Example #1
0
 def get_aXa(a, op):
     # a - on-site tensor
     # op - operator
     dims_a = a.size()
     dims_op = None if op is None else op.size()
     if op is None:
         # identity
         A = einsum('nefgh,nabcd->eafbgchd', a, conj(a))
         A = view(contiguous(A),
                  (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2))
     elif len(dims_op) == 2:
         # one-site operator
         A = einsum('nefgh,nabcd->eafbgchd', einsum('mefgh,mn->nefgh', a,
                                                    op), conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2))
     elif len(dims_op) == 3:
         # edge operators of some MPO within the transfer matrix
         #
         # 0                   0
         # |                   |
         # op--2 ... or ... 2--op
         # |                   |
         # 1                   1
         #
         # assume the last index of the op is the MPO dimension.
         # It will become the last index of the resulting edge
         A = einsum('nefghl,nabcd->eafbgchdl',
                    einsum('mefgh,mnl->nefghl', a, op), conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, -1))
     if verbosity > 0: print(f"aXa {A.size()}")
     return A
Example #2
0
    def energy_2x1_1x2(self, state, env):
        r"""
        :param state: wavefunction
        :param env: CTM environment
        :type state: IPEPS
        :type env: ENV
        :return: energy per site
        :rtype: float
        
        We assume iPEPS with 2x2 unit cell containing four tensors A, B, C, and D with
        simple PBC tiling::

            A B A B
            C D C D
            A B A B
            C D C D

        Taking the reduced density matrix :math:`\rho_{2x1}` (:math:`\rho_{1x2}`) 
        of 2x1 (1x2) cluster given by :py:func:`rdm.rdm2x1` (:py:func:`rdm.rdm1x2`) 
        with indexing of sites as follows :math:`s_0,s_1;s'_0,s'_1` for both types
        of density matrices::

            rdm2x1   rdm1x2

            s0--s1   s0
                     |
                     s1

        and without assuming any symmetry on the indices of individual tensors a following
        set of terms has to be evaluated in order to compute energy-per-site::

               0       0       0
            1--A--3 1--B--3 1--A--3
               2       2       2
               0       0       0
            1--C--3 1--D--3 1--C--3
               2       2       2             A--3 1--B,      A  B  C  D
               0       0                     B--3 1--A,      2  2  2  2
            1--A--3 1--B--3                  C--3 1--D,      0  0  0  0
               2       2             , terms D--3 1--C, and  C, D, A, B
        """
        energy = 0.
        for coord, site in state.sites.items():
            rdm2x1 = rdm.rdm2x1(coord, state, env)
            rdm1x2 = rdm.rdm1x2(coord, state, env)
            ss = einsum('ijab,ijab', rdm2x1, self.h2)
            energy += ss
            if coord[1] % 2 == 0:
                ss = einsum('ijab,ijab', rdm1x2, self.h2)
            else:
                ss = einsum('ijab,ijab', rdm1x2, self.alpha * self.h2)
            energy += ss

        # return energy-per-site
        energy_per_site = energy / len(state.sites.items())
        energy_per_site = _cast_to_real(energy_per_site)

        return energy_per_site
Example #3
0
 def SS(self, xyz=(1., 1., 1.)):
     r"""
     :param xyz: coefficients of anisotropy of spin-spin interaction
                 xyz[0]*(S^z S^z) + xyz[1]*(S^x S^x) + xyz[2]*(S^y S^y)
     :type xyz: tuple(float)
     :return: spin-spin interaction as rank-4 for tensor 
     :rtype: torch.tensor
     """
     pd = self.J
     expr_kron = 'ij,ab->iajb'
     # spin-spin interaction \vec{S}_1.\vec{S}_2 between spins on sites 1 and 2
     # First as rank-4 tensor
     SS = xyz[0]*einsum(expr_kron,self.SZ(),self.SZ()) \
         + 0.5*(einsum(expr_kron,self.SP(),self.SM()) \
         + einsum(expr_kron,self.SM(),self.SP()))
     return SS
Example #4
0
        def conjugate_op(op):
            #rot_op= su2.get_rot_op(self.phys_dim, dtype=self.dtype, device=self.device)
            rot_op = torch.eye(self.phys_dim,
                               dtype=self.dtype,
                               device=self.device)
            op_0 = op
            op_rot = einsum('ki,kj->ij', rot_op, mm(op_0, rot_op))

            def _gen_op(r):
                #return op_rot if r%2==0 else op_0
                return op_0

