Ejemplo n.º 1
0
class Attribute(TwoCells):
    def __init__(self, parent, text, value, callback=None, **kwargs):
        super().__init__(parent, **kwargs)
        self.callback = callback
        self.label_text = StringVar()
        self.label_text.set(text)
        self.label = Label(self.frame, textvariable=self.label_text)
        self.label.grid(column=0, row=0, padx=5, pady=5, sticky=W)
        self.current_value = StringVar(self.frame)
        self.current_value.set(value)
        self.value = Entry(self.frame,
                           textvariable=self.current_value,
                           validate="key",
                           validatecommand=self.validate_command)
        self.value.grid(column=1, row=0, padx=5, pady=5, sticky=E)
        if self.callback:
            self.value.bind("<KeyRelease>", self._on_entry_changed)

    def _on_entry_changed(self, event):
        self.callback()

    def hide(self):
        self.label.grid_remove()
        self.value.grid_remove()
        return self

    def show(self, text):
        self.label_text.set(text)
        self.label.grid()
        self.value.grid()
        return self

    def disable(self):
        self.value.configure(state=DISABLED)
        return self

    def enable(self):
        self.value.configure(state=NORMAL)
        return self

    def set(self, value):
        self.current_value.set(value)
        if str(value) == "":
            self.disable()
        else:
            self.enable()

    def get(self):
        value = self.current_value.get()
        if self.validation_type in [
                TwoCells.INTEGERS, TwoCells.NON_NEGATIVE_INTEGERS
        ]:
            return int(value) if value not in ["", "-"] else 0
        else:
            return value
Ejemplo n.º 2
0
class Dialogue(Frame):
    def __init__(self):
        super().__init__()
        self.initUI()

    def initUI(self):
        self.style = Style()
        self.style.theme_use("default")
        self.master.title("LineChart")

        self.pack(fill=BOTH, expand=True)

        self.SSU = BooleanVar()
        self.SSU.set(1)
        self.COX1 = BooleanVar()
        self.COX1.set(1)
        self.EF1A = BooleanVar()
        self.EF1A.set(1)
        self.EF1A_variants = BooleanVar()
        self.EF1A_variants.set(1)
        self.filelabel = StringVar(self, "File not chosen")
        self.filename = ""
        self.var = IntVar()
        self.var.set(1)
        self.clades = IntVar()
        self.clades.set(0)

        # self.columnconfigure(2, weight=1)
        # self.rowconfigure(2, weight=1)

        cbSSU = Checkbutton(self,
                            text="SSU",
                            variable=self.SSU,
                            state=DISABLED,
                            onvalue=1,
                            offvalue=0)
        cbSSU.select()
        cbSSU.grid(sticky=W, padx=5, pady=5)
        cbCOX1 = Checkbutton(self,
                             text="COX1",
                             variable=self.COX1,
                             onvalue=1,
                             offvalue=0)
        cbCOX1.select()
        cbCOX1.grid(sticky=W, row=1, padx=5, pady=5)
        cbEF1A = Checkbutton(self,
                             text="EF1A",
                             variable=self.EF1A,
                             onvalue=1,
                             offvalue=0)
        cbEF1A.select()
        cbEF1A.grid(sticky=W, row=2, padx=5, pady=5)
        cbEcomb = Checkbutton(self,
                              text="EF1A combinations",
                              variable=self.EF1A_variants,
                              onvalue=1,
                              offvalue=0)
        cbEcomb.select()
        cbEcomb.grid(sticky=W, row=3, padx=5, pady=5)

        openButton = Button(self, text="Choose file", command=self.onOpen)
        openButton.grid(sticky=W, row=0, column=1, padx=5, pady=5)

        labFile = Label(self, textvariable=self.filelabel)
        labFile.grid(sticky=W, row=0, column=2, columnspan=2, padx=5, pady=5)

        closeButton = Button(self, text="Exit", command=self.quit)
        closeButton.grid(sticky=E, row=4, column=3, padx=5, pady=5)

        okButton = Button(self, text="OK", command=self.onOK)
        okButton.grid(sticky=W, row=4, column=0, padx=5, pady=5)

