def get_aXa(a, op): # a - on-site tensor # op - operator dims_a = a.size() dims_op = None if op is None else op.size() if op is None: # identity A = einsum('nefgh,nabcd->eafbgchd', a, conj(a)) A = view(contiguous(A), (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2)) elif len(dims_op) == 2: # one-site operator A = einsum('nefgh,nabcd->eafbgchd', einsum('mefgh,mn->nefgh', a, op), conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2)) elif len(dims_op) == 3: # edge operators of some MPO within the transfer matrix # # 0 0 # | | # op--2 ... or ... 2--op # | | # 1 1 # # assume the last index of the op is the MPO dimension. # It will become the last index of the resulting edge A = einsum('nefghl,nabcd->eafbgchdl', einsum('mefgh,mnl->nefghl', a, op), conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, -1)) if verbosity > 0: print(f"aXa {A.size()}") return A
def energy_2x1_1x2(self, state, env): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS :type env: ENV :return: energy per site :rtype: float We assume iPEPS with 2x2 unit cell containing four tensors A, B, C, and D with simple PBC tiling:: A B A B C D C D A B A B C D C D Taking the reduced density matrix :math:`\rho_{2x1}` (:math:`\rho_{1x2}`) of 2x1 (1x2) cluster given by :py:func:`rdm.rdm2x1` (:py:func:`rdm.rdm1x2`) with indexing of sites as follows :math:`s_0,s_1;s'_0,s'_1` for both types of density matrices:: rdm2x1 rdm1x2 s0--s1 s0 | s1 and without assuming any symmetry on the indices of individual tensors a following set of terms has to be evaluated in order to compute energy-per-site:: 0 0 0 1--A--3 1--B--3 1--A--3 2 2 2 0 0 0 1--C--3 1--D--3 1--C--3 2 2 2 A--3 1--B, A B C D 0 0 B--3 1--A, 2 2 2 2 1--A--3 1--B--3 C--3 1--D, 0 0 0 0 2 2 , terms D--3 1--C, and C, D, A, B """ energy = 0. for coord, site in state.sites.items(): rdm2x1 = rdm.rdm2x1(coord, state, env) rdm1x2 = rdm.rdm1x2(coord, state, env) ss = einsum('ijab,ijab', rdm2x1, self.h2) energy += ss if coord[1] % 2 == 0: ss = einsum('ijab,ijab', rdm1x2, self.h2) else: ss = einsum('ijab,ijab', rdm1x2, self.alpha * self.h2) energy += ss # return energy-per-site energy_per_site = energy / len(state.sites.items()) energy_per_site = _cast_to_real(energy_per_site) return energy_per_site
def SS(self, xyz=(1., 1., 1.)): r""" :param xyz: coefficients of anisotropy of spin-spin interaction xyz[0]*(S^z S^z) + xyz[1]*(S^x S^x) + xyz[2]*(S^y S^y) :type xyz: tuple(float) :return: spin-spin interaction as rank-4 for tensor :rtype: torch.tensor """ pd = self.J expr_kron = 'ij,ab->iajb' # spin-spin interaction \vec{S}_1.\vec{S}_2 between spins on sites 1 and 2 # First as rank-4 tensor SS = xyz[0]*einsum(expr_kron,self.SZ(),self.SZ()) \ + 0.5*(einsum(expr_kron,self.SP(),self.SM()) \ + einsum(expr_kron,self.SM(),self.SP())) return SS
def conjugate_op(op): #rot_op= su2.get_rot_op(self.phys_dim, dtype=self.dtype, device=self.device) rot_op = torch.eye(self.phys_dim, dtype=self.dtype, device=self.device) op_0 = op op_rot = einsum('ki,kj->ij', rot_op, mm(op_0, rot_op)) def _gen_op(r): #return op_rot if r%2==0 else op_0 return op_0 return _gen_op
def get_aXa(a, op): # a - on-site tensor # op - operator dims_a = a.size() dims_op = None if op is None else op.size() if op is None: # identity A = einsum('nefgh,nabcd->eafbgchd', a, conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2)) elif len(dims_op) == 2: # one-site operator A = einsum('nefgh,nabcd->eafbgchd', einsum('mefgh,mn->nefgh', a, op), conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2)) elif len(dims_op) == 3: # edge operators of some MPO # # 0 0 # | | # op--2 ... or ... 2--op # | | # 1 1 # # assume the last index of the op is the MPO dimension. # It will become the last index of the resulting edge A = einsum('nefghl,nabcd->eafbgchdl', einsum('mefgh,mnl->nefghl', a, op), conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, -1)) elif len(dims_op) == 4: # intermediate op of some MPO # # 0 # | # ... 2--op--3 ... # | # 1 # # assume the index 2 is to be contracted with extra (MPO) index # of edge. The remaining index 3 becomes last index resulting edge A = einsum('nefghlk,nabcd->eafbgchdlk', einsum('mefgh,mnlk->nefghlk', a, op), conj(a)) A= view(contiguous(A), \ (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, dims_op[2], dims_op[3])) if verbosity > 0: print(f"aXa {A.size()}") return A