            return _gen_op
Example #5
0
 def get_aXa(a, op):
     # a - on-site tensor
     # op - operator
     dims_a = a.size()
     dims_op = None if op is None else op.size()
     if op is None:
         # identity
         A = einsum('nefgh,nabcd->eafbgchd', a, conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2))
     elif len(dims_op) == 2:
         # one-site operator
         A = einsum('nefgh,nabcd->eafbgchd', einsum('mefgh,mn->nefgh', a,
                                                    op), conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2))
     elif len(dims_op) == 3:
         # edge operators of some MPO
         #
         # 0                   0
         # |                   |
         # op--2 ... or ... 2--op
         # |                   |
         # 1                   1
         #
         # assume the last index of the op is the MPO dimension.
         # It will become the last index of the resulting edge
         A = einsum('nefghl,nabcd->eafbgchdl',
                    einsum('mefgh,mnl->nefghl', a, op), conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, -1))
     elif len(dims_op) == 4:
         # intermediate op of some MPO
         #
         #        0
         #        |
         # ... 2--op--3 ...
         #        |
         #        1
         #
         # assume the index 2 is to be contracted with extra (MPO) index
         # of edge. The remaining index 3 becomes last index resulting edge
         A = einsum('nefghlk,nabcd->eafbgchdlk',
                    einsum('mefgh,mnlk->nefghlk', a, op), conj(a))
         A= view(contiguous(A), \
             (dims_a[1]**2, dims_a[2]**2, dims_a[3]**2, dims_a[4]**2, dims_op[2], dims_op[3]))
     if verbosity > 0: print(f"aXa {A.size()}")
     return A
Example #6
0
 def get_h(self):
     s2 = su2.SU2(self.phys_dim, dtype=self.dtype, device=self.device)
     expr_kron = 'ij,ab->iajb'
     SS = einsum(expr_kron,s2.SZ(),s2.SZ()) + 0.5*(einsum(expr_kron,s2.SP(),s2.SM()) \
         + einsum(expr_kron,s2.SM(),s2.SP()))
     return SS
Example #7
0
    def eval_obs(self, state, env):
        r"""
        :param state: wavefunction
        :param env: CTM environment
        :type state: IPEPS
        :type env: ENV
        :return:  expectation values of observables, labels of observables
        :rtype: list[float], list[str]

        Computes the following observables in order

            1. average magnetization over the unit cell,
            2. magnetization for each site in the unit cell
            3. :math:`\langle S^z \rangle,\ \langle S^+ \rangle,\ \langle S^- \rangle` 
               for each site in the unit cell
            4. :math:`\mathbf{S}_i.\mathbf{S}_j` for all non-equivalent nearest neighbour
               bonds

        where the on-site magnetization is defined as
        
        .. math::
            
            \begin{align*}
            m &= \sqrt{ \langle S^z \rangle^2+\langle S^x \rangle^2+\langle S^y \rangle^2 }
            =\sqrt{\langle S^z \rangle^2+1/4(\langle S^+ \rangle+\langle S^- 
            \rangle)^2 -1/4(\langle S^+\rangle-\langle S^-\rangle)^2} \\
              &=\sqrt{\langle S^z \rangle^2 + 1/2\langle S^+ \rangle \langle S^- \rangle)}
            \end{align*}

        Usual spin components can be obtained through the following relations
        
        .. math::
            
            \begin{align*}
            S^+ &=S^x+iS^y               & S^x &= 1/2(S^+ + S^-)\\
            S^- &=S^x-iS^y\ \Rightarrow\ & S^y &=-i/2(S^+ - S^-)
            \end{align*}
        """
        obs = dict({"avg_m": 0.})
        with torch.no_grad():
            for coord, site in state.sites.items():
                rdm1x1 = rdm.rdm1x1(coord, state, env)
                for label, op in self.obs_ops.items():
                    obs[f"{label}{coord}"] = einsum('ij,ji', rdm1x1, op)
                obs[f"m{coord}"] = sqrt(
                    abs(obs[f"sz{coord}"]**2 +
                        obs[f"sp{coord}"] * obs[f"sm{coord}"]))
                obs["avg_m"] += obs[f"m{coord}"]
            obs["avg_m"] = obs["avg_m"] / len(state.sites.keys())

            for coord, site in state.sites.items():
                rdm2x1 = rdm.rdm2x1(coord, state, env)
                rdm1x2 = rdm.rdm1x2(coord, state, env)
                SS2x1 = einsum('ijab,ijab', rdm2x1, self.h2)
                SS1x2 = einsum('ijab,ijab', rdm1x2, self.h2)
                obs[f"SS2x1{coord}"] = SS2x1.real if SS2x1.is_complex(
                ) else SS2x1
                obs[f"SS1x2{coord}"] = SS1x2.real if SS1x2.is_complex(
                ) else SS1x2

        # prepare list with labels and values
        obs_labels=["avg_m"]+[f"m{coord}" for coord in state.sites.keys()]\
            +[f"{lc[1]}{lc[0]}" for lc in list(itertools.product(state.sites.keys(), self.obs_ops.keys()))]
        obs_labels += [f"SS2x1{coord}" for coord in state.sites.keys()]
        obs_labels += [f"SS1x2{coord}" for coord in state.sites.keys()]
        obs_values = [obs[label] for label in obs_labels]
        return obs_values, obs_labels
Example #8
0
def init_from_ipeps_pbc(state, env, verbosity=0):
    if verbosity > 0:
        print("ENV: init_from_ipeps")
    for coord, site in state.sites.items():
        for rel_vec in [(-1, -1), (1, -1), (1, 1), (-1, 1)]:
            env.C[(coord, rel_vec)] = torch.zeros(env.chi,
                                                  env.chi,
                                                  dtype=env.dtype,
                                                  device=env.device)

        # Left-upper corner
        #
        #     i      = C--1
        # j--A--3      0
        #   /\
        #  2  m
        #      \ i
        #    j--A--3
        #      /
        #     2
        vec = (-1, -1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('mijef,mijab->eafb', A, conj(A)))
        a = view(a, (dimsA[3]**2, dimsA[4]**2))
        a = a / a.abs().max()
        env.C[(coord,vec)][:min(env.chi,dimsA[3]**2),:min(env.chi,dimsA[4]**2)]=\
            a[:min(env.chi,dimsA[3]**2),:min(env.chi,dimsA[4]**2)]

        # right-upper corner
        #
        #     i      = 0--C
        # 1--A--j         1
        #   /\
        #  2  m
        #      \ i
        #    1--A--j
        #      /
        #     2
        vec = (1, -1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('miefj,miabj->eafb', A, conj(A)))
        a = view(a, (dimsA[2]**2, dimsA[3]**2))
        a = a / a.abs().max()
        env.C[(coord,vec)][:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[3]**2)]=\
            a[:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[3]**2)]