    def onOpen(self):
        ftypes = [('Excel files', '*.xls, *.xlsx'), ('All files', '*')]
        dlg = filedialog.Open(self, filetypes=ftypes)
        file = dlg.show()
        if file != '':
            self.filelabel.set("Current file: " + file)
            self.filename = file
            self.readExcel(self.filename)

        self.columns = BooleanVar()
        self.columns.set(1)

        if self.filelabel.get() != "File not chosen":
            rboneColumn = Radiobutton(self,
                                      text="Arrange in 1 column",
                                      variable=self.columns,
                                      value=1,
                                      command=self.onClick)
            rboneColumn.grid(sticky=W, row=2, column=1, padx=5, pady=5)

            rb2Columns = Radiobutton(self,
                                     text="Arrange in 2 columns",
                                     variable=self.columns,
                                     value=0,
                                     command=self.onClick)
            rb2Columns.grid(sticky=W, row=3, column=1, padx=5, pady=5)

    def readExcel(self, filename):
        self.dataframe = read_excel(filename, index_col="Specimen")

        if self.clades.get() != 0:
            self.labClades.grid_remove()

        self.clades.set(len(set(self.dataframe.loc[:, "Clade"])))

        self.labClades = Label(self,
                               text="Number of clades: " +
                               str(self.clades.get()))
        self.labClades.grid(sticky=W, row=1, column=1, padx=5, pady=5)

    def onClick(self):
        if self.columns.get() == 0:
            self.scale = Scale(self,
                               from_=1,
                               to=self.clades.get() - 1,
                               command=self.onScale,
                               orient=HORIZONTAL)
            self.scale.grid(sticky=W, row=3, column=2)

            self.labScale = Label(
                self, text="Number of clades in the first column: ")
            self.labScale.grid(sticky=W, row=2, column=2)

            self.ScaleVal = Label(self, textvariable=self.var)
            self.ScaleVal.grid(sticky=E, row=2, column=2)

        else:
            self.scale.grid_remove()
            self.labScale.grid_remove()
            self.ScaleVal.grid_remove()

    def onScale(self, val):
        v = int(float(val))
        self.var.set(v)
        # print(self.var.get())

    def onOK(self):
        dataframe = self.dataframe
        SSU = self.SSU.get()
        COX1 = self.COX1.get()
        EF1A = self.EF1A.get()
        EF1A_combinations = self.EF1A_variants.get()
        change = self.var.get()
        onecolumn = self.columns.get()

        # graphical parameters: distance between columns and lines of variants, total height etc.
        top = 200  # uppermost position
        xS = 1  # X position of SSU column on the graph
        xE = 2  # X position of EF1A column on the graph
        xC = 0  # X position of COX1 column on the graph
        cladeX = 3.3  # X position of clade names on the graph
        distance = 5  # distance between lines
        shift = 5  # distance between two columns

        vardict = {}
        ssu_set = set()
        ef1a_set = set()
        cox1_set = set()

        # Count the number of specimens for each clade that have a valid SSU and at least one other valid gene variant
        countdict = {}
        for specimen in dataframe.index.values:
            valid = 0
            if findall("[A-Za-z]", str(dataframe.loc[specimen, "SSU"])) == []:
                if EF1A and COX1:
                    if findall("[A-Za-z]", str(
                            dataframe.loc[specimen, "EF1A"])) == [] or findall(
                                "[A-Za-z]", str(dataframe.loc[specimen,
                                                              "COX1"])) == []:
                        valid = 1
                elif EF1A:
                    if findall("[A-Za-z]", str(dataframe.loc[specimen,
                                                             "EF1A"])) == []:
                        valid = 1
                elif COX1:
                    if findall("[A-Za-z]", str(dataframe.loc[specimen,
                                                             "COX1"])) == []:
                        valid = 1
            if dataframe.loc[specimen, "Clade"] not in countdict:
                countdict[dataframe.loc[specimen, "Clade"]] = valid
            else:
                countdict[dataframe.loc[specimen, "Clade"]] += valid

