wpkh, p2sh_p2wpkh])

            self.mine_and_test_listunspent(spendable_anytime, 2)
            self.mine_and_test_listunspent(solvable_anytime, 1)
            self.mine_and_test_listunspent(unseen_anytime, 0)

            # Check that createrawtransaction/decoderawtransaction with non-v0 Bech32 works
            v1_addr = program_to_witness(1, [3, 5])
            v1_tx = self.nodes[0].createrawtransaction([getutxo(spendable_txid[0])], {v1_addr: 1})
            v1_decoded = self.nodes[1].decoderawtransaction(v1_tx)
            assert_equal(v1_decoded['vout'][0]['scriptPubKey']['address'], v1_addr)
            assert_equal(v1_decoded['vout'][0]['scriptPubKey']['hex'], "51020305")

            # Check that spendable outputs are really spendable
            self.create_and_mine_tx_from_txids(spendable_txid)

            # import all the private keys so solvable addresses become spendable
            self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb")
            self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97")
            self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV")
            self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd")
            self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66")
            self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K")
            self.create_and_mine_tx_from_txids(solvable_txid)

            # Test that importing native P2WPKH/P2WSH scripts works
            for use_p2wsh in [False, True]:
                if use_p2wsh:
                    scriptPubKey = "00203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a"
                    transaction = "01000000000100e1f505000000002200203a59f3f56b713fdcf5d1a57357f02c44342cbf306ffe0c4741046837bf90561a00000000"
                else:
                    scriptPubKey = "a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d87"
                    transaction = "01000000000100e1f5050000000017a9142f8c469c2f0084c48e11f998ffbe7efa7549f26d8700000000"

                self.nodes[1].importaddress(scriptPubKey, "", False)
                rawtxfund = self.nodes[1].fundrawtransaction(transaction)['hex']
                rawtxfund = self.nodes[1].signrawtransactionwithwallet(rawtxfund)["hex"]
                txid = self.nodes[1].sendrawtransaction(rawtxfund)

                assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
                assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)

                # Assert it is properly saved
                self.restart_node(1)
                assert_equal(self.nodes[1].gettransaction(txid, True)["txid"], txid)
                assert_equal(self.nodes[1].listtransactions("*", 1, 0, True)[0]["txid"], txid)

        self.log.info('Test negative and unknown rpcserialversion throw an init error')
        self.stop_node(0)
        self.nodes[0].assert_start_raises_init_error(["-rpcserialversion=-1"], "Error: rpcserialversion must be non-negative.")
        self.nodes[0].assert_start_raises_init_error(["-rpcserialversion=100"], "Error: Unknown rpcserialversion requested.")