        # right-lower corner
        #
        #     0      =    0
        # 1--A--j      1--C
        #   /\
        #  i  m
        #      \ 0
        #    1--A--j
        #      /
        #     i
        vec = (1, 1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('mefij,mabij->eafb', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[2]**2))
        a = a / a.abs().max()
        env.C[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[2]**2)]=\
            a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[2]**2)]

        # left-lower corner
        #
        #     0      = 0
        # i--A--3      C--1
        #   /\
        #  j  m
        #      \ 0
        #    i--A--3
        #      /
        #     j
        vec = (-1, 1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('meijf,maijb->eafb', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[4]**2))
        a = a / a.abs().max()
        env.C[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[4]**2)]=\
            a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[4]**2)]

        # upper transfer matrix
        #
        #     i      = 0--T--2
        # 1--A--3         1
        #   /\
        #  2  m
        #      \ i
        #    1--A--3
        #      /
        #     2
        vec = (0, -1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('miefg,miabc->eafbgc', A, conj(A)))
        a = view(a, (dimsA[2]**2, dimsA[3]**2, dimsA[4]**2))
        a = a / a.abs().max()
        env.T[(coord, vec)] = torch.zeros((env.chi, dimsA[3]**2, env.chi),
                                          dtype=env.dtype,
                                          device=env.device)
        env.T[(coord,vec)][:min(env.chi,dimsA[2]**2),:,:min(env.chi,dimsA[4]**2)]=\
            a[:min(env.chi,dimsA[2]**2),:,:min(env.chi,dimsA[4]**2)]

        # left transfer matrix
        #
        #     0      = 0
        # i--A--3      T--2
        #   /\         1
        #  2  m
        #      \ 0
        #    i--A--3
        #      /
        #     2
        vec = (-1, 0)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('meifg,maibc->eafbgc', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[3]**2, dimsA[4]**2))
        a = a / a.abs().max()
        env.T[(coord, vec)] = torch.zeros((env.chi, env.chi, dimsA[4]**2),
                                          dtype=env.dtype,
                                          device=env.device)
        env.T[(coord,vec)][:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[3]**2),:]=\
            a[:min(env.chi,dimsA[1]**2),:min(env.chi,dimsA[3]**2),:]

        # lower transfer matrix
        #
        #     0      =    0
        # 1--A--3      1--T--2
        #   /\
        #  i  m
        #      \ 0
        #    1--A--3
        #      /
        #     i
        vec = (0, 1)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('mefig,mabic->eafbgc', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[4]**2))
        a = a / a.abs().max()
        env.T[(coord, vec)] = torch.zeros((dimsA[1]**2, env.chi, env.chi),
                                          dtype=env.dtype,
                                          device=env.device)
        env.T[(coord,vec)][:,:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[4]**2)]=\
            a[:,:min(env.chi,dimsA[2]**2),:min(env.chi,dimsA[4]**2)]

        # right transfer matrix
        #
        #     0      =    0
        # 1--A--i      1--T
        #   /\            2
        #  2  m
        #      \ 0
        #    1--A--i
        #      /
        #     2
        vec = (1, 0)
        A = state.site((coord[0] + vec[0], coord[1] + vec[1]))
        dimsA = A.size()
        a = contiguous(einsum('mefgi,mabci->eafbgc', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2))
        a = a / a.abs().max()
        env.T[(coord, vec)] = torch.zeros((env.chi, dimsA[2]**2, env.chi),
                                          dtype=env.dtype,
                                          device=env.device)
        env.T[(coord,vec)][:min(env.chi,dimsA[1]**2),:,:min(env.chi,dimsA[3]**2)]=\
            a[:min(env.chi,dimsA[1]**2),:,:min(env.chi,dimsA[3]**2)]
Example #9
0
def rdm2x2(coord, state, env, sym_pos_def=False, verbosity=0):
    r"""
    :param coord: vertex (x,y) specifies upper left site of 2x2 subsystem 
    :param state: underlying wavefunction
    :param env: environment corresponding to ``state``
    :param verbosity: logging verbosity
    :type coord: tuple(int,int) 
    :type state: IPEPS
    :type env: ENV
    :type verbosity: int
    :return: 4-site reduced density matrix with indices :math:`s_0s_1s_2s_3;s'_0s'_1s'_2s'_3`
    :rtype: torch.tensor

    Computes 4-site reduced density matrix :math:`\rho_{2x2}` of 2x2 subsystem specified
    by the vertex ``coord`` of its upper left corner using strategy:

        1. compute four individual corners
        2. construct upper and lower half of the network
        3. contract upper and lower half to obtain final reduced density matrix

    ::

        C--T------------------T------------------C = C2x2_LU(coord)--------C2x2(coord+(1,0))
        |  |                  |                  |   |                     |
        T--A^+A(coord)--------A^+A(coord+(1,0))--T   C2x2_LD(coord+(0,1))--C2x2(coord+(1,1))
        |  |                  |                  |
        T--A^+A(coord+(0,1))--A^+A(coord+(1,1))--T
        |  |                  |                  |
        C--T------------------T------------------C
        