        # build a dict of connections for every SSU variant, regardless of clades
        for i in dataframe.index.values:
            if findall("[A-Za-z]", str(dataframe.loc[
                    i, "SSU"])) == []:  # choosing ony valid SSU variants
                if dataframe.loc[i, "SSU"] not in vardict:
                    vardict[dataframe.loc[i, "SSU"]] = {
                        "SSU_count": 1,
                        "EF1A": {},
                        "COX1": {}
                    }  # adding new SSU variant into dictionary
                    ssu_set.add(dataframe.loc[i, "SSU"])
                else:
                    vardict[dataframe.loc[i, "SSU"]][
                        "SSU_count"] += 1  # increasing SSU variant count
                if COX1:
                    if findall("[A-Za-z]", str(dataframe.loc[i, "COX1"])
                               ) == []:  # choosing ony valid COX1 variants
                        if dataframe.loc[i, "COX1"] not in vardict[
                                dataframe.loc[i, "SSU"]]["COX1"]:
                            vardict[dataframe.loc[i, "SSU"]]["COX1"][
                                dataframe.loc[
                                    i, "COX1"]] = 1  # adding new COX1 variant
                            cox1_set.add(dataframe.loc[i, "COX1"])
                        else:
                            vardict[dataframe.loc[i, "SSU"]]["COX1"][
                                dataframe.loc[
                                    i,
                                    "COX1"]] += 1  # increasing COX1 variant count
                if EF1A and EF1A_combinations:
                    if "homozygous" in str(dataframe.loc[i, "EF1A_combinations"]) \
                            or "both" in str(dataframe.loc[i, "EF1A_combinations"]) \
                            and findall("[A-Za-z]", str(dataframe.loc[
                                                            i, "EF1A"])) == []:  # choosing ony homozygous EF1A variants or unique unknown heterozygous
                        if dataframe.loc[i, "EF1A"] not in vardict[
                                dataframe.loc[i, "SSU"]]["EF1A"]:
                            vardict[dataframe.loc[i, "SSU"]]["EF1A"][
                                dataframe.loc[
                                    i, "EF1A"]] = 1  # adding new EF1A variant
                            ef1a_set.add(dataframe.loc[i, "EF1A"])
                        else:
                            vardict[dataframe.loc[i, "SSU"]]["EF1A"][
                                dataframe.loc[
                                    i,
                                    "EF1A"]] += 1  # increasing EF1A variant count

                    elif "+" in str(dataframe.loc[i, "EF1A_combinations"]
                                    ):  # choosing known heterozygous variants
                        for var in findall(
                                "[0-9]+",
                                str(dataframe.loc[i, "EF1A_combinations"])):
                            if var not in vardict[dataframe.loc[
                                    i, "SSU"]]["EF1A"]:
                                vardict[dataframe.loc[i, "SSU"]]["EF1A"][
                                    var] = 1  # adding new EF1A variant
                                ef1a_set.add(int(var))
                            else:
                                vardict[dataframe.loc[i, "SSU"]]["EF1A"][
                                    var] += 1  # increasing EF1A variant count
                elif EF1A and findall("[A-Za-z]", str(
                        dataframe.loc[i, "EF1A"])) == []:
                    if dataframe.loc[i, "EF1A"] not in vardict[dataframe.loc[
                            i, "SSU"]]["EF1A"]:
                        vardict[dataframe.loc[i, "SSU"]]["EF1A"][dataframe.loc[
                            i, "EF1A"]] = 1  # adding new EF1A variant
                        ef1a_set.add(dataframe.loc[i, "EF1A"])
                    else:
                        vardict[dataframe.loc[i, "SSU"]]["EF1A"][dataframe.loc[
                            i, "EF1A"]] += 1  # increasing EF1A variant count

