Ejemplo n.º 1
0
 def prepare_data(self):
     # download only
     MNIST(self.data_dir,
           train=True,
           download=True,
           normalize=(0.1307, 0.3081))
     MNIST(self.data_dir,
           train=False,
           download=True,
           normalize=(0.1307, 0.3081))
Ejemplo n.º 2
0
    def setup(self, stage: Optional[str] = None):

        # Assign train/val datasets for use in dataloaders
        # TODO: need to split using random_split once updated to torch >= 1.6
        if stage == "fit" or stage is None:
            self.mnist_train = MNIST(self.data_dir,
                                     train=True,
                                     normalize=(0.1307, 0.3081))

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.mnist_test = MNIST(self.data_dir,
                                    train=False,
                                    normalize=(0.1307, 0.3081))
Ejemplo n.º 3
0
 def train_dataloader(self):
     return DataLoader(MNIST(
         train=True,
         download=True,
     ),
                       batch_size=128,
                       num_workers=1)