    The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) 
    at vertices ``coord``, ``coord+(1,0)``, ``coord+(0,1)``, and ``coord+(1,1)`` are 
    left uncontracted and given in the same order::
        
        s0 s1
        s2 s3

    """
    who= "rdm2x2"
    #----- building C2x2_LU ----------------------------------------------------
    C = env.C[(state.vertexToSite(coord),(-1,-1))]
    T1 = env.T[(state.vertexToSite(coord),(0,-1))]
    T2 = env.T[(state.vertexToSite(coord),(-1,0))]
    dimsA = state.site(coord).size()
    a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord))))
    a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # C--10--T1--2
    # 0      1
    C2x2_LU = contract(C, T1, ([1],[0]))

    # C------T1--2->1
    # 0      1->0
    # 0
    # T2--2->3
    # 1->2
    C2x2_LU = contract(C2x2_LU, T2, ([0],[0]))

    # C-------T1--1->0
    # |       0
    # |       0
    # T2--3 1 a--3 
    # 2->1    2\45
    C2x2_LU = contract(C2x2_LU, a, ([0,3],[0,1]))

    # permute 012345->120345
    # reshape (12)(03)45->0123
    # C2x2--1
    # |\23
    # 0
    C2x2_LU = contiguous(permute(C2x2_LU,(1,2,0,3,4,5)))
    C2x2_LU = view(C2x2_LU, (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0]))
    if verbosity>0:
        print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size()))

    #----- building C2x2_RU ----------------------------------------------------
    vec = (1,0)
    shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1]))
    C = env.C[(shitf_coord,(1,-1))]
    T1 = env.T[(shitf_coord,(1,0))]
    T2 = env.T[(shitf_coord,(0,-1))]
    dimsA = state.site(shitf_coord).size()
    a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord))))
    a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # 0--C
    #    1
    #    0
    # 1--T1
    #    2
    C2x2_RU = contract(C, T1, ([1],[0]))

    # 2<-0--T2--2 0--C
    #    3<-1        |
    #          0<-1--T1
    #             1<-2
    C2x2_RU = contract(C2x2_RU, T2, ([0],[2]))

    # 1<-2--T2------C
    #       3       |
    #    45\0       |
    # 2<-1--a--3 0--T1
    #    3<-2    0<-1
    C2x2_RU = contract(C2x2_RU, a, ([0,3],[3,0]))

    # permute 012334->120345
    # reshape (12)(03)45->0123
    # 0--C2x2
    # 23/|
    #    1
    C2x2_RU = contiguous(permute(C2x2_RU, (1,2,0,3,4,5)))
    C2x2_RU = view(C2x2_RU, (T2.size(0)*a.size(1),T1.size(2)*a.size(2), dimsA[0], dimsA[0]))
    if verbosity>0:
        print("C2X2 RU "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,-1): "+str(C2x2_RU.size()))

    #----- build upper part C2x2_LU--C2x2_RU -----------------------------------
    # C2x2_LU--1 0--C2x2_RU              C2x2_LU------C2x2_RU
    # |\23->12      |\23->45   & permute |\12->23      |\45
    # 0             1->3                 0             3->1
    # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LU,C2x2_RU ?  
    upper_half = contract(C2x2_LU, C2x2_RU, ([1],[0]))
    upper_half = permute(upper_half, (0,3,1,2,4,5))

    #----- building C2x2_RD ----------------------------------------------------
    vec = (1,1)
    shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1]))
    C = env.C[(shitf_coord,(1,1))]
    T1 = env.T[(shitf_coord,(0,1))]
    T2 = env.T[(shitf_coord,(1,0))]
    dimsA = state.site(shitf_coord).size()
    a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord))))
    a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    #    1<-0        0
    # 2<-1--T1--2 1--C
    C2x2_RD = contract(C, T1, ([1],[2]))

    #         2<-0
    #      3<-1--T2
    #            2
    #    0<-1    0
    # 1<-2--T1---C
    C2x2_RD = contract(C2x2_RD, T2, ([0],[2]))

    #    2<-0    1<-2
    # 3<-1--a--3 3--T2
    #       2\45    |
    #       0       |
    # 0<-1--T1------C
    C2x2_RD = contract(C2x2_RD, a, ([0,3],[2,3]))

    # permute 012345->120345
    # reshape (12)(03)45->0123
    C2x2_RD = contiguous(permute(C2x2_RD, (1,2,0,3,4,5)))
    C2x2_RD = view(C2x2_RD, (T2.size(0)*a.size(0),T1.size(1)*a.size(1), dimsA[0], dimsA[0]))

    #    0
    #    |/23
    # 1--C2x2
    if verbosity>0:
        print("C2X2 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C2x2_RD.size()))

    #----- building C2x2_LD ----------------------------------------------------
    vec = (0,1)
    shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1]))
    C = env.C[(shitf_coord,(-1,1))]
    T1 = env.T[(shitf_coord,(-1,0))]
    T2 = env.T[(shitf_coord,(0,1))]
    dimsA = state.site(shitf_coord).size()
    a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord))))
    a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # 0->1
    # T1--2
    # 1
    # 0
    # C--1->0
    C2x2_LD = contract(C, T1, ([0],[1]))

    # 1->0
    # T1--2->1
    # |
    # |       0->2
    # C--0 1--T2--2->3
    C2x2_LD = contract(C2x2_LD, T2, ([0],[1]))

    # 0        0->2
    # T1--1 1--a--3
    # |        2\45
    # |        2
    # C--------T2--3->1
    C2x2_LD = contract(C2x2_LD, a, ([1,2],[1,2]))