        # print(vardict)

        # # modify dataframe by adding known heterozygous variants into EF1A column.

        new_dataframe = dataframe

        if EF1A_combinations:
            for i in range(len(new_dataframe["EF1A_combinations"])):
                if "+" in str(new_dataframe["EF1A_combinations"][i]):
                    if len(
                            findall("[0-9]+",
                                    str(new_dataframe["EF1A_combinations"]
                                        [i]))) == 1:
                        new_dataframe.loc[
                            new_dataframe.index.values[i], "EF1A"] = int(
                                findall(
                                    "[0-9]+",
                                    str(new_dataframe["EF1A_combinations"][i]))
                                [0])
                    elif len(
                            findall("[0-9]+",
                                    str(new_dataframe["EF1A_combinations"]
                                        [i]))) == 2:
                        new_dataframe.loc[
                            new_dataframe.index.values[i], "EF1A"] = int(
                                findall(
                                    "[0-9]+",
                                    str(new_dataframe["EF1A_combinations"][i]))
                                [0])
                        new_dataframe = new_dataframe.append(
                            new_dataframe.iloc[i], ignore_index=True)
                        new_dataframe.loc[
                            new_dataframe.index.values[-1], "EF1A"] = int(
                                findall(
                                    "[0-9]+",
                                    str(new_dataframe["EF1A_combinations"][i]))
                                [1])
                        new_dataframe.loc[new_dataframe.index.values[-1],
                                          "COX1"] = ""

        grouping_columns = ["Clade", "SSU"]
        if COX1:
            grouping_columns.append("COX1")
        if EF1A:
            grouping_columns.append("EF1A")

        grouped = new_dataframe.groupby(grouping_columns).aggregate(
            {"SSU": "count"})
        # print(grouped)

        # starting Y coordinates
        yS = top
        yE = top
        yC = top

        # dictionaries with pairs of coordinates for every variant of every gene
        ssu_coo = {}
        cox1_coo = {}
        ef1a_coo = {}
        clade_coo = {}

        # sets of clades and variants that were catalogued already to avoid duplicates
        clade_done = set()
        ssu_done = set()
        cox1_done = set()
        ef1a_done = set()

        # Gives XY coordinates to every genetic variant iterating through clades.
        # Variants are sorted acending; clades are sorted alphabetically
        counter = 0

        # adjusting distance between columns by adding the size of the longest clade name length
        shift_adj = 0.1 * max(
            [len(i) for i in grouped.index.get_level_values("Clade")]) + 0.3
        shift += shift_adj

        for clade in grouped.index.get_level_values("Clade"):
            if clade not in clade_done:
                if not onecolumn and counter == change:  # if a specified change value is reached, starts the second column with a specified shift
                    xS += shift
                    yS = top
                    if COX1:
                        xC += shift
                        yC = top
                    if EF1A:
                        xE += shift
                        yE = top
                    cladeX += shift

                counter += 1

                yS -= distance
                if COX1:
                    yC -= distance
                if EF1A:
                    yE -= distance

                # add coordinates of the clade name and vertical line at the side
                ssuvalid = set([
                    i
                    for i in grouped.loc[(clade)].index.get_level_values("SSU")
                    if findall("[A-Za-z]", str(i)) == [] and str(i) != ""
                ])
                if COX1:
                    cox1valid = set([
                        i for i in grouped.loc[(
                            clade)].index.get_level_values("COX1")
                        if findall("[A-Za-z]", str(i)) == [] and str(i) != ""
                    ])

                if EF1A:
                    ef1avalid = set([
                        i for i in grouped.loc[(
                            clade)].index.get_level_values("EF1A")
                        if findall("[A-Za-z]", str(i)) == [] and str(i) != ""
                    ])

                genelenlist = [len(ssuvalid)]
                if COX1:
                    genelenlist.append(len(cox1valid))
                if EF1A:
                    genelenlist.append(len(ef1avalid))

                cladeY = yS - (max(genelenlist) - 1) * distance * 0.5
                linestart = yS + 0.5 * distance
                lineend = yS - (max(genelenlist) -
                                1) * distance - 0.5 * distance
                clade_coo[clade] = [
                    cladeX, cladeY, cladeX - 0.2, linestart, lineend,
                    countdict[clade]
                ]