def get_h(self): s2 = su2.SU2(self.phys_dim, dtype=self.dtype, device=self.device) expr_kron = 'ij,ab->iajb' SS = einsum(expr_kron,s2.SZ(),s2.SZ()) + 0.5*(einsum(expr_kron,s2.SP(),s2.SM()) \ + einsum(expr_kron,s2.SM(),s2.SP())) return SS
def eval_obs(self, state, env): r""" :param state: wavefunction :param env: CTM environment :type state: IPEPS :type env: ENV :return: expectation values of observables, labels of observables :rtype: list[float], list[str] Computes the following observables in order 1. average magnetization over the unit cell, 2. magnetization for each site in the unit cell 3. :math:`\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle` for each site in the unit cell 4. :math:`\mathbf{S}_i.\mathbf{S}_j` for all non-equivalent nearest neighbour bonds where the on-site magnetization is defined as .. math:: \begin{align*} m &= \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 } =\sqrt{\langle S^z \rangle^2+1/4(\langle S^+ \rangle+\langle S^- \rangle)^2 -1/4(\langle S^+\rangle-\langle S^-\rangle)^2} \\ &=\sqrt{\langle S^z \rangle^2 + 1/2\langle S^+ \rangle \langle S^- \rangle)} \end{align*} Usual spin components can be obtained through the following relations .. math:: \begin{align*} S^+ &=S^x+iS^y & S^x &= 1/2(S^+ + S^-)\\ S^- &=S^x-iS^y\ \Rightarrow\ & S^y &=-i/2(S^+ - S^-) \end{align*} """ obs = dict({"avg_m": 0.}) with torch.no_grad(): for coord, site in state.sites.items(): rdm1x1 = rdm.rdm1x1(coord, state, env) for label, op in self.obs_ops.items(): obs[f"{label}{coord}"] = einsum('ij,ji', rdm1x1, op) obs[f"m{coord}"] = sqrt( abs(obs[f"sz{coord}"]**2 + obs[f"sp{coord}"] * obs[f"sm{coord}"])) obs["avg_m"] += obs[f"m{coord}"] obs["avg_m"] = obs["avg_m"] / len(state.sites.keys()) for coord, site in state.sites.items(): rdm2x1 = rdm.rdm2x1(coord, state, env) rdm1x2 = rdm.rdm1x2(coord, state, env) SS2x1 = einsum('ijab,ijab', rdm2x1, self.h2) SS1x2 = einsum('ijab,ijab', rdm1x2, self.h2) obs[f"SS2x1{coord}"] = SS2x1.real if SS2x1.is_complex( ) else SS2x1 obs[f"SS1x2{coord}"] = SS1x2.real if SS1x2.is_complex( ) else SS1x2 # prepare list with labels and values obs_labels=["avg_m"]+[f"m{coord}" for coord in state.sites.keys()]\ +[f"{lc[1]}{lc[0]}" for lc in list(itertools.product(state.sites.keys(), self.obs_ops.keys()))] obs_labels += [f"SS2x1{coord}" for coord in state.sites.keys()] obs_labels += [f"SS1x2{coord}" for coord in state.sites.keys()] obs_values = [obs[label] for label in obs_labels] return obs_values, obs_labels
def init_from_ipeps_pbc(state, env, verbosity=0): if verbosity > 0: print("ENV: init_from_ipeps") for coord, site in state.sites.items(): for rel_vec in [(-1, -1), (1, -1), (1, 1), (-1, 1)]: env.C[(coord, rel_vec)] = torch.zeros(env.chi, env.chi, dtype=env.dtype, device=env.device) # Left-upper corner # # i = C--1 # j--A--3 0 # /\ # 2 m # \ i # j--A--3 # / # 2 vec = (-1, -1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('mijef,mijab->eafb', A, conj(A))) a = view(a, (dimsA[3]**2, dimsA[4]**2)) a = a / a.abs().max() env.C[(coord,vec)][:min(env.chi,dimsA[3]**2),:min(env.chi,dimsA[4]**2)]=\ a[:min(env.chi,dimsA[3]**2),:min(env.chi,dimsA[4]**2)] # right-upper corner # # i = 0--C # 1--A--j 1 # /\ # 2 m # \ i # 1--A--j # / # 2 vec = (1, -1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('miefj,miabj->eafb', A, conj(A))) a = view(a, (dimsA[2]**2, dimsA[3]**2)) a = a / a.abs().max() env.C[(coord,vec)][:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[3]**2)]=\ a[:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[3]**2)] # right-lower corner # # 0 = 0 # 1--A--j 1--C # /\ # i m # \ 0 # 1--A--j # / # i vec = (1, 1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('mefij,mabij->eafb', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[2]**2)) a = a / a.abs().max() env.C[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[2]**2)]=\ a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[2]**2)] # left-lower corner # # 0 = 0 # i--A--3 C--1 # /\ # j m # \ 0 # i--A--3 # / # j vec = (-1, 1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('meijf,maijb->eafb', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[4]**2)) a = a / a.abs().max() env.C[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[4]**2)]=\ a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[4]**2)] # upper transfer matrix # # i = 0--T--2 # 1--A--3 1 # /\ # 2 m # \ i # 1--A--3 # / # 2 vec = (0, -1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('miefg,miabc->eafbgc', A, conj(A))) a = view(a, (dimsA[2]**2, dimsA[3]**2, dimsA[4]**2)) a = a / a.abs().max() env.T[(coord, vec)] = torch.zeros((env.chi, dimsA[3]**2, env.chi), dtype=env.dtype, device=env.device) env.T[(coord,vec)][:min(env.chi,dimsA[2]**2),:,:min(env.chi,dimsA[4]**2)]=\ a[:min(env.chi,dimsA[2]**2),:,:min(env.chi,dimsA[4]**2)] # left transfer matrix # # 0 = 0 # i--A--3 T--2 # /\ 1 # 2 m # \ 0 # i--A--3 # / # 2 vec = (-1, 0) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('meifg,maibc->eafbgc', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[3]**2, dimsA[4]**2)) a = a / a.abs().max() env.T[(coord, vec)] = torch.zeros((env.chi, env.chi, dimsA[4]**2), dtype=env.dtype, device=env.device) env.T[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[3]**2),:]=\ a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[3]**2),:] # lower transfer matrix # # 0 = 0 # 1--A--3 1--T--2 # /\ # i m # \ 0 # 1--A--3 # / # i vec = (0, 1) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('mefig,mabic->eafbgc', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[4]**2)) a = a / a.abs().max() env.T[(coord, vec)] = torch.zeros((dimsA[1]**2, env.chi, env.chi), dtype=env.dtype, device=env.device) env.T[(coord,vec)][:,:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[4]**2)]=\ a[:,:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[4]**2)] # right transfer matrix # # 0 = 0 # 1--A--i 1--T # /\ 2 # 2 m # \ 0 # 1--A--i # / # 2 vec = (1, 0) A = state.site((coord[0] + vec[0], coord[1] + vec[1])) dimsA = A.size() a = contiguous(einsum('mefgi,mabci->eafbgc', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2)) a = a / a.abs().max() env.T[(coord, vec)] = torch.zeros((env.chi, dimsA[2]**2, env.chi), dtype=env.dtype, device=env.device) env.T[(coord,vec)][:min(env.chi,dimsA[1]**2),:,:min(env.chi,dimsA[3]**2)]=\ a[:min(env.chi,dimsA[1]**2),:,:min(env.chi,dimsA[3]**2)]
def rdm2x2(coord, state, env, sym_pos_def=False, verbosity=0): r""" :param coord: vertex (x,y) specifies upper left site of 2x2 subsystem :param state: underlying wavefunction :param env: environment corresponding to ``state`` :param verbosity: logging verbosity :type coord: tuple(int,int) :type state: IPEPS :type env: ENV :type verbosity: int :return: 4-site reduced density matrix with indices :math:`s_0s_1s_2s_3;s'_0s'_1s'_2s'_3` :rtype: torch.tensor Computes 4-site reduced density matrix :math:`\rho_{2x2}` of 2x2 subsystem specified by the vertex ``coord`` of its upper left corner using strategy: 1. compute four individual corners 2. construct upper and lower half of the network 3. contract upper and lower half to obtain final reduced density matrix :: C--T------------------T------------------C = C2x2_LU(coord)--------C2x2(coord+(1,0)) | | | | | | T--A^+A(coord)--------A^+A(coord+(1,0))--T C2x2_LD(coord+(0,1))--C2x2(coord+(1,1)) | | | | T--A^+A(coord+(0,1))--A^+A(coord+(1,1))--T | | | | C--T------------------T------------------C The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) at vertices ``coord``, ``coord+(1,0)``, ``coord+(0,1)``, and ``coord+(1,1)`` are left uncontracted and given in the same order:: s0 s1 s2 s3 """ who= "rdm2x2" #----- building C2x2_LU ---------------------------------------------------- C = env.C[(state.vertexToSite(coord),(-1,-1))] T1 = env.T[(state.vertexToSite(coord),(0,-1))] T2 = env.T[(state.vertexToSite(coord),(-1,0))] dimsA = state.site(coord).size() a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord)))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # C--10--T1--2 # 0 1 C2x2_LU = contract(C, T1, ([1],[0])) # C------T1--2->1 # 0 1->0 # 0 # T2--2->3 # 1->2 C2x2_LU = contract(C2x2_LU, T2, ([0],[0])) # C-------T1--1->0 # | 0 # | 0 # T2--3 1 a--3 # 2->1 2\45 C2x2_LU = contract(C2x2_LU, a, ([0,3],[0,1])) # permute 012345->120345 # reshape (12)(03)45->0123 # C2x2--1 # |\23 # 0 C2x2_LU = contiguous(permute(C2x2_LU,(1,2,0,3,4,5))) C2x2_LU = view(C2x2_LU, (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0])) if verbosity>0: print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size())) #----- building C2x2_RU ---------------------------------------------------- vec = (1,0) shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1])) C = env.C[(shitf_coord,(1,-1))] T1 = env.T[(shitf_coord,(1,0))] T2 = env.T[(shitf_coord,(0,-1))] dimsA = state.site(shitf_coord).size() a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord)))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # 0--C # 1 # 0 # 1--T1 # 2 C2x2_RU = contract(C, T1, ([1],[0])) # 2<-0--T2--2 0--C # 3<-1 | # 0<-1--T1 # 1<-2 C2x2_RU = contract(C2x2_RU, T2, ([0],[2])) # 1<-2--T2------C # 3 | # 45\0 | # 2<-1--a--3 0--T1 # 3<-2 0<-1 C2x2_RU = contract(C2x2_RU, a, ([0,3],[3,0])) # permute 012334->120345 # reshape (12)(03)45->0123 # 0--C2x2 # 23/| # 1 C2x2_RU = contiguous(permute(C2x2_RU, (1,2,0,3,4,5))) C2x2_RU = view(C2x2_RU, (T2.size(0)*a.size(1),T1.size(2)*a.size(2), dimsA[0], dimsA[0])) if verbosity>0: print("C2X2 RU "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,-1): "+str(C2x2_RU.size())) #----- build upper part C2x2_LU--C2x2_RU ----------------------------------- # C2x2_LU--1 0--C2x2_RU C2x2_LU------C2x2_RU # |\23->12 |\23->45 & permute |\12->23 |\45 # 0 1->3 0 3->1 # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LU,C2x2_RU ? upper_half = contract(C2x2_LU, C2x2_RU, ([1],[0])) upper_half = permute(upper_half, (0,3,1,2,4,5)) #----- building C2x2_RD ---------------------------------------------------- vec = (1,1) shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1])) C = env.C[(shitf_coord,(1,1))] T1 = env.T[(shitf_coord,(0,1))] T2 = env.T[(shitf_coord,(1,0))] dimsA = state.site(shitf_coord).size() a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord)))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # 1<-0 0 # 2<-1--T1--2 1--C C2x2_RD = contract(C, T1, ([1],[2])) # 2<-0 # 3<-1--T2 # 2 # 0<-1 0 # 1<-2--T1---C C2x2_RD = contract(C2x2_RD, T2, ([0],[2])) # 2<-0 1<-2 # 3<-1--a--3 3--T2 # 2\45 | # 0 | # 0<-1--T1------C C2x2_RD = contract(C2x2_RD, a, ([0,3],[2,3])) # permute 012345->120345 # reshape (12)(03)45->0123 C2x2_RD = contiguous(permute(C2x2_RD, (1,2,0,3,4,5))) C2x2_RD = view(C2x2_RD, (T2.size(0)*a.size(0),T1.size(1)*a.size(1), dimsA[0], dimsA[0])) # 0 # |/23 # 1--C2x2 if verbosity>0: print("C2X2 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C2x2_RD.size())) #----- building C2x2_LD ---------------------------------------------------- vec = (0,1) shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1])) C = env.C[(shitf_coord,(-1,1))] T1 = env.T[(shitf_coord,(-1,0))] T2 = env.T[(shitf_coord,(0,1))] dimsA = state.site(shitf_coord).size() a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord)))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # 0->1 # T1--2 # 1 # 0 # C--1->0 C2x2_LD = contract(C, T1, ([0],[1])) # 1->0 # T1--2->1 # | # | 0->2 # C--0 1--T2--2->3 C2x2_LD = contract(C2x2_LD, T2, ([0],[1])) # 0 0->2 # T1--1 1--a--3 # | 2\45 # | 2 # C--------T2--3->1 C2x2_LD = contract(C2x2_LD, a, ([1,2],[1,2])) # permute 012345->021345 # reshape (02)(13)45->0123 # 0 # |/23 # C2x2--1 C2x2_LD = contiguous(permute(C2x2_LD, (0,2,1,3,4,5))) C2x2_LD = view(C2x2_LD, (T1.size(0)*a.size(0),T2.size(2)*a.size(3), dimsA[0], dimsA[0])) if verbosity>0: print("C2X2 LD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (-1,1): "+str(C2x2_LD.size())) #----- build lower part C2x2_LD--C2x2_RD ----------------------------------- # 0 0->3 0 3->1 # |/23->12 |/23->45 & permute |/12->23 |/45 # C2x2_LD--1 1--C2x2_RD C2x2_LD------C2x2_RD # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LD,C2x2_RD ? lower_half = contract(C2x2_LD, C2x2_RD, ([1],[1])) lower_half = permute(lower_half, (0,3,1,2,4,5)) # construct reduced density matrix by contracting lower and upper halfs # C2x2_LU------C2x2_RU # |\23->01 |\45->23 # 0 1 # 0 1 # |/23->45 |/45->67 # C2x2_LD------C2x2_RD rdm = contract(upper_half,lower_half,([0,1],[0,1])) # permute into order of s0,s1,s2,s3;s0',s1',s2',s3' where primed indices # represent "ket" # 01234567->02461357 # symmetrize and normalize rdm= contiguous(permute(rdm, (0,2,4,6,1,3,5,7))) rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who) return rdm
def rdm1x1(coord, state, env, sym_pos_def=False, verbosity=0): r""" :param coord: vertex (x,y) for which reduced density matrix is constructed :param state: underlying wavefunction :param env: environment corresponding to ``state`` :param verbosity: logging verbosity :type coord: tuple(int,int) :type state: IPEPS :type env: ENV :type verbosity: int :return: 1-site reduced density matrix with indices :math:`s;s'` :rtype: torch.tensor Computes 1-site reduced density matrix :math:`\rho_{1x1}` centered on vertex ``coord`` by contracting the following tensor network:: C--T-----C | | | T--A^+A--T | | | C--T-----C where the physical indices `s` and `s'` of on-site tensor :math:`A` at vertex ``coord`` and it's hermitian conjugate :math:`A^\dagger` are left uncontracted """ who= "rdm1x1" # C(-1,-1)--1->0 # 0 # 0 # T(-1,0)--2 # 1 rdm = contract(env.C[(coord,(-1,-1))],env.T[(coord,(-1,0))],([0],[0])) if verbosity>0: print("rdm=CT "+str(rdm.size())) # C(-1,-1)--0 # | # T(-1,0)--2->1 # 1 # 0 # C(-1,1)--1->2 rdm = contract(rdm,env.C[(coord,(-1,1))],([1],[0])) if verbosity>0: print("rdm=CTC "+str(rdm.size())) # C(-1,-1)--0 # | # T(-1,0)--1 # | 0->2 # C(-1,1)--2 1--T(0,1)--2->3 rdm = contract(rdm,env.T[(coord,(0,1))],([2],[1])) if verbosity>0: print("rdm=CTCT "+str(rdm.size())) # TODO - more efficent contraction with uncontracted-double-layer on-site tensor # Possibly reshape indices 1,2 of rdm, which are to be contracted with # on-site tensor and contract bra,ket in two steps instead of creating # double layer tensor # / # --A-- # /|s # # s'|/ # --A-- # / # dimsA = state.site(coord).size() a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord)))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # C(-1,-1)--0 # | # | 0->2 # T(-1,0)--1 1--a--3 # | 2\45(s,s') # | 2 # C(-1,1)-------T(0,1)--3->1 rdm = contract(rdm,a,([1,2],[1,2])) if verbosity>0: print("rdm=CTCTa "+str(rdm.size())) # C(-1,-1)--0 0--T(0,-1)--2->0 # | 1 # | 2 # T(-1,0)--------a--3->2 # | |\45->34(s,s') # | | # C(-1,1)--------T(0,1)--1 rdm = contract(env.T[(coord,(0,-1))],rdm,([0,1],[0,2])) if verbosity>0: print("rdm=CTCTaT "+str(rdm.size())) # C(-1,-1)--T(0,-1)--0 0--C(1,-1) # | | 1->0 # | | # T(-1,0)---a--2 # | |\34(s,s') # | | # C(-1,1)---T(0,1)--0->1 rdm = contract(env.C[(coord,(1,-1))],rdm,([0],[0])) if verbosity>0: print("rdm=CTCTaTC "+str(rdm.size())) # C(-1,-1)--T(0,-1)-----C(1,-1) # | | 0 # | | 0 # T(-1,0)---a--2 1------T(1,0) # | |\34->23(s,s') 2->0 # | | # C(-1,1)---T(0,1)--1 rdm = contract(env.T[(coord,(1,0))],rdm,([0,1],[0,2])) if verbosity>0: print("rdm=CTCTaTCT "+str(rdm.size())) # C(-1,-1)--T(0,-1)--------C(1,-1) # | | | # | | | # T(-1,0)---a--------------T(1,0) # | |\23->12(s,s') 0 # | | 0 # C(-1,1)---T(0,1)--1 1----C(1,1) rdm = contract(rdm,env.C[(coord,(1,1))],([0,1],[0,1])) if verbosity>0: print("rdm=CTCTaTCTC "+str(rdm.size())) # symmetrize and normalize rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who) return rdm