    # permute 012345->021345
    # reshape (02)(13)45->0123
    # 0
    # |/23
    # C2x2--1
    C2x2_LD = contiguous(permute(C2x2_LD, (0,2,1,3,4,5)))
    C2x2_LD = view(C2x2_LD, (T1.size(0)*a.size(0),T2.size(2)*a.size(3), dimsA[0], dimsA[0]))
    if verbosity>0:
        print("C2X2 LD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (-1,1): "+str(C2x2_LD.size()))

    #----- build lower part C2x2_LD--C2x2_RD -----------------------------------
    # 0             0->3                 0             3->1
    # |/23->12      |/23->45   & permute |/12->23      |/45
    # C2x2_LD--1 1--C2x2_RD              C2x2_LD------C2x2_RD
    # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LD,C2x2_RD ?  
    lower_half = contract(C2x2_LD, C2x2_RD, ([1],[1]))
    lower_half = permute(lower_half, (0,3,1,2,4,5))

    # construct reduced density matrix by contracting lower and upper halfs
    # C2x2_LU------C2x2_RU
    # |\23->01     |\45->23
    # 0            1    
    # 0            1    
    # |/23->45     |/45->67
    # C2x2_LD------C2x2_RD
    rdm = contract(upper_half,lower_half,([0,1],[0,1]))

    # permute into order of s0,s1,s2,s3;s0',s1',s2',s3' where primed indices
    # represent "ket"
    # 01234567->02461357
    # symmetrize and normalize
    rdm= contiguous(permute(rdm, (0,2,4,6,1,3,5,7)))
    rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who)
    
    return rdm
Example #10
0
def rdm1x1(coord, state, env, sym_pos_def=False, verbosity=0):
    r"""
    :param coord: vertex (x,y) for which reduced density matrix is constructed
    :param state: underlying wavefunction
    :param env: environment corresponding to ``state``
    :param verbosity: logging verbosity
    :type coord: tuple(int,int) 
    :type state: IPEPS
    :type env: ENV
    :type verbosity: int
    :return: 1-site reduced density matrix with indices :math:`s;s'`
    :rtype: torch.tensor

    Computes 1-site reduced density matrix :math:`\rho_{1x1}` centered on vertex ``coord`` by 
    contracting the following tensor network::

        C--T-----C
        |  |     |
        T--A^+A--T
        |  |     |
        C--T-----C

    where the physical indices `s` and `s'` of on-site tensor :math:`A` at vertex ``coord`` 
    and it's hermitian conjugate :math:`A^\dagger` are left uncontracted
    """
    who= "rdm1x1"
    # C(-1,-1)--1->0
    # 0
    # 0
    # T(-1,0)--2
    # 1
    rdm = contract(env.C[(coord,(-1,-1))],env.T[(coord,(-1,0))],([0],[0]))
    if verbosity>0:
        print("rdm=CT "+str(rdm.size()))
    # C(-1,-1)--0
    # |
    # T(-1,0)--2->1
    # 1
    # 0
    # C(-1,1)--1->2
    rdm = contract(rdm,env.C[(coord,(-1,1))],([1],[0]))
    if verbosity>0:
        print("rdm=CTC "+str(rdm.size()))
    # C(-1,-1)--0
    # |
    # T(-1,0)--1
    # |             0->2
    # C(-1,1)--2 1--T(0,1)--2->3
    rdm = contract(rdm,env.T[(coord,(0,1))],([2],[1]))
    if verbosity>0:
        print("rdm=CTCT "+str(rdm.size()))
    # TODO - more efficent contraction with uncontracted-double-layer on-site tensor
    #        Possibly reshape indices 1,2 of rdm, which are to be contracted with 
    #        on-site tensor and contract bra,ket in two steps instead of creating 
    #        double layer tensor
    #    /
    # --A--
    #  /|s
    #  
    # s'|/
    # --A--
    #  /
    #
    dimsA = state.site(coord).size()
    a = contiguous(einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord))))
    a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))
    # C(-1,-1)--0
    # |
    # |             0->2
    # T(-1,0)--1 1--a--3
    # |             2\45(s,s')
    # |             2
    # C(-1,1)-------T(0,1)--3->1
    rdm = contract(rdm,a,([1,2],[1,2]))
    if verbosity>0:
        print("rdm=CTCTa "+str(rdm.size()))
    # C(-1,-1)--0 0--T(0,-1)--2->0
    # |              1
    # |              2
    # T(-1,0)--------a--3->2
    # |              |\45->34(s,s')
    # |              |
    # C(-1,1)--------T(0,1)--1
    rdm = contract(env.T[(coord,(0,-1))],rdm,([0,1],[0,2]))
    if verbosity>0:
        print("rdm=CTCTaT "+str(rdm.size()))
    # C(-1,-1)--T(0,-1)--0 0--C(1,-1)
    # |         |             1->0
    # |         |
    # T(-1,0)---a--2
    # |         |\34(s,s')
    # |         |
    # C(-1,1)---T(0,1)--0->1
    rdm = contract(env.C[(coord,(1,-1))],rdm,([0],[0]))
    if verbosity>0:
        print("rdm=CTCTaTC "+str(rdm.size()))
    # C(-1,-1)--T(0,-1)-----C(1,-1)
    # |         |           0
    # |         |           0
    # T(-1,0)---a--2 1------T(1,0) 
    # |         |\34->23(s,s')  2->0
    # |         |
    # C(-1,1)---T(0,1)--1
    rdm = contract(env.T[(coord,(1,0))],rdm,([0,1],[0,2]))
    if verbosity>0:
        print("rdm=CTCTaTCT "+str(rdm.size()))
    # C(-1,-1)--T(0,-1)--------C(1,-1)
    # |         |              |
    # |         |              |
    # T(-1,0)---a--------------T(1,0) 
    # |         |\23->12(s,s') 0
    # |         |              0
    # C(-1,1)---T(0,1)--1 1----C(1,1)
    rdm = contract(rdm,env.C[(coord,(1,1))],([0,1],[0,1]))
    if verbosity>0:
        print("rdm=CTCTaTCTC "+str(rdm.size()))

