def prepare_data(self): # download only MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081)) MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081))
def setup(self, stage: Optional[str] = None): # Assign train/val datasets for use in dataloaders # TODO: need to split using random_split once updated to torch >= 1.6 if stage == "fit" or stage is None: self.mnist_train = MNIST(self.data_dir, train=True, normalize=(0.1307, 0.3081)) # Assign test dataset for use in dataloader(s) if stage == "test" or stage is None: self.mnist_test = MNIST(self.data_dir, train=False, normalize=(0.1307, 0.3081))
def train_dataloader(self): return DataLoader(MNIST( train=True, download=True, ), batch_size=128, num_workers=1)