                # within-clade vertical position adjustments
                if COX1 and not EF1A:
                    if len(ssuvalid) - len(cox1valid) >= 2:
                        yC -= distance * (len(ssuvalid) - len(cox1valid)) // 2
                    elif len(cox1valid) - len(ssuvalid) >= 2:
                        yS -= distance * (len(cox1valid) - len(ssuvalid)) // 2

                elif EF1A and COX1:
                    if len(ssuvalid) - len(cox1valid) >= 2:
                        yC -= distance * (len(ssuvalid) - len(cox1valid)) // 2
                        if len(ssuvalid) - len(ef1avalid) >= 2:
                            yE -= distance * (len(ssuvalid) -
                                              len(ef1avalid)) // 2
                        elif len(ef1avalid) - len(ssuvalid) >= 2:
                            yS -= distance * (len(ef1avalid) -
                                              len(ssuvalid)) // 2
                            yC -= distance * (len(ef1avalid) -
                                              len(ssuvalid)) // 2

                    elif len(cox1valid) - len(ssuvalid) >= 2:
                        yS -= distance * (len(cox1valid) - len(ssuvalid)) // 2
                        if len(cox1valid) - len(ef1avalid) >= 2:
                            yE -= distance * (len(cox1valid) -
                                              len(ef1avalid)) // 2
                        elif len(ef1avalid) - len(cox1valid) >= 2:
                            yC -= distance * (len(ef1avalid) -
                                              len(cox1valid)) // 2
                            yS -= distance * (len(ef1avalid) -
                                              len(cox1valid)) // 2

                    elif len(ef1avalid) - len(ssuvalid) >= 2:
                        yS -= distance * (len(ef1avalid) - len(ssuvalid)) // 2
                        yC -= distance * (len(ef1avalid) - len(cox1valid)) // 2

                    elif len(ssuvalid) - len(ef1avalid) >= 2:
                        yE -= distance * (len(ssuvalid) - len(ef1avalid)) // 2

                elif EF1A:
                    if len(ssuvalid) - len(ef1avalid) >= 2:
                        yE -= distance * (len(ssuvalid) - len(ef1avalid)) // 2
                    elif len(ef1avalid) - len(ssuvalid) >= 2:
                        yS -= distance * (len(ef1avalid) - len(ssuvalid)) // 2

                # finally, assign coordinates
                for ssu in grouped.loc[(clade)].index.get_level_values("SSU"):
                    if findall("[A-Za-z]", str(ssu)) == [] and str(
                            ssu
                    ) != "":  # choose only valid genetic variants (no text, only numbers)
                        if ssu not in ssu_done:
                            ssu_coo[ssu] = [xS, yS]
                            yS -= distance

                        ssu_done.add(ssu)
                if COX1:
                    for cox1 in grouped.loc[(
                            clade)].index.get_level_values("COX1"):
                        if findall("[A-Za-z]", str(cox1)) == [] and str(
                                cox1
                        ) != "":  # choose only valid genetic variants (no text, only numbers)
                            if cox1 not in cox1_done:
                                cox1_coo[cox1] = [xC, yC]
                                yC -= distance
                            cox1_done.add(cox1)
                if EF1A:
                    for ef1a in grouped.loc[(
                            clade)].index.get_level_values("EF1A"):
                        if findall("[A-Za-z]", str(ef1a)) == [] and str(
                                ef1a
                        ) != "":  # choose only valid genetic variants (no text, only numbers)
                            if ef1a not in ef1a_done:
                                ef1a_coo[ef1a] = [xE, yE]
                                yE -= distance
                            ef1a_done.add(ef1a)

            clade_done.add(clade)

            geneXlist = [xS]
            geneYlist = [yS]
            if COX1:
                geneXlist.append(xC)
                geneYlist.append(yC)
            if EF1A:
                geneXlist.append(xE)
                geneYlist.append(yE)

            lowest = min(geneYlist)

            yS = lowest
            yC = lowest
            yE = lowest

        # print(grouped)

        # Building a plot

        def choose_line(size):  # a rule for choosing line width for the plot
            size = int(size)
            if size in (1, 2):
                width = 1
            elif size == 3:
                width = 1.5
            elif size < 6:
                width = 2
            elif size < 11:
                width = 2.5
            else:
                width = 3
            return width