    # symmetrize and normalize
    rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who)

    return rdm
Example #11
0
def rdm1x2(coord, state, env, sym_pos_def=False, verbosity=0):
    r"""
    :param coord: vertex (x,y) specifies position of 1x2 subsystem
    :param state: underlying wavefunction
    :param env: environment corresponding to ``state``
    :param verbosity: logging verbosity
    :type coord: tuple(int,int) 
    :type state: IPEPS
    :type env: ENV
    :type verbosity: int
    :return: 2-site reduced density matrix with indices :math:`s_0s_1;s'_0s'_1`
    :rtype: torch.tensor

    Computes 2-site reduced density matrix :math:`\rho_{1x2}` of a vertical 
    1x2 subsystem using following strategy:
    
        1. compute four individual corners 
        2. construct upper and lower half of the network
        3. contract upper and lower halt to obtain final reduced density matrix

    ::

        C--T------------------C = C2x2_LU(coord)--------C1x2(coord)
        |  |                  |   |                     |
        T--A^+A(coord)--------T   C2x2_LD(coord+(0,1))--C1x2(coord+0,1))
        |  |                  |
        T--A^+A(coord+(0,1))--T
        |  |                  |
        C--T------------------C

    The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) 
    at vertices ``coord``, ``coord+(0,1)`` are left uncontracted
    """
    who="rdm1x2"
    #----- building C2x2_LU ----------------------------------------------------
    C = env.C[(state.vertexToSite(coord),(-1,-1))]
    T1 = env.T[(state.vertexToSite(coord),(0,-1))]
    T2 = env.T[(state.vertexToSite(coord),(-1,0))]
    dimsA = state.site(coord).size()
    a= einsum('mefgh,nabcd->eafbgchdmn',state.site(coord), conj(state.site(coord)))
    a= view(contiguous(a), \
        (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # C--10--T1--2
    # 0      1
    C2x2_LU =contract(C, T1, ([1],[0]))

    # C------T1--2->1
    # 0      1->0
    # 0
    # T2--2->3
    # 1->2
    C2x2_LU =contract(C2x2_LU, T2, ([0],[0]))

    # C-------T1--1->0
    # |       0
    # |       0
    # T2--3 1 a--3 
    # 2->1    2\45
    C2x2_LU =contract(C2x2_LU, a, ([0,3],[0,1]))

    # permute 012345->120345
    # reshape (12)(03)45->0123
    # C2x2--1
    # |\23
    # 0
    C2x2_LU= permute(C2x2_LU, (1,2,0,3,4,5))
    C2x2_LU= view(contiguous(C2x2_LU), \
        (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0]))
    if verbosity>0:
        print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size()))

    #----- building C1x2_RU ----------------------------------------------------
    C = env.C[(state.vertexToSite(coord),(1,-1))]
    T1 = env.T[(state.vertexToSite(coord),(1,0))]

    # 0--C
    #    1
    #    0
    # 1--T1
    #    2
    C1x2_RU =contract(C, T1, ([1],[0]))

    # reshape (01)2->(0)1
    # 0--C1x2
    # 23/|
    #    1
    C1x2_RU= view(contiguous(C1x2_RU), (C.size(0)*T1.size(1),T1.size(2)))
    if verbosity>0:
        print("C1X2 RU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (1,-1): "+str(C1x2_RU.size()))

    #----- build upper part C2x2_LU--C1x2_RU -----------------------------------
    # C2x2_LU--1 0--C1x2_RU
    # |\23          |
    # 0->1          1->0
    upper_half =contract(C1x2_RU, C2x2_LU, ([0],[1]))

    #----- building C2x2_LD ----------------------------------------------------
    vec = (0,1)
    shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1]))
    C = env.C[(shitf_coord,(-1,1))]
    T1 = env.T[(shitf_coord,(-1,0))]
    T2 = env.T[(shitf_coord,(0,1))]
    dimsA = state.site(shitf_coord).size()
    a= einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord)))
    a= view(contiguous(a), \
        (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # 0->1
    # T1--2
    # 1
    # 0
    # C--1->0
    C2x2_LD =contract(C, T1, ([0],[1]))

    # 1->0
    # T1--2->1
    # |
    # |       0->2
    # C--0 1--T2--2->3
    C2x2_LD =contract(C2x2_LD, T2, ([0],[1]))

    # 0       0->2
    # T1--1 1--a--3
    # |        2\45
    # |        2
    # C--------T2--3->1
    C2x2_LD =contract(C2x2_LD, a, ([1,2],[1,2]))

    # permute 012345->021345
    # reshape (02)(13)45->0123
    # 0
    # |/23
    # C2x2--1
    C2x2_LD= permute(C2x2_LD, (0,2,1,3,4,5))
    C2x2_LD= view(contiguous(C2x2_LD), \
        (T1.size(0)*a.size(0),T2.size(2)*a.size(3), dimsA[0], dimsA[0]))
    if verbosity>0:
        print("C2X2 LD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (-1,1): "+str(C2x2_LD.size()))

    #----- building C2x2_RD ----------------------------------------------------
    C = env.C[(shitf_coord,(1,1))]
    T2 = env.T[(shitf_coord,(1,0))]