def rdm1x2(coord, state, env, sym_pos_def=False, verbosity=0): r""" :param coord: vertex (x,y) specifies position of 1x2 subsystem :param state: underlying wavefunction :param env: environment corresponding to ``state`` :param verbosity: logging verbosity :type coord: tuple(int,int) :type state: IPEPS :type env: ENV :type verbosity: int :return: 2-site reduced density matrix with indices :math:`s_0s_1;s'_0s'_1` :rtype: torch.tensor Computes 2-site reduced density matrix :math:`\rho_{1x2}` of a vertical 1x2 subsystem using following strategy: 1. compute four individual corners 2. construct upper and lower half of the network 3. contract upper and lower halt to obtain final reduced density matrix :: C--T------------------C = C2x2_LU(coord)--------C1x2(coord) | | | | | T--A^+A(coord)--------T C2x2_LD(coord+(0,1))--C1x2(coord+0,1)) | | | T--A^+A(coord+(0,1))--T | | | C--T------------------C The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) at vertices ``coord``, ``coord+(0,1)`` are left uncontracted """ who="rdm1x2" #----- building C2x2_LU ---------------------------------------------------- C = env.C[(state.vertexToSite(coord),(-1,-1))] T1 = env.T[(state.vertexToSite(coord),(0,-1))] T2 = env.T[(state.vertexToSite(coord),(-1,0))] dimsA = state.site(coord).size() a= einsum('mefgh,nabcd->eafbgchdmn',state.site(coord), conj(state.site(coord))) a= view(contiguous(a), \ (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # C--10--T1--2 # 0 1 C2x2_LU =contract(C, T1, ([1],[0])) # C------T1--2->1 # 0 1->0 # 0 # T2--2->3 # 1->2 C2x2_LU =contract(C2x2_LU, T2, ([0],[0])) # C-------T1--1->0 # | 0 # | 0 # T2--3 1 a--3 # 2->1 2\45 C2x2_LU =contract(C2x2_LU, a, ([0,3],[0,1])) # permute 012345->120345 # reshape (12)(03)45->0123 # C2x2--1 # |\23 # 0 C2x2_LU= permute(C2x2_LU, (1,2,0,3,4,5)) C2x2_LU= view(contiguous(C2x2_LU), \ (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0])) if verbosity>0: print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size())) #----- building C1x2_RU ---------------------------------------------------- C = env.C[(state.vertexToSite(coord),(1,-1))] T1 = env.T[(state.vertexToSite(coord),(1,0))] # 0--C # 1 # 0 # 1--T1 # 2 C1x2_RU =contract(C, T1, ([1],[0])) # reshape (01)2->(0)1 # 0--C1x2 # 23/| # 1 C1x2_RU= view(contiguous(C1x2_RU), (C.size(0)*T1.size(1),T1.size(2))) if verbosity>0: print("C1X2 RU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (1,-1): "+str(C1x2_RU.size())) #----- build upper part C2x2_LU--C1x2_RU ----------------------------------- # C2x2_LU--1 0--C1x2_RU # |\23 | # 0->1 1->0 upper_half =contract(C1x2_RU, C2x2_LU, ([0],[1])) #----- building C2x2_LD ---------------------------------------------------- vec = (0,1) shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1])) C = env.C[(shitf_coord,(-1,1))] T1 = env.T[(shitf_coord,(-1,0))] T2 = env.T[(shitf_coord,(0,1))] dimsA = state.site(shitf_coord).size() a= einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord))) a= view(contiguous(a), \ (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # 0->1 # T1--2 # 1 # 0 # C--1->0 C2x2_LD =contract(C, T1, ([0],[1])) # 1->0 # T1--2->1 # | # | 0->2 # C--0 1--T2--2->3 C2x2_LD =contract(C2x2_LD, T2, ([0],[1])) # 0 0->2 # T1--1 1--a--3 # | 2\45 # | 2 # C--------T2--3->1 C2x2_LD =contract(C2x2_LD, a, ([1,2],[1,2])) # permute 012345->021345 # reshape (02)(13)45->0123 # 0 # |/23 # C2x2--1 C2x2_LD= permute(C2x2_LD, (0,2,1,3,4,5)) C2x2_LD= view(contiguous(C2x2_LD), \ (T1.size(0)*a.size(0),T2.size(2)*a.size(3), dimsA[0], dimsA[0])) if verbosity>0: print("C2X2 LD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (-1,1): "+str(C2x2_LD.size())) #----- building C2x2_RD ---------------------------------------------------- C = env.C[(shitf_coord,(1,1))] T2 = env.T[(shitf_coord,(1,0))] # 0 # 1--T2 # 2 # 0 # 2<-1--C C1x2_RD =contract(T2, C, ([2],[0])) # permute 012->021 # reshape 0(12)->0(1) C1x2_RD = view(contiguous(permute(C1x2_RD,(0,2,1))), \ (T2.size()[0],C.size()[1]*T2.size()[1])) # 0 # | # 1--C1x2 if verbosity>0: print("C1X2 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C1x2_RD.size())) #----- build lower part C2x2_LD--C1x2_RD ----------------------------------- # 0->1 0 # |/23 | # C2x2_LD--1 1--C1x2_RD lower_half =contract(C1x2_RD, C2x2_LD, ([1],[1])) # construct reduced density matrix by contracting lower and upper halfs # C2x2_LU------C1x2_RU # |\23->01 | # 1 0 # 1 0 # |/23 | # C2x2_LD------C1x2_RD rdm =contract(upper_half,lower_half,([0,1],[0,1])) # permute into order of s0,s1;s0',s1' where primed indices # represent "ket" # 0123->0213 # symmetrize and normalize rdm = contiguous(permute(rdm, (0,2,1,3))) rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who) return rdm
def rdm2x1(coord, state, env, sym_pos_def=False, verbosity=0): r""" :param coord: vertex (x,y) specifies position of 2x1 subsystem :param state: underlying wavefunction :param env: environment corresponding to ``state`` :param verbosity: logging verbosity :type coord: tuple(int,int) :type state: IPEPS :type env: ENV :type verbosity: int :return: 2-site reduced density matrix with indices :math:`s_0s_1;s'_0s'_1` :rtype: torch.tensor Computes 2-site reduced density matrix :math:`\rho_{2x1}` of a horizontal 2x1 subsystem using following strategy: 1. compute four individual corners 2. construct right and left half of the network 3. contract right and left halt to obtain final reduced density matrix :: C--T------------T------------------C = C2x2_LU(coord)--C2x2(coord+(1,0)) | | | | | | T--A^+A(coord)--A^+A(coord+(1,0))--T C2x1_LD(coord)--C2x1(coord+(1,0)) | | | | C--T------------T------------------C The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) at vertices ``coord``, ``coord+(1,0)`` are left uncontracted """ who="rdm2x1" #----- building C2x2_LU ---------------------------------------------------- C = env.C[(state.vertexToSite(coord),(-1,-1))] T1 = env.T[(state.vertexToSite(coord),(0,-1))] T2 = env.T[(state.vertexToSite(coord),(-1,0))] dimsA = state.site(coord).size() a = einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord))) a = view(contiguous(a),\ (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # C--10--T1--2 # 0 1 C2x2_LU =contract(C, T1, ([1],[0])) # C------T1--2->1 # 0 1->0 # 0 # T2--2->3 # 1->2 C2x2_LU =contract(C2x2_LU, T2, ([0],[0])) # C-------T1--1->0 # | 0 # | 0 # T2--3 1 a--3 # 2->1 2\45 C2x2_LU =contract(C2x2_LU, a, ([0,3],[0,1])) # permute 012345->120345 # reshape (12)(03)45->0123 # C2x2--1 # |\23 # 0 C2x2_LU= permute(C2x2_LU, (1,2,0,3,4,5)) C2x2_LU= view(contiguous(C2x2_LU), \ (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0])) if verbosity>0: print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size())) #----- building C2x1_LD ---------------------------------------------------- C = env.C[(state.vertexToSite(coord),(-1,1))] T2 = env.T[(state.vertexToSite(coord),(0,1))] # 0 0->1 # C--1 1--T2--2 C2x1_LD=contract(C, T2, ([1],[1])) # reshape (01)2->(0)1 # 0 # | # C2x1--1 C2x1_LD= view(contiguous(C2x1_LD), (C.size(0)*T2.size(0),T2.size(2))) if verbosity>0: print("C2X1 LD "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,1): "+str(C2x1_LD.size())) #----- build left part C2x2_LU--C2x1_LD ------------------------------------ # C2x2_LU--1 # |\23 # 0 # 0 # C2x1_LD--1->0 # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LU,C2x2_RU ? left_half= contract(C2x1_LD, C2x2_LU, ([0],[0])) #----- building C2x2_RU ---------------------------------------------------- vec = (1,0) shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1])) C = env.C[(shitf_coord,(1,-1))] T1 = env.T[(shitf_coord,(1,0))] T2 = env.T[(shitf_coord,(0,-1))] dimsA = state.site(shitf_coord).size() a= einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord))) a= view(contiguous(a), \ (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0])) # 0--C # 1 # 0 # 1--T1 # 2 C2x2_RU =contract(C, T1, ([1],[0])) # 2<-0--T2--2 0--C # 3<-1 | # 0<-1--T1 # 1<-2 C2x2_RU =contract(C2x2_RU, T2, ([0],[2])) # 1<-2--T2------C # 3 | # 45\0 | # 2<-1--a--3 0--T1 # 3<-2 0<-1 C2x2_RU =contract(C2x2_RU, a, ([0,3],[3,0])) # permute 012334->120345 # reshape (12)(03)45->0123 # 0--C2x2 # 23/| # 1 C2x2_RU= permute(C2x2_RU, (1,2,0,3,4,5)) C2x2_RU= view(contiguous(C2x2_RU), \ (T2.size(0)*a.size(1),T1.size(2)*a.size(2), dimsA[0], dimsA[0])) if verbosity>0: print("C2X2 RU "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,-1): "+str(C2x2_RU.size())) #----- building C2x1_RD ---------------------------------------------------- C = env.C[(shitf_coord,(1,1))] T1 = env.T[(shitf_coord,(0,1))] # 1<-0 0 # 2<-1--T1--2 1--C C2x1_RD =contract(C, T1, ([1],[2])) # reshape (01)2->(0)1 C2x1_RD = view(contiguous(C2x1_RD), (C.size(0)*T1.size(0),T1.size(1))) # 0 # | # 1--C2x1 if verbosity>0: print("C2X1 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C2x1_RD.size())) #----- build right part C2x2_RU--C2x1_RD ----------------------------------- # 1<-0--C2x2_RU # |\23 # 1 # 0 # 0<-1--C2x1_RD right_half =contract(C2x1_RD, C2x2_RU, ([0],[1])) # construct reduced density matrix by contracting left and right halfs # C2x2_LU--1 1----C2x2_RU # |\23->01 |\23 # | | # C2x1_LD--0 0----C2x1_RD rdm =contract(left_half,right_half,([0,1],[0,1])) # permute into order of s0,s1;s0',s1' where primed indices # represent "ket" # 0123->0213 # symmetrize and normalize rdm = contiguous(permute(rdm, (0,2,1,3))) rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who) return rdm
def run(state, env, conv_check=None, ctm_args=cfg.ctm_args, global_args=cfg.global_args): r""" :param state: wavefunction :param env: environment :param conv_check: function which determines the convergence of CTM algorithm. If ``None``, the algorithm performs ``ctm_args.ctm_max_iter`` iterations. :param ctm_args: CTM algorithm configuration :param global_args: global configuration :type state: IPEPS :type env: ENV :type conv_check: function(IPEPS,ENV,list[float],CTMARGS)->bool :type ctm_args: CTMARGS :type global_args: GLOBALARGS Executes directional CTM algorithm for generic iPEPS starting from the intial environment ``env``. TODO add reference """ # 0) Create double-layer (DL) tensors, preserving the same convenction # for order of indices # # / / # --A^dag-- = --a-- # /| / # |/ # --A-- # / # sitesDL = dict() for coord, A in state.sites.items(): dimsA = A.size() a = contiguous(einsum('mefgh,mabcd->eafbgchd', A, conj(A))) a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2)) sitesDL[coord] = a stateDL = IPEPS(sitesDL, state.vertexToSite) # 1) perform CTMRG t_obs = t_ctm = 0. history = None for i in range(ctm_args.ctm_max_iter): t0_ctm = time.perf_counter() for direction in ctm_args.ctm_move_sequence: ctm_MOVE(direction, stateDL, env, ctm_args=ctm_args, global_args=global_args, \ verbosity=ctm_args.verbosity_ctm_move) t1_ctm = time.perf_counter() t0_obs = time.perf_counter() if conv_check is not None: # evaluate convergence of the CTMRG procedure converged, history = conv_check(state, env, history, ctm_args=ctm_args) if ctm_args.verbosity_ctm_convergence > 1: print(history[-1]) if converged: if ctm_args.verbosity_ctm_convergence > 0: print( f"CTMRG converged at iter= {i}, history= {history[-1]}" ) break t1_obs = time.perf_counter() t_ctm += t1_ctm - t0_ctm t_obs += t1_obs - t0_obs return env, history, t_ctm, t_obs