        # remove axes
        ax1 = axes(frameon=False)
        ax1.set_frame_on(False)
        ax1.get_xaxis().set_visible(False)
        ax1.get_yaxis().set_visible(False)

        # build the lines between genetic variants
        for ssu in vardict:
            if EF1A:
                for ef1a in vardict[ssu]["EF1A"]:
                    if findall("[A-Za-z]", str(ef1a)) == []:
                        size = vardict[ssu]["EF1A"][ef1a]
                        plot([
                            ef1a_coo[int(ef1a)][0] + 0.4, ssu_coo[ssu][0] + 0.5
                        ], [ef1a_coo[int(ef1a)][1], ssu_coo[ssu][1]],
                             linestyle="dashed" if size == 1 else "solid",
                             linewidth=choose_line(size),
                             color="black")
                        text(ef1a_coo[int(ef1a)][0] + 0.7,
                             ef1a_coo[int(ef1a)][1],
                             ef1a,
                             ha="center",
                             va="center")
            if COX1:
                for cox1 in vardict[ssu]["COX1"]:
                    if findall("[A-Za-z]", str(cox1)) == []:
                        size = vardict[ssu]["COX1"][cox1]
                        plot([cox1_coo[cox1][0], ssu_coo[ssu][0]],
                             [cox1_coo[cox1][1], ssu_coo[ssu][1]],
                             linestyle="dashed" if size == 1 else "solid",
                             linewidth=choose_line(vardict[ssu]["COX1"][cox1]),
                             color="black")
                        text(cox1_coo[cox1][0] - 0.3,
                             cox1_coo[cox1][1],
                             cox1,
                             ha="center",
                             va="center")
            text(ssu_coo[ssu][0] + 0.25,
                 ssu_coo[ssu][1],
                 ssu,
                 ha="center",
                 va="center")

        # add gene names above the variants for the second column

        if not onecolumn:
            text(xS - shift + 0.25, top + distance + 0.2, "SSU", ha="center")
            text(xS + 0.25, top + distance + 0.2, "SSU", ha="center")
            if EF1A:
                text(xE - shift + 0.7,
                     top + distance + 0.2,
                     "EF1A",
                     ha="center")
                text(xE + 0.7, top + distance + 0.2, "EF1A", ha="center")
            if COX1:
                text(xC - shift - 0.3,
                     top + distance + 0.2,
                     "COI",
                     ha="center")
                text(xC - 0.3, top + distance + 0.2, "COI", ha="center")
        else:
            text(xS + 0.25, top + distance + 0.2, "SSU", ha="center")
            if EF1A:
                text(xE + 0.7, top + distance + 0.2, "EF1A", ha="center")
            if COX1:
                text(xC - 0.3, top + distance + 0.2, "COI", ha="center")

        # add clade names and vertical lines to the right of the column
        for clade in clade_coo:
            if EF1A:
                text(clade_coo[clade][0],
                     clade_coo[clade][1],
                     "%s (%d)" % (clade, clade_coo[clade][5]),
                     ha="left",
                     va="center")

                plot([clade_coo[clade][2], clade_coo[clade][2]],
                     [clade_coo[clade][3], clade_coo[clade][4]],
                     linewidth=2,
                     color="black")
            else:
                text(clade_coo[clade][0] - shift * 0.5 + shift_adj + 0.65,
                     clade_coo[clade][1],
                     "%s (%d)" % (clade, clade_coo[clade][5]),
                     ha="left",
                     va="center")

                plot([
                    clade_coo[clade][2] - shift * 0.5 + shift_adj + 0.7,
                    clade_coo[clade][2] - shift * 0.5 + shift_adj + 0.7
                ], [clade_coo[clade][3], clade_coo[clade][4]],
                     linewidth=2,
                     color="black")

        # set limits for X axis to avoid overlapping with legend
        if not onecolumn and EF1A:
            xlim(0, 14)
        elif not onecolumn:
            xlim(0, 12)
        elif onecolumn and EF1A:
            xlim(0, 7)
        elif onecolumn:
            xlim(0, 5)