    #       0
    #    1--T2
    #       2
    #       0
    # 2<-1--C
    C1x2_RD =contract(T2, C, ([2],[0]))

    # permute 012->021
    # reshape 0(12)->0(1)
    C1x2_RD = view(contiguous(permute(C1x2_RD,(0,2,1))), \
        (T2.size()[0],C.size()[1]*T2.size()[1]))

    #    0
    #    |
    # 1--C1x2
    if verbosity>0:
        print("C1X2 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C1x2_RD.size()))

    

    #----- build lower part C2x2_LD--C1x2_RD -----------------------------------
    # 0->1          0
    # |/23          |
    # C2x2_LD--1 1--C1x2_RD 
    lower_half =contract(C1x2_RD, C2x2_LD, ([1],[1]))

    # construct reduced density matrix by contracting lower and upper halfs
    # C2x2_LU------C1x2_RU
    # |\23->01     |
    # 1            0    
    # 1            0    
    # |/23         |
    # C2x2_LD------C1x2_RD
    rdm =contract(upper_half,lower_half,([0,1],[0,1]))

    # permute into order of s0,s1;s0',s1' where primed indices
    # represent "ket"
    # 0123->0213
    # symmetrize and normalize
    rdm = contiguous(permute(rdm, (0,2,1,3)))
    rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who)

    return rdm
Example #12
0
def rdm2x1(coord, state, env, sym_pos_def=False, verbosity=0):
    r"""
    :param coord: vertex (x,y) specifies position of 2x1 subsystem
    :param state: underlying wavefunction
    :param env: environment corresponding to ``state``
    :param verbosity: logging verbosity
    :type coord: tuple(int,int) 
    :type state: IPEPS
    :type env: ENV
    :type verbosity: int
    :return: 2-site reduced density matrix with indices :math:`s_0s_1;s'_0s'_1`
    :rtype: torch.tensor

    Computes 2-site reduced density matrix :math:`\rho_{2x1}` of a horizontal 
    2x1 subsystem using following strategy:
    
        1. compute four individual corners 
        2. construct right and left half of the network
        3. contract right and left halt to obtain final reduced density matrix

    ::

        C--T------------T------------------C = C2x2_LU(coord)--C2x2(coord+(1,0))
        |  |            |                  |   |               |  
        T--A^+A(coord)--A^+A(coord+(1,0))--T   C2x1_LD(coord)--C2x1(coord+(1,0))
        |  |            |                  |
        C--T------------T------------------C 

    The physical indices `s` and `s'` of on-sites tensors :math:`A` (and :math:`A^\dagger`) 
    at vertices ``coord``, ``coord+(1,0)`` are left uncontracted
    """
    who="rdm2x1"
    #----- building C2x2_LU ----------------------------------------------------
    C = env.C[(state.vertexToSite(coord),(-1,-1))]
    T1 = env.T[(state.vertexToSite(coord),(0,-1))]
    T2 = env.T[(state.vertexToSite(coord),(-1,0))]
    dimsA = state.site(coord).size()
    a = einsum('mefgh,nabcd->eafbgchdmn',state.site(coord),conj(state.site(coord)))
    a = view(contiguous(a),\
        (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # C--10--T1--2
    # 0      1
    C2x2_LU =contract(C, T1, ([1],[0]))

    # C------T1--2->1
    # 0      1->0
    # 0
    # T2--2->3
    # 1->2
    C2x2_LU =contract(C2x2_LU, T2, ([0],[0]))

    # C-------T1--1->0
    # |       0
    # |       0
    # T2--3 1 a--3 
    # 2->1    2\45
    C2x2_LU =contract(C2x2_LU, a, ([0,3],[0,1]))

    # permute 012345->120345
    # reshape (12)(03)45->0123
    # C2x2--1
    # |\23
    # 0
    C2x2_LU= permute(C2x2_LU, (1,2,0,3,4,5))
    C2x2_LU= view(contiguous(C2x2_LU), \
        (T2.size(1)*a.size(2),T1.size(2)*a.size(3),dimsA[0],dimsA[0]))
    if verbosity>0:
        print("C2X2 LU "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,-1): "+str(C2x2_LU.size()))

    #----- building C2x1_LD ----------------------------------------------------
    C = env.C[(state.vertexToSite(coord),(-1,1))]
    T2 = env.T[(state.vertexToSite(coord),(0,1))]

    # 0       0->1
    # C--1 1--T2--2
    C2x1_LD=contract(C, T2, ([1],[1]))

    # reshape (01)2->(0)1
    # 0
    # |
    # C2x1--1
    C2x1_LD= view(contiguous(C2x1_LD), (C.size(0)*T2.size(0),T2.size(2)))
    if verbosity>0:
        print("C2X1 LD "+str(coord)+"->"+str(state.vertexToSite(coord))+" (-1,1): "+str(C2x1_LD.size()))

    #----- build left part C2x2_LU--C2x1_LD ------------------------------------
    # C2x2_LU--1 
    # |\23
    # 0
    # 0
    # C2x1_LD--1->0
    # TODO is it worthy(performance-wise) to instead overwrite one of C2x2_LU,C2x2_RU ?  
    left_half= contract(C2x1_LD, C2x2_LU, ([0],[0]))

    #----- building C2x2_RU ----------------------------------------------------
    vec = (1,0)
    shitf_coord = state.vertexToSite((coord[0]+vec[0],coord[1]+vec[1]))
    C = env.C[(shitf_coord,(1,-1))]
    T1 = env.T[(shitf_coord,(1,0))]
    T2 = env.T[(shitf_coord,(0,-1))]
    dimsA = state.site(shitf_coord).size()
    a= einsum('mefgh,nabcd->eafbgchdmn',state.site(shitf_coord),conj(state.site(shitf_coord)))
    a= view(contiguous(a), \
        (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2, dimsA[0], dimsA[0]))