        # produce lines for a legend
        leg_lines = [
            Line2D([0], [0], color="black", linestyle="dashed", linewidth=1),
            Line2D([0], [0], color="black", linewidth=1),
            Line2D([0], [0], color="black", linewidth=1.5),
            Line2D([0], [0], color="black", linewidth=2),
            Line2D([0], [0], color="black", linewidth=2.5),
            Line2D([0], [0], color="black", linewidth=3)
        ]

        # plot legend
        legend(leg_lines, ["1", "2", "3", "4-5", "6-10", "11-20"],
               loc="upper right")

        # show the plot
        show()
Ejemplo n.º 3
0
def db_download():
    file_url = 'http://gbic.webhosting.rug.nl/genbank_mf.tar.gz'
    #file_url = 'https://downloads.sourceforge.net/project/multigeneblast/db/genbank_mf_test.rar?use_mirror=switch'
    answer = askyesno(
        'Confirmation',
        'Database downloading will take a while, and the database will occuppy ~15 GB disk space.\n Are you sure?'
    )
    if not answer:
        return
    global APPDATA
    currentdir = os.getcwd()
    os.chdir(APPDATA)
    #Check if database is not already present
    if "genbank_mf.pal" in os.listdir("."):
        answer = askyesno(
            'File already present',
            'Database appears to be present already. Overwrite?')
        if not answer:
            return
    #Check if sufficient disk space is available
    default_file_size = 357266739200
    dbfilesize = int(get_remote_filesize(file_url))
    if int(get_free_space(".")) < dbfilesize:
        showerror('Error', 'Insufficient disk space available.\n15GB needed.')
        return
    #Open 'loading...' message
    loading = Toplevel(frame, height=200, width=400)
    loading.title("Download progress")
    message = "Downloading: " + str(0) + "/ " + str(int(
        dbfilesize / 1024)) + " kb\nPlease wait..."
    a = Label(loading, text=message)
    a.grid(row=1, column=1, padx=50, pady=50)
    loading.bind("<Escape>", lambda e: "return")
    frame.update()
    #Download the MGB GenBank database
    try:
        req = urllib.request.urlopen(file_url)
    except:
        showerror(
            'Error',
            'File not found on server.\nPlease check your internet connection.'
        )
        return
    loading.protocol('WM_DELETE_WINDOW', lambda: cancel_download(req, loading))
    CHUNK = 128 * 1024
    x = 0
    with open("genbank_mf.tar.gz", 'wb') as fp:
        while True:
            message = "Downloading: " + str(x) + "/ " + str(
                int(dbfilesize / 1024)) + " kb\nPlease wait..."
            try:
                a = Label(loading, text=message)
                a.grid_remove()
                frame.update()
                a.grid(row=1, column=1, padx=20, pady=20)
                frame.update()
                chunk = req.read(CHUNK)
                if not chunk:
                    break
                fp.write(chunk)
                x += 128
                if x > int(dbfilesize / 1024):
                    x = int(dbfilesize / 1024)
            except:
                showerror('Error', 'Download interrupted.')
                return
    #Report download success
    loading.destroy()
    showinfo("Download finished", "Download completed successfully.")
    #Extract the database TAR/GZ file
    extracting = Toplevel(frame, height=200, width=400)
    extracting.title("Database extraction")
    message = "Extracting database.\nPlease wait..."
    a = Label(extracting, text=message)
    a.grid(row=1, column=1, padx=50, pady=50)
    extracting.bind("<Escape>", lambda e: "return")
    frame.update()
    try:
        tar = tarfile.open("genbank_mf.tar.gz")
        extracting.protocol('WM_DELETE_WINDOW',
                            lambda: cancel_download(tar, extracting))
        frame.update()
        tar.extractall()
        tar.close()
    except:
        showerror(
            "Error",
            "Error extracting database. Please try to extract it manually.")
        extracting.destroy()
        os.chdir(currentdir)
        return
    extracting.destroy()
    os.chdir(currentdir)
    showinfo(
        "Extraction finished",
        "Database extraction finished.\nYou can now use this database by selecting 'genbank_mf.pal' under 'Select database' in the 'File' menu."
    )