    # 0--C
    #    1
    #    0
    # 1--T1
    #    2
    C2x2_RU =contract(C, T1, ([1],[0]))

    # 2<-0--T2--2 0--C
    #    3<-1        |
    #          0<-1--T1
    #             1<-2
    C2x2_RU =contract(C2x2_RU, T2, ([0],[2]))

    # 1<-2--T2------C
    #       3       |
    #    45\0       |
    # 2<-1--a--3 0--T1
    #    3<-2    0<-1
    C2x2_RU =contract(C2x2_RU, a, ([0,3],[3,0]))

    # permute 012334->120345
    # reshape (12)(03)45->0123
    # 0--C2x2
    # 23/|
    #    1
    C2x2_RU= permute(C2x2_RU, (1,2,0,3,4,5))
    C2x2_RU= view(contiguous(C2x2_RU), \
        (T2.size(0)*a.size(1),T1.size(2)*a.size(2), dimsA[0], dimsA[0]))
    if verbosity>0:
        print("C2X2 RU "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,-1): "+str(C2x2_RU.size()))

    #----- building C2x1_RD ----------------------------------------------------
    C = env.C[(shitf_coord,(1,1))]
    T1 = env.T[(shitf_coord,(0,1))]

    #    1<-0        0
    # 2<-1--T1--2 1--C
    C2x1_RD =contract(C, T1, ([1],[2]))

    # reshape (01)2->(0)1
    C2x1_RD = view(contiguous(C2x1_RD), (C.size(0)*T1.size(0),T1.size(1)))

    #    0
    #    |
    # 1--C2x1
    if verbosity>0:
        print("C2X1 RD "+str((coord[0]+vec[0],coord[1]+vec[1]))+"->"+str(shitf_coord)+" (1,1): "+str(C2x1_RD.size()))

    

    #----- build right part C2x2_RU--C2x1_RD -----------------------------------
    # 1<-0--C2x2_RU
    #       |\23
    #       1
    #       0
    # 0<-1--C2x1_RD
    right_half =contract(C2x1_RD, C2x2_RU, ([0],[1]))

    # construct reduced density matrix by contracting left and right halfs
    # C2x2_LU--1 1----C2x2_RU
    # |\23->01        |\23
    # |               |    
    # C2x1_LD--0 0----C2x1_RD
    rdm =contract(left_half,right_half,([0,1],[0,1]))

    # permute into order of s0,s1;s0',s1' where primed indices
    # represent "ket"
    # 0123->0213
    # symmetrize and normalize 
    rdm = contiguous(permute(rdm, (0,2,1,3)))
    rdm= _sym_pos_def_rdm(rdm, sym_pos_def=sym_pos_def, verbosity=verbosity, who=who)

    return rdm
Example #13
0
def run(state,
        env,
        conv_check=None,
        ctm_args=cfg.ctm_args,
        global_args=cfg.global_args):
    r"""
    :param state: wavefunction
    :param env: environment
    :param conv_check: function which determines the convergence of CTM algorithm. If ``None``,
                       the algorithm performs ``ctm_args.ctm_max_iter`` iterations. 
    :param ctm_args: CTM algorithm configuration
    :param global_args: global configuration
    :type state: IPEPS
    :type env: ENV
    :type conv_check: function(IPEPS,ENV,list[float],CTMARGS)->bool
    :type ctm_args: CTMARGS
    :type global_args: GLOBALARGS

    Executes directional CTM algorithm for generic iPEPS starting from the intial environment ``env``.
    TODO add reference
    """

    # 0) Create double-layer (DL) tensors, preserving the same convenction
    # for order of indices
    #
    #     /           /
    #  --A^dag-- = --a--
    #   /|          /
    #    |/
    #  --A--
    #   /
    #
    sitesDL = dict()
    for coord, A in state.sites.items():
        dimsA = A.size()
        a = contiguous(einsum('mefgh,mabcd->eafbgchd', A, conj(A)))
        a = view(a, (dimsA[1]**2, dimsA[2]**2, dimsA[3]**2, dimsA[4]**2))
        sitesDL[coord] = a
    stateDL = IPEPS(sitesDL, state.vertexToSite)

    # 1) perform CTMRG
    t_obs = t_ctm = 0.
    history = None
    for i in range(ctm_args.ctm_max_iter):
        t0_ctm = time.perf_counter()
        for direction in ctm_args.ctm_move_sequence:
            ctm_MOVE(direction, stateDL, env, ctm_args=ctm_args, global_args=global_args, \
                verbosity=ctm_args.verbosity_ctm_move)
        t1_ctm = time.perf_counter()

        t0_obs = time.perf_counter()
        if conv_check is not None:
            # evaluate convergence of the CTMRG procedure
            converged, history = conv_check(state,
                                            env,
                                            history,
                                            ctm_args=ctm_args)
            if ctm_args.verbosity_ctm_convergence > 1: print(history[-1])
            if converged:
                if ctm_args.verbosity_ctm_convergence > 0:
                    print(
                        f"CTMRG  converged at iter= {i}, history= {history[-1]}"
                    )
                break
        t1_obs = time.perf_counter()

        t_ctm += t1_ctm - t0_ctm
        t_obs += t1_obs - t0_obs

    return env, history, t_ctm